
ar
X

iv
:2

20
7.

11
05

6v
1

 [
cs

.R
O

]
 2

2
Ju

l 2
02

2

Energy-Aware Planning-Scheduling for Autonomous Aerial Robots

Adam Seewald1, Héctor Garcı́a de Marina2, Henrik Skov Midtiby3, and Ulrik Pagh Schultz3

Abstract—In this paper, we present an online planning-
scheduling approach for battery-powered autonomous aerial
robots. The approach consists of simultaneously planning a
coverage path and scheduling onboard computational tasks. We
further derive a novel variable coverage motion robust to air-
borne constraints and an empirically motivated energy model.
The model includes the energy contribution of the schedule
based on an automatic computational energy modeling tool. Our
experiments show how an initial flight plan is adjusted online as
a function of the available battery, accounting for uncertainty.
Our approach remedies possible in-flight failure in case of
unexpected battery drops, e.g., due to adverse atmospheric
conditions, and increases the overall fault tolerance.

I. INTRODUCTION

Use cases involving aerial robots span broadly. They

comprise diverse planning and scheduling strategies and often

require high autonomy under strict energy budgets. One

such use case is coverage path planning (CPP) [1], [2],

which consists of, e.g., an aerial robot visiting every point

in a given space [3] while running assigned computational

tasks. Here, the aerial robot might detect ground patterns

and notify other ground-based actors. Such use cases arise in

precision agriculture [4] where information collection prior

to a harvesting operation and damage prevention during the

operation involve aerial robots [5], [6]. Microcontrollers and

heterogeneous computing hardware [7] (i.e., with CPUs and

GPUs) running power-demanding computational tasks are

frequently mounted onto the robots in these and many other

scenarios [8], [9]. We refer to onboard computational tasks

that can be scheduled with an energy impact as computations.

We are interested in the energy optimization of motion plans

and computations schedules in-flight and refer to it as energy-

aware planning-scheduling. The energy optimization of com-

putations schedules can be achieved by, e.g., varying the

quality of service between specific bounds [10] and frequency

and voltage of the computing hardware [7], [11], [12]. We

focus on the former aspect and schedule the onboard compu-

tations altering their quality while simultaneously changing

the quality of the coverage. Concretely, we alter how often the

aerial robot detects ground patterns along with the distance

of the lines that form the coverage. Figure 1 illustrates the

intuition: an aerial robot flies a plan with maximal coverage

The work was partly funded by EU grant №779882 (TeamPlay). The work
for H. G. is supported by the Ramon y Cajal grant №RYC2020-030090-I.

1A. S. is with the Department of Mechanical Engineering and Materials
Science, Yale University, CT, USA, but the work was performed while
affiliated with SDU UAS. Email: adam.seewald@yale.edu;

2H. G. is with the Department of Computer Engineering, Automation, and
Robotics and with CITIC, University of Granada, Spain;

3H. S. M., U. P. S. are with SDU UAS, University of Southern Denmark.

-2 0 2
0

2

4

4000

S
p
ec

tr
u
m

(1
0

2
d
B

)

Frequency (10-2 Hz)

t

plan

schedule

ii

iii

i

20

25

30

0 100 200 300

P
o
w

er
(W

)

Time (sec)

i ii iii

Fig. 1: An initial plan (in i) is re-planned online, changing the detection rate
or other computational aspects (in ii) and the number of fly-bys or other
motion aspects (in iii). On the right are the energy data of a fixed-wing aerial
robot flying a static coverage plan similar to the one illustrated here and the
spectrum analysis, revealing the periodicity exploited in the energy model.

and schedule (i), that is optimized during flight to respect the

battery state (ii), and altered due to, e.g., battery defects (iii).

There are numerous planning approaches applied to a

variety of robots. An instance is an algorithm selecting an

energy-optimized trajectory [13] by, e.g., maximizing the

operational time [14]. Many approaches apply to a small

number of robots [15] and focus exclusively on planning the

trajectory [16], despite compelling evidence of the energy

influence of onboard computations [7], [11], [17], [18]. In

view of the availability of powerful heterogeneous computing

hardware [19], the use of onboard computations is further

expected to increase in the foreseeable future [20]. In this

context, planning-scheduling energy awareness is a recent

research direction [11], [17], [18], [21]. Early studies (2000–

2010) varied hardware-dependent aspects, e.g., frequency

and voltage, along with motion aspects, e.g., motor and

travel velocities [7], [11], [12], [22] whereas the literature

from the past decade derives energy-aware plans-schedules

in broader terms. These include simultaneous considerations

for planning-scheduling in perception [17], localization [21],

navigation [10], and anytime planning [18]. These studies

are focused on ground-based robots [7], [17], [21], [22],

yet, aerial robots are particularly affected by energy con-

siderations, as it would be generally required to land to

recharge the battery. In terms of aerial coverage, past work

considers criteria including the completeness of the coverage

and resolution [23], and deals with aspects such as the

http://arxiv.org/abs/2207.11056v1
mailto:adam.seewald@yale.edu

quality of the cover [24], but neglects the energy expenditure

of computations and favors rotary-wing aerial robots rather

than aerial robots broadly. Such a state of practice has

prompted us to propose the planning-scheduling approach

for autonomous aerial robots, combining the past body of

knowledge but addressing aerial robots’ peculiarities such

as the atmospheric, battery, and turning radius constraints.

Numerical simulations and experimental data of static and

dynamic plans and schedules show improved power savings

and fault tolerance with the robot remedying in-flight failures.

Our focus is on fixed wings, i.e., airborne robots where

wings provide lift, propellers provide forward thrust, and

control surfaces perform maneuvering. Here, motion and

computations energies are within an order of magnitude from

each other [25], [26]. There are other classes where planning-

scheduling energy awareness leads to irrelevant savings, i.e.,

when the motion energy contribution far outreaches the com-

putations or vice-versa. The motion outreaching computation

energy frequently happens with rotary-wing aerial robots

(e.g., quadrotors or quadcopters, hexacopters, etc.), the oppo-

site occurs with lighter-than-air aerial robots (e.g., blimps).

It is common in planning-scheduling literature, focusing on

efficient ground-based robots such as Pioneer 3DX [7], [10],

ARC Q14 [17], [21], and Pack-Bot UGV [22].

To guarantee energy awareness, our approach uses optimal

control and heuristics where both the paths and schedules

variations are trajectories, varying between given bounds (i.e.,

physical constraints of the robot and computing hardware,

quality of service, desired quality of the coverage, etc.).

Past planning-scheduling studies also employ optimization

techniques [11], [12], [17], [21]; some use a greedy ap-

proach [7], [18], [22]; whereas others use reinforcement

learning-based approaches [10], [27]. Hybrid approaches [17]

are also available, where the techniques are mixed. Both

the paths and schedules variations trajectories are derived

for future time instants employing computations and overall

energies and battery models. The energy model for the com-

putations uses regressional analysis from our earlier study

on heterogeneous computing hardware [28], [29], whereas

the battery uses an equivalent circuit model (ECM) from

the literature [30], [31]. The overall model wraps these two

aspects in a cohesive model that uses dynamics modeling to

predict the energy behavior of future plans and schedules.

In Fig. 1, collected energy data (top-right) and spectrum

analysis (below) of a fixed wing flying CPP motivate the

overall energy model: the evolution is periodic–CPP often

involves repetitive motions to cover the space [1], [2]–an

observation exploited in Section III.

The remainder is then organized as follows. Sec. II pro-

vides basic constructs and Sec. IV describes the methodol-

ogy of planning-scheduling. Sec. V presents the results and

Sec. VI concludes and provides future perspectives.

II. PROBLEM FORMULATION

We assume the robot contains a plan composed of stages.

At each, it travels a path and runs a schedule on the

computing hardware. Both are altered in Sec. IV within given

boundaries with path- and computation-specific parameters.

p(t3)

ϕ0

ϕ3

ϕ4

ϕ5

OW

ϕ1

p(t1)

c4,1c4,1

pΓ0
pΓ4

pΓ3

p(t0) Fig. 2: Definitions II.1–4
on a slice of the plan Γ.
pΓi

are triggering points
in which proximity hap-
pens the change of stages
Γi. Each contains a path
function ϕi and parame-
ters to alter the path and
schedule ci,1,

A. Preliminaries

Definition II.1 (Stage). Given a generic point p ∈ R
2 w.r.t.

a reference frame OW of the aerial robot flying at a given

altitude h ∈ R>0, the ith stage Γi is

Γi := {ϕi(p, c
ρ
i), c

σ
i | ∀j ∈ [ρ]>0, ci,j ∈ Ci,j ,

∀k ∈ [σ]>0, ci,ρ+k ∈ Si,k },

where cρi := {ci,1, ci,2, . . . , ci,ρ} and cσi := {ci,ρ+1, ci,ρ+2,
. . . , ci,ρ+σ} are ρ path and σ computation parameters, e.g.,

cρi := {ci,1} is a value that changes the distance of the

coverage lines and cσi := {ci,2} the detection rate with ρ and

σ being one (see Sec. V). Ci,j := [ci,j , ci,j] ⊆ R is the jth

path parameter constraint set, Si,k := [ci,ρ+k, ci,ρ+k] ⊆ Z≥0

the kth computation parameter constraint set. Indices j, k
serve to differentiate path and computation parameters con-

straints and indicate that each parameter can have a different

constraint set.

For a set X, X≥0 indicates its members are positive, X>0

strictly positive, and |X| its cardinality. Z,R are integers and

reals. Bold letters indicate vectors. The notation [x] denotes

positive naturals up to x, i.e., {0, 1, . . . , x}, [x]>0 strictly

positive naturals, i.e., {1, 2, . . . , x}, x′ the transpose of x,

and [x, x] the upper/lower bounds of x, i.e., x ≤ x ≤ x.

The function ϕi is a path function–a stage-dependent math-

ematical function the robot tracks as it travels the coverage.

Definition II.2 (Path functions). ϕi : R2 × R
ρ → R, ∀i ∈

{1, 2, . . .} are path functions, forming the path. They are a

function of p and path parameters cρi and are continuous.

The change of stages happens in the proximity of given

points termed triggering points, whereas the plan is complete

at the occurrence of the final point.

Definition II.3 (Triggering and final points). The triggering

point pΓi
describes the transition between stages. Final point

is the last triggering point pΓl
relative to the last stage Γl.

The plan merges the concepts from Definitions II.1–3.

Definition II.4 (Plan). The plan is a finite state machine

(FSM) Γ, where the state-transition function s :
⋃

i Γi×R
2 →

⋃

i Γi maps a stage and a point to the next stage

s(Γi,p) :=

{

Γi+j if ‖p− pΓi
‖ < εi, ∃j ∈ Z,

Γi otherwise.

The stage-dependent value εi ∈ R≥0 in Definition II.4

expresses the radius of a non-existent circle over pΓi
.

Fig. 2 illustrates the concepts in Definitions II.1–4.

ϕ0, . . . , ϕ5 are path functions. ϕ0 and ϕ4 are circles, while

ϕ1, ϕ3, and ϕ5 are lines. They are relative to different

stages Γ1, . . . but Γ0 (the starting stage) and are changed

in the proximity of pΓ0
, It is possible to alter the paths

ϕ1, . . . , ϕ4 with the parameters c1,1, . . . , c4,1–the gray area.

A convenient way of defining Γ is specifying a set of

stages, a shift, and a final point. The set is termed primitive

stages and iterated with the shift up to the final point.

Definition II.5 (Primitive stages). Given the number of

primitive stages n ∈ Z>0, a shift d ∈ R
2, and a final point

pΓl
, the stages Γ1,Γ2, . . . ,Γn are primitive if they form the

remainder of the plan with d up to pΓl
.

In this case, the path functions have a constant distance ej
per each value in [n]>0, i.e.,

ϕ(i−1)n+j(p+ (i− 1)d, cρ1)− ϕin+j(p+ id, cρ1) = ej , (1)

holds ∀i ∈ [l/n− 1]>0, j ∈ [n]>0 assuming the total number

of stages is known and is l ∈ Z>0. ej ∈ R given a shift d,

initial point p, and initial value of path parameters cρ1.

B. Energy-aware planning-scheduling problem

The problem is split into the derivation of a coverage

plan and its energy-aware re-planing and -scheduling in-

flight. The re-planning-scheduling increases a unitless per-

formance metric–the weighted average of parameters divided

by the remaining battery state of charge (SoC) at the end of

the flight, both in percent (e.g., ci,j , ci,j correspond to 0 and

100). The objective is high average parameters configuration

and battery usage with successful coverage.

Problem (Coverage and re-planning-scheduling problem).

Consider a finite set of vertices of a polygon v :=
{v1, v2, . . . } where each is a point w.r.t. OW . Let r ∈ R≥0,

the vehicle’s turning radius, and p(t0), the starting point at

the time instant t0, be given. The coverage problem is the

problem of finding a plan Γ to cover the polygon, whereas the

re-planning-scheduling problem is finding the energy-aware

trajectory of parameters ci in time.

Here, ci denotes a row vector with both the path and

computation parameters in sequence, i.e., ci := [cρi cσi]
′.

III. ENERGY MODELS

The solution to the problem requires energy models, pre-

dicting the impact of changes to path and computation pa-

rameters on the battery. Sec. III-A–C thus provide models for

the overall and computations energies and battery evolution.

A. Overall energy model

The collected energy data and corresponding spectrum

analysis in Fig. 1 show the energy of a static coverage plan.

It is relative to one flight of a series of flights for CPP in a

precision agriculture use case [25]. Assuming the primitive

paths have approximately the same length and the aerial

robot has a fixed ground speed, the data exhibits periodic

behavior with a constant set of frequencies, independent of

the shift. The hypothesis is further backed by the power

spectrum analysis, indicating that to model the energy, three

frequencies are adequate.

An intuitive way of modeling the energy data is a Fourier

series of a given order r ∈ Z≥0 and period T ∈ R>0

h(t) = a0/T + (2/T)

r∑

j=1

(aj cosωjt+ bj sinωjt), (2)

where h : R≥0 → R maps time to the instantaneous

energy, ω := 2π/T is the angular frequency, and a, b ∈ R

coefficients.

Equation (2) does not account for the variation of param-

eters, where, e.g., two schedules result in different instanta-

neous energies. For this latter purpose, we use the dynamics

q̇(t) = Aq(t) +Bu(t), (3a)

y(t) = Cq(t), (3b)

where y(t) ∈ R is the instantaneous energy consumption. The

state q ∈ R
m with m := 2r+ 1 contains energy coefficients

q(t) =
[
α0(t) α1(t) β1(t) · · · αr(t) βr(t)

]′
. (4)

The state transition matrix

A =

0 01×2 . . . 01×2

02×1 A1 . . . 02×2

...
...

. . .
...

02×1 02×2 . . . Ar

, Aj :=

[

0 ωj
−ωj 0

]

, (5)

where A ∈ R
m×m contains r sub-matrices Aj and 0i×j is a

zero matrix of i rows and j columns. In matrix A, the top

left entry is zero, the diagonal entries are A1, . . . , Ar, the

remaining entries are zeros.

The output matrix

C = (1/T)
[

1

2r
︷ ︸︸ ︷

1 0 · · · 1 0
]

, (6)

where C ∈ R
m (the first value in the first column is one, the

pattern one–zero is then repeated 2r times).

To define the nominal control and the output matrix, we

exploit the effect of variation of path and computation param-

eters on the energy. Given ci(t) parameters at two following

time instants t ∈ {tj, tj+1} ⊂ R≥0 s.t. tj < tj+1 for an

arbitrary stage Γi, a change in parameters ci(tj) 6= ci(tj+1)
results in different overall and instantaneous energies for path

and computation parameters respectively.

The nominal control and input matrix in Eq. (3) simply

includes the change in energy for all time instants, i.e.,

u(tj+1):=û(tj+1)−û(tj), B =

01×ρ 1 · · · 1
01×ρ 0 · · · 0

.

..
.
..

. . .
.
..

01×ρ 0 · · · 0

, (7)

shifts the base frequency α0 assuming the energy of the

computations does not alter the other frequencies. B ∈ R
m×n

with n := ρ + σ contains zeros but in the first row where

the first ρ columns are zeros and the remaining σ are ones.

Different combinations of u with matrix B in Eq. (7) are

possible (see Sec. VI). The dynamics in Eq. (3–7) addition-

ally allow us to use state estimation techniques, such as the

Kalman filter in Sec. IV-B, to refine the states q and model

the energy of the aerial robot flying under diverse conditions.

Matrices A and C are constructed such that the models in

Eq. (2–3) are equal when u is a zero vector and an initial

guess q(t0) = q0 at the initial time instant t0

q0 =
[
a0 a1/2 b1/2 · · · ar/2 br/2

]′
, (8)

i.e., h, y are harmonic signals with the same frequencies. For

further details see the first author’s Ph.D. thesis [32].

û in Eq. (7) is then a scale transformation

û(t) := diag(νi)ci(t) + τi, (9)

where diag(x) is a diagonal matrix with items of a set x on

the diagonal and zeros elsewhere. νi :=
[
νi,1 · · · νi,n

]′

and τi :=
[
τi,1 · · · τi,n

]′
are scaling factors, transforming

parameters (see Definition II.1) to time and power domains.

We assume that the coverage time evolves linearly and that

the path parameters contribute to it equally. cρi can be then

transformed into a time measure with scaling factors

νi,j =
(
(t− t)/(ci,j − ci,j)

)
/ρ, (10a)

τi,j =
(
ci,j(t− t)/(ci,j − ci,j) + t

)
/ρ, (10b)

∀j ∈ [ρ]>0 where t, t are time measures needed to complete

the coverage with configurations cρi , c
ρ
i (Γ,Γ).

Similarly to Eq. (10), computation parameters cσi can be

transformed into an instantaneous energy measure with

νi,j = (g(ci,j)− g(ci,j))/(ci,j − ci,j), (11a)

τi,j = ci,j(g(ci,j)− g(ci,j))/(ci,j − ci,j) + g(ci,j), (11b)

∀j ∈ [ρ+ 1, n]. The function g is detailed in Sec. III-B and

quantifies the power of the computing hardware.

B. Energy model for the computations

Models for heterogeneous computing hardware in the

literature often rely on analytical expressions [33], [34] or

different techniques, such as regressional analysis [28], [35],

[36], aiding the selection of hardware- or software-specific

parameters. This section presents an energy model based on

our early studies [28], [29], which relies on regressional anal-

ysis to quantify the computations energy of any configuration

of computations cσi within the bounds (see Definition II.1).

The model compromises a modeling and profiling tool [28]

named powprofiler distributed under the open-source MIT

license. It is segmented into two layers. In the measurement

layer, the tool measures a discrete set of computation param-

eters and infers the energy of the remaining in the predictive

layer via a piecewise linear regression.

We assume there is at least one measuring device, i.e.,

shunt or internal power resistor, multimeter, or amperemeter,

quantifying the power drain of a component, e.g., CPU, GPU,

memory, etc., or of the entire computing hardware.

Definition III.1 (Measurement layer). Given a measuring

device, computation parameters, and initial and final time

instants, the measurement layer is the function γ : Z>0 ×
Z
σ × T → R that returns an energy measure.

The notation T encloses all the time intervals from initial

t0 to final tf , i.e., T := [t0, tf].

Definition III.2 (Predictive layer). Given a measuring device

and computation parameters, the predictive layer is the

function g : Z>0 × Z
σ → R that returns an energy measure.

The energy measures in Definitions III.1–2 can be either

average expressed in watts or overall expressed in joules.

Additionally, the powprofiler tool supports the battery SoC

detailed in Sec. III-C. The function g in Definition III.2 is

contained in the factors in Eq. (11), assuming the computa-

tions energy behaves linearly between cσi and cσi , otherwise

g(cσi) = (γ(⌈cσi ⌉, T1)− γ(⌊cσi ⌋, T2))

(cσi − ⌊cσi ⌋)/(⌈c
σ
i ⌉ − ⌊cσi ⌋) + γ(⌊cσi ⌋, T2),

(12)

where notation ⌈cσi ⌉, ⌊c
σ
i ⌋ indicates two adjacent measure-

ment layers, and T1, T2 the corresponding two time intervals.

The measuring device in γ and g is not stated in Eq. (12).

C. Battery model

The battery model predicts the battery SoC as a function of

a given load at future time instants. There are multiple models

in the literature [37] with varying complexity and accuracy

ranging from accurate but costly physical models [38], to

abstract models [30], [31] with compelling trade-offs in terms

of the latter two. We model a Li-ion battery in-flight with an

abstract “Rint” ECM in the literature [30], [31].

The battery SoC changes according to [39], i.e.,

ḃ(y(t)) = −kbI(y(t))/Qc, (13)

where I(y(t)) ∈R is the internal current measured in am-

peres, y(t) ∈R≥0 the power drain, and Qc ∈R the battery

constant nominal capacity measured in amperes per hour.

kb is a battery coefficient added to [39] and derived experi-

mentally. The “Rint” circuit models the battery as a perfect

voltage source connected with a resistor Rr ∈ R measured in

ohm, representing the battery resistance. The voltage on the

extremes of ECM respects Ve = V −RrI , where V, Ve ∈ R

are the internal and external battery voltages measured in

volts. The former can be retrieved from the battery data

sheet [30] and depends on the SoC [39].

If the voltage is stable, Kirchhoff’s circuit laws lead to

VsIl = VeI , where Il is the current required by the load

in amperes. Combining Ve, VsIl results in the expression

RrI
2− V I + VsIl = 0. Solving the expression utilizing the

negative solution (when Il is zero, I should also be zero)

results in

I(y(t)) = (V −
√

V 2 − 4Rry(t))/(2Rr). (14)

Eq. (3) states that the output y evolves in R, yet, aerial

robots usually use a battery. We thus use instead

Y(t) := {y | y ∈ [0, b QcV] ⊆ R≥0}, (15)

where bQcV , the maximum instantaneous energy measured

in watts, is derived from Eq. (13–14), i.e., the computation

parameters in Algorithm 1 and Eq. (18) later in Sec. IV-B

will have an energy constraint.

Fig. 3: Change of
the path parame-
ter ci,1, the ra-
dius of the cir-
cle (i.e., the alter-
ation of the plan
in Fig. 1).

ϕ3ϕ5

ci,1

r2(ci,1)

ϕ4

ϕ3ϕ5

ϕ4

r2(ci,1)
iii

→

IV. PLANNING-SCHEDULING

This section solves the problem in Sec. II-B. It provides a

plan and re-plans-schedules such plan energy-wise.

A. Coverage

There are various approaches in the literature to solve CPP

problems (e.g., Sec. II-B). Those that ensure completeness

are NP-hard [40] and use cellular decomposition, dividing

the free space into sub-regions to be easily covered [1], [2].

An intuitive way to solve the problem is with a back-and-

forth motion, sweeping the space delimited by v we term

Qv. Although abundant in both mobile ground-based [1] and

aerial [23], [41], [42] robotics literature, the motion, called

boustrophedon motion [1], is unsuitable for aerial robots

broadly, especially for fixed-wing aerial robots. These robots

have reduced maneuverability [43]–[45] and are generally

unable to fly quick turns [46].

To address fixed wings and aerial robots generally, this

section details a different motion with a wide turning ra-

dius. It is similar to another motion in the literature, the

Zamboni motion [41], but additionally allows variable CPP

by dynamically altering the distance between the survey

lines with the path parameters. Although cover variability

is already considered in the literature [23], it is limited to

boustrophedon motion for rotary wings. The novel motion

is termed Zamboni-like motion and is composed of four

primitive paths: two lines ϕ1, ϕ2 and two circles ϕ3, ϕ4.

We assume the vertices v1, v2, . . . are ordered from the

top-left-most vertex clockwise, the aerial robot can overfly

the edges formed by the vertices, and vx |vy indicates the edge

formed by vertices vx, vy . Algorithm 1 details the procedure

to generate the plan Γ that covers Qv at discretized time

steps, i.e., T := {t0, t0 + h, . . . , tf} for a given step h ∈
R>0. The algorithm assumes that the line parallel to v1 |v|v|
is always connected. Complex covering is possible by, e.g.,

dividing Qv into cells and covering each cell [1].

To implement the variable CPP, the radius r2 of the second

circle ϕ|Γ|+4 on Line 13

r2(ci,1) :=
√

r2 + ci,1, (16)

is expressed as a function of a path parameter ci,1 ∈ (r2 −
r2, 0], relative to the last circle in each set of primitive stages.

r ∈ R>0 is a given ideal turning radius along with the

minimum radius (see Sec. II-B). The center also changes

ϕ|Γ|+4 := (x− xp|Γ|+3
+ r2)

2 + (y − yp|Γ|+3
)2 − r22 , (17)

where (xp, yp) =: p for any point p. Fig. 3 illustrates the

concept of ci,1 altering the CPP. The radius of the first circle

Algorithm 1 Zamboni-like motion for CPP

1: for all t ∈ T do
2: if p = pΓl

in Definition II.3 then return Γ
3: if p = pΓi

then
4: i← i+ 1
5: if i /∈ [n]>0 then
6: i← 1
7: ϕ|Γ|+1 ← line in Definition II.2 parallel to v1 |v|v| that

intersects p|Γ|

8: p|Γ|+1 ← other intersection of ϕ|Γ|+1 and v
9: ϕ|Γ|+2 ← circle whose left most point lays on p|Γ|+1

10: p|Γ|+2 ← other inter. of ϕ|Γ|+2 and v
11: ϕ|Γ|+3 ← line par. to ϕ|Γ|+1 that inter. p|Γ|+2

12: p|Γ|+3 ← other inter. of ϕ|Γ|+3 and v
13: ϕ|Γ|+4 ← circle in Eq. (17) whose right most point

lays on p|Γ|+3

14: p|Γ|+4 ← other inter. of ϕ|Γ|+4 and v

15: Γ← Γ ∪ {Γ|Γ|+1, . . . ,Γ|Γ|+4} in Definitions II.1–4

v1

v4

v2

v3

v1

v4

v2

v3

→

Γ Γ

Fig. 4: Zamboni-li-
ke motion: Γ with
four primitive paths
(Lines 9–14 in Al-
gorithm 1) can be
re-planned up to Γ
with the radius r2.

on Line 9 is then r1 := r + xd/2 (i.e., the radiuses of the

two circles ensure that the primitive paths are shifted of d).

Algorithm 1 initializes i to minus one and builds the first

four primitive functions ϕ1, . . . , ϕ4. The remaining Γ is built

with the shift d up to the final point pΓl
. The initial point is

pΓ1
, placed s.t. the line ϕ1 is at the same distance from an

eventual previous line, e.g., xpΓ1
= xv1 + xd/2 in Fig. 4.

B. Re-planning-scheduling

Past literature on planning-scheduling often relies on op-

timization as well as heuristics-based approaches [11], [12],

[17], [21]. We similarly derive an optimal control problem

and a greedy approach returning the trajectory of parameters

ci(T) with T := [t0 + h, tf] (see Definition III.1). Since the

final time and the value of the state q are not known, we

use output model predictive control (MPC) that derives the

configuration for a finite horizon on an estimated state q̂,

i.e., tf := t0 +N for a given N ∈ R>0. We utilize MPC to

derive the trajectory of the computation parameters and the

greedy approach with heuristics remaining coverage time for

the path parameters.

An optimal control problem (OCP) that selects cσi

max
q(t),ci(t)

lf (q(tf), tf) +

∫ tf

t0

l(q(t), ci(t), t) dt, (18a)

s.t. q̇ = f(q(t), ci(t), t), (18b)

q(t)∈Rm, y(t)∈Y(t), i.e., constraint in Eq. (15), (18c)

ci,j(t)∈ Ci,j , ci,ρ+k(t)∈ Si,k ∀j ∈ [ρ]>0, k ∈ [σ]>0, (18d)

q(t0) = q̂0 given (last estimated state), and (18e)

b(t0) = b0 given, (18f)

where q(t) and ci(t) are the state and parameters trajectories

and l : Rm × Ci × Si × R≥0 → R is a given initial cost

Algorithm 2 Coverage re-planning-scheduling

1: for all t ∈ T do
16: q(K \ {t + N}), cσi (K) ← solve NLP argmax

q(k),ci(k)

lf (q(t+N), t+N)+
∑

k∈K ld(q(k), ci(k), k) in Eq. (18)

on K = {t, t+ h, . . . , t+N}

17: k ← t
18: while bd(y(k)) > 0 do

19: if k + h /∈ K then
20: q(k + h)← solve model in Eq. (3a)

21: bd(y(k + h))← solve model in Eq. (13)

22: k ← k + h
23: tb ← k − t

24: tr ← (diag(νρ
i)c

ρ
i (t− h) + τρ

i)[

ρ
︷ ︸︸ ︷

1 1 · · · 1]− t

25: if tr > tb then
26: cρi (t)← find cρi with tr ∈ [0, tb], otherwise take cρi

27: q̂(t+ h)← estimate q in Eq. (3a) with energy sensor Υ(t)

28: ŷ(t+ h)← derive y from Eq. (3b) with est. state q̂(t+ h)

function with the quadratic expression

l(q(t), ci(t), t) = q′(t)Qq(t) + c′i(t)Rci(t), (19)

where Q ∈ R
m×m, R ∈ R

n×n are given positive semidefinite

matrices. The final cost function lf : Rm ×R>0 → R is also

a quadratic expression

lf (q(T), T) = q′(T)Qfq(T), (20)

where Qf ∈ R
m×m is a given positive semidefinite matrix.

Eq. (18b) is the model in Eq. (3). It requires a value of the

period T , which is the time needed to fly the four primitive

paths in the Zamboni-like motion, i.e., the time between two

positive evaluations of the condition on Line 5.

Eq. (18d) are the parameters constraints sets in Defini-

tion II.1. Eq. (18c) are the state and output constraints that

evolve the battery model in Eq. (13). Eq. (18e) is the state

guess estimated via state estimation (first estimate is given).

Eq. (18f) is the initial battery SoC from, e.g., flight controller.

Line 16 in Algorithm 2 contains a transcribed version of

the OCP in Eq. (18) into a nonlinear program (NLP) that

can be solved with available NLP solvers. Its solution leads

to both trajectories of computation parameters and states

for future N instants. Here, the sets K, T have possibly

different steps h (not to be confused with the altitude): the

set K is used for the numerical simulation, whereas T is

for re-planning, meaning that h tunes the precision and the

frequency of re-planning for K and T respectively. The func-

tions ld, bd are the discretized versions of Eq. (19) and (13).

Lines 17–23 estimate the time needed to completely drain

the battery, exploiting the SoC already predicted previously

on Line 16. The path parameters and thus the coverage is

then re-planned on Lines 24–26 using the heuristics with the

scaling factors from Eq. (10) with cρi (t0) given. Concretely,

these lines implement the greedy approach by decreasing the

path parameters of a given value δi or similarly increasing

the parameters when tr ≤ tb within the bounds (this latter

analogous case is not shown explicitly in Algorithm 1 but

implemented in Sec. V). Lines 27–28 estimate the state with

energy sensor reading Υ, using, e.g., Kalman filter.

Algorithm 2 implements Eq. (18) for the purpose of

energy-aware re-planning-scheduling of Γ from Algorithm 1,

i.e, Lines 16–28 continue after Line 15 in Algorithm 1.

V. NUMERICAL SIMULATIONS

Numerical simulations of Algorithms 1–2 in this section

are implemented in MATLAB (R) and are extended with the

computations energy model on NVIDIA (R) Jetson Nano

(TM) heterogeneous computing hardware. These simulations

complement early data of physical flights of a static cov-

erage plan with the open-source Paparazzi flight controller.

The computing hardware carries a camera as a peripheral

and is evaluated independently of the aerial robot with

powprofiler (see Sec. III-B). The scheduler, implemented

using the Robot Operating System (ROS) middleware, varies

a computation parameter ci,2 relative to the ground patterns

detection rate from two to ten frames per second (FPS).

The detection uses PedNet, a Convolutional Neural Network

(CNN) [47], implemented in ROS. The planner varies the

path parameter ci,1 between zero and -1000 (i.e., the planner-

scheduler is the concrete implementation of Algorithms 1–2).

The set of parameters is unaltered throughout the flight, i.e,

ci :=
[
ci,1 ci,2

]′
, ∀i, along with δi in the greedy approach.

Fig. 1 details the data of the physical flight in standard

atmospheric conditions. Fig. 5–6 extends the flight with

the computing hardware aided by a flight simulation im-

plemented in MATLAB (R). Upper-case roman numerals I,II

indicate the plans are static (i.e., solely Algorithm 1), lower-

case i,ii exploit planning-scheduling.

Fig. 6a–7a illustrate the same plan Γ under different

conditions. Flights I–i have a constant wind speed of five

meters per second, a wind direction of zero degrees, and

initial parameters ci,1, ci,2 values of zero and ten (i.e., full r2
and detection). Flights II–ii (see added gray background for

clarity) are the same but a wind direction of 90 degrees and

the initial parameters values of -1000 and two (i.e., minimum

r2 and detection). The initial values of path and computation

parameters are chosen to represent the highest and lowest

configurations in the search space in I–i and II–ii respectively,

modeling the behavior of the best- and worst-case scenarios.

Different search strategies are possible by, e.g., running an

ideal instance of planning-scheduling prior to the flight.

Fig. 6b–7c illustrates first the power (Υ on Line 27 in

Algorithm 2), and then the energy model (y on Line 20).

Fig. 6b details then the energy model’s estimate (ŷ) on an

initial slice, power (Υ), and period (T). Fig. 6c illustrates

the evolutions of the state q in time for I, concluding that

approximately two periods suffice for a consistent estimate.

Flight i simulates a battery (see green line in Fig. 7c, the

battery behavior b0) drop at approximately one minute and a

half and four minutes and a half. Planner-scheduler optimizes

the path in the proximity of the drops to ensure that the

flight is completed, whereas it maximizes the parameter ci,2
(see Fig. 7b) when the battery is discharging, respecting the

output constraint. Flight ii simulates the opposite scenario:

the lowest configuration of parameters and no battery defects.

The path parameter increases as soon as the algorithm has

32

36

40

0 1 2 3

30

40

α0

-10

10

α1

-10

10

β1

-10

10

α2

-10

10

β2

-20

20

-20

32

36

40 Υ(t)

ŷ(t)

T = 46

83

α3

20

β3
30

33

36

0 2 4 6

T = 47

84

27

31

35

0 1 2 3

Υ(t)
y(t)

-100

0

100

200

300
p(t)

y
(m

)

x (m)

(a) Trajectories without re-planning (c) States (α0 · · · ∈ q) for I(b) Energies, details of first instants, periods T

-150 -50 50 150 250
-100

0

100

200

300

Time (sec) Time (min)Time (min)

I

II
P

o
w

er
(W

)

Fig. 5: Results for path,
energy, and energy models
of two boundary configura-
tions, the lowest I and the
highest II, without energy-
aware planning-scheduling.
The use case is that of cov-
erage path planning with
Zamboni-like motion and
ground hazards detection
scheduling. In a are the tra-
jectories of the coverage. In
b are the energy and the
period evolutions for both I
and II with different atmo-
spheric conditions (i.e., dif-
ferent wind speed and di-
rection) and initial guesses,
and in c the states of the
energy model for I.

P
o
w

er
(W

) 27

31

35

39

0 1 2 3 4 5 6

b0(t)

27

31

35

39

0 2 4 6 8 10
Time (min)

y
(m

)

0 2 4 6

2

6

10

c
i
,
2

0 3 6 9

-1000

-500

0

c
i
,
1

x (m) Time (min)

(a) Re-planned trajectories (b) Parameters (ci,1, ci,2) evol. (c) Energies and batteries evol.

2

6

10

c
i
,
2

-1000

-500

0

c
i
,
1

i

ii

-100

0

100

200

300
p(t)

-150 -50 50 150 250
-100

0

100

200

300

Fig. 6: Energy-aware plan-
ning-scheduling using the
lowest configuration I as
a starting point in i and
the highest II in ii while
varying atmospheric (same
as Fig. 5) and battery con-
ditions. In a are the re-
planned trajectories, show-
ing the re-planning in the
proximity of simulated bat-
tery drops. In b are the
parameters evolutions, and
in c the energy w.r.t. the
battery.

estimated enough data (two periods T) and the computation

parameter decreases matching the battery discharge rate.

The performance metric is Σt∈T ((w1c̃i,1(t) + w2c̃i,2(t))/
(|T |SoC(tf)) with c̃i,j := (ci,j−ci,j)/(ci,j−ci,j). If the initial

battery SoC is seventy percent and both the parameters are

weighted equally, i.e., w1=w2 =one half, I would not be able

to complete the flight, and II has a performance metric of zero

(i.e., the lowest configuration of parameters throughout the

flight). Nonetheless, performance metrics of i and ii are 13.05

and 2.24, whereas the average detection and coverage quality

is approx. 45 and 35 percent for i, and 62 and 87 percent

for ii. For both cases, scaling factors are derived empirically

similarly to δi set to two hundred fifty, the horizon N is set

to six seconds as in relevant literature [48], [49], order r is

three, and the matrices Q,R,Qf are chosen such that the

cost is merely squared control. h is set to one-hundredth of a

second and to one second for K and T respectively to allow

sufficient precision and re-planning online.

Additional results are reported [32] utilizing simulation

capabilities of the Paparazzi flight controller. Data are split

into two sets of four flights each, one similar to i and the other

to ii, i.e., initial parameters are at boundary configurations.

These results have an average performance metric of 1.81

and 1.24 for flights similar to i and ii respectively.

Output MPC on Line 16 relies on a software framework for

nonlinear optimization called CasADi [50], and the popular

NLP solver IPOPT [51]; both are open-source.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

This paper provides a planning-scheduling approach for

autonomous aerial robots. The approach compromises two

algorithms: one derives a static coverage plan, the other re-

plans-schedules the plan on a finite horizon via MPC and

a greedy approach. It evolves the state of the energy model

while optimizing battery usage and remedying possible de-

fects. The plan compromise multiple stages, where at each

stage the aerial robot flies a path and runs the computations,

allowing extensibility in terms of constructs and approaches.

To enable physical experiments, we are currently extending

the results to a standard flight controller. The study of

the implications of planning-scheduling on other energy-

critical mobile robots merits additional investigation. Here,

our preliminary study led to possible savings [52], in line with

relevant literature [17], [21]. Further directions include the

use of a purely optimization-based technique, the study of dif-

ferent energy models, and multi-agent planning-scheduling.

REFERENCES

[1] H. Choset, “Coverage for robotics–A survey of recent results,” Ann.

of Mathematics and Artif. Intell., vol. 31, pp. 113–126, 2001. 1, 2, 5

[2] E. Galceran et al., “A survey on coverage path planning for robotics,”
Robot. and Autonomous Syst., vol. 61, no. 12, pp. 1258–1276, 2013.
1, 2, 5

[3] T. Cabreira et al., “Survey on coverage path planning with unmanned
aerial vehicles,” Drones, vol. 3, 2019. 1

[4] S. Hajjaj et al., “Review of research in the area of agriculture mobile
robots,” in Int. Conf. on Robot., Vision, Signal Processing and Power

Appl. Springer, 2014, pp. 107–117. 1

[5] V. Puri et al., “Agriculture drones: A modern breakthrough in precision
agriculture,” J. of Statist. and Manage. Syst., vol. 20, no. 4, pp. 507–
518, 2017. 1

[6] P. Daponte et al., “A review on the use of drones for precision
agriculture,” in Conf. Series: Earth and Environmental Science, vol.
275, no. 1. IOP Publishing, 2019, p. 012022. 1

[7] Y. Mei et al., “A case study of mobile robot’s energy consumption and
conservation techniques,” in Int. Conf. on Advanced Robot. IEEE,
2005, pp. 492–497. 1, 2

[8] W. Andrew et al., “Aerial animal biometrics: Individual friesian cattle
recovery and visual identification via an autonomous UAV with on-
board deep inference,” in Int. Conf. on Intell. Robots and Syst., 2019,
pp. 237–243. 1

[9] G. Alexey et al., “Autonomous mobile robot with AI based on Jetson
Nano,” in Future Technologies Conf. Springer, 2021, pp. 190–204. 1

[10] D.-K. Ho et al., “QoS and energy-aware run-time adaptation for mobile
robotic missions: A learning approach,” in Int. Conf. on Robot. Comput.

IEEE, 2019, pp. 212–219. 1, 2

[11] J. Brateman et al., “Energy-effcient scheduling for autonomous mobile
robots,” in Int. Conf. on Very Large Scale Integration. IEEE, 2006,
pp. 361–366. 1, 2, 5

[12] W. Zhang et al., “Low power management for autonomous mobile
robots using optimal control,” in Conf. on Decis. and Control. IEEE,
2007, pp. 5364–5369. 1, 2, 5

[13] Y. Mei et al., “Energy-efficient motion planning for mobile robots,” in
Int. Conf. on Robot. and Autom., vol. 5. IEEE, 2004, pp. 4344–4349.
1

[14] M. Wahab et al., “Energy modeling of differential drive robots,” in
Southeast Conf. IEEE, 2015. 1

[15] C. Kim et al., “Energy-saving 3-step velocity control algorithm for
battery-powered wheeled mobile robots,” in Int. Conf. on Robot. and

Autom. IEEE, 2005, pp. 2375–2380. 1

[16] H. Kim et al., “Minimum-energy translational trajectory planning for
battery-powered three-wheeled omni-directional mobile robots,” in Int.

Conf. on Control, Autom., Robot. and Vision. IEEE, 2008, pp. 1730–
1735. 1

[17] P. Ondrúška et al., “Scheduled perception for energy-efficient path
following,” in Int. Conf. on Robot. and Autom. IEEE, 2015, pp.
4799–4806. 1, 2, 5, 7

[18] S. Sudhakar et al., “Balancing actuation and computing energy in
motion planning,” in Int. Conf. on Robot. and Autom. IEEE, 2020,
pp. 4259–4265. 1, 2

[19] S. Rizvi et al., “A general-purpose graphics processing unit (GPGPU)-
accelerated robotic controller using a low power mobile platform,” J.

of Low Power Electron. and Appl., vol. 7, p. 10, 2017. 1

[20] U. Jaramillo-Avila et al., “Visual saliency with foveated images for
fast object detection and recognition in mobile robots using low-power
embedded GPUs,” in Int. Conf. on Advanced Robot. IEEE, 2019, pp.
773–778. 1

[21] M. Lahijanian et al., “Resource-performance tradeoff analysis for
mobile robots,” IEEE Robot. and Autom. Lett., vol. 3, no. 3, pp. 1840–
1847, 2018. 1, 2, 5, 7

[22] A. Sadrpour et al., “Mission energy prediction for unmanned ground
vehicles using real-time measurements and prior knowledge,” J. of

Field Robot., vol. 30, no. 3, pp. 399–414, 2013. 1, 2

[23] C. Di Franco et al., “Energy-aware coverage path planning of UAVs,”
in Int. Conf. on Autonomous Robot Syst. and Competitions. IEEE,
2015, pp. 111–117. 1, 5

[24] ——, “Coverage path planning for UAVs photogrammetry with energy
and resolution constraints,” J. of Intell. and Robot. Syst., vol. 83, no. 3,
pp. 445–462, 2016. 2

[25] A. Seewald et al., “Mechanical and computational energy estimation
of a fixed-wing drone,” in Int. Conf. on Robot. Comput. IEEE, 2020,
pp. 135–142. 2, 3

[26] G. Zamanakos et al., “Energy-aware design of vision-based au-
tonomous tracking and landing of a UAV,” in Int. Conf. on Robot.

Comput. IEEE, 2020, pp. 294–297. 2
[27] D.-K. Ho et al., “Towards a multi-mission QoS and energy manager for

autonomous mobile robots,” in Int. Conf. on Robot. Comput. IEEE,
2018, pp. 270–273. 2

[28] A. Seewald et al., “Coarse-grained computation-oriented energy mod-
eling for heterogeneous parallel embedded systems,” Int. J. of Parallel

Program., vol. 49, no. 2, pp. 136–157, 2021. 2, 4
[29] ——, “Component-based computation-energy modeling for embedded

systems,” in Int. Conf. on Syst., Program., Lang., and Appl.: Software

for Humanity. ACM, 2019, pp. 5–6. 2, 4
[30] H. Hinz, “Comparison of lithium-ion battery models for simulating

storage systems in distributed power generation,” Inventions, vol. 4,
2019. 2, 4

[31] S. Mousavi G. et al., “Various battery models for various simulation
studies and applications,” Renewable and Sustain. Energy Reviews,
vol. 32, pp. 477–485, 2014. 2, 4

[32] A. Seewald, “Energy-aware coverage planning and scheduling for
autonomous aerial robots,” Ph.D. thesis, Syddansk Universitet, 2021,
doi.org/10.21996/7ka6-r457. 4, 7

[33] A. Marowka, “Energy-aware modeling of scaled heterogeneous sys-
tems,” Int. J. of Parallel Program., vol. 45, pp. 1026–1045, 2017. 4

[34] T.-J. Yang et al., “Designing energy-efficient convolutional neural
networks using energy-aware pruning,” in Conf. on Comput. Vision

and Pattern Recognit. IEEE, 2017, pp. 5687–5695. 4
[35] P. E. Bailey et al., “Adaptive configuration selection for power-

constrained heterogeneous systems,” in Int. Conf. on Parallel Process-

ing. IEEE, 2014, pp. 371–380. 4
[36] K. Ma et al., “GreenGPU: A holistic approach to energy efficiency

in GPU-CPU heterogeneous architectures,” in Int. Conf. on Parallel

Processing. IEEE, 2012, pp. 48–57. 4
[37] R. Rao et al., “Battery modeling for energy aware system design,”

Comput., vol. 36, no. 12, pp. 77–87, 2003. 4
[38] J. Marcicki et al., “Design and parametrization analysis of a reduced-

order electrochemical model of graphite/LiFePO4 cells for SoC/SoH
estimation,” J. of Power Sources, vol. 237, pp. 310–324, 2013. 4

[39] A. Hasan et al., “Exogenous Kalman filter for state-of-charge estima-
tion in lithium-ion batteries,” in Conf. on Control Technol. and Appl.

IEEE, 2018, pp. 1403–1408. 4
[40] E. M. Arkin et al., “Approximation algorithms for lawn mowing and

milling,” Comput. Geometry, vol. 17, no. 1, pp. 25–50, 2000. 5
[41] J. Araújo et al., “Multiple UAV area decomposition and coverage,” in

Symposium on Comput. Intell. for Security and Defense Appl. IEEE,
2013, pp. 30–37. 5

[42] T. Cabreira et al., “Energy-aware spiral coverage path planning for
UAV photogrammetric applications,” IEEE Robot. and Autom. Lett.,
vol. 3, no. 4, pp. 3662–3668, 2018. 5

[43] M. Dille et al., “Efficient aerial coverage search in road networks,” in
Guid., Navigation, and Control Conf. AIAA, 2013, pp. 1–20. 5

[44] R. Mannadiar et al., “Optimal coverage of a known arbitrary environ-
ment,” in Int. Conf. on Robot. and Autom. IEEE, 2010, pp. 5525–5530.
5

[45] A. Xu et al., “Efficient complete coverage of a known arbitrary envi-
ronment with applications to aerial operations,” Autonomous Robots,
vol. 36, no. 4, pp. 365–381, 2014. 5

[46] X. Wang et al., “Curvature continuous and bounded path planning for
fixed-wing UAVs,” Sensors, vol. 17, no. 9, 2017. 5

[47] M. Ullah et al., “PedNet: A spatio-temporal deep convolutional neural
network for pedestrian segmentation,” J. of Imaging, vol. 4, no. 9, p.
107, 2018. 6

[48] F. Gavilan et al., “An iterative model predictive control algorithm for
UAV guidance,” IEEE Trans. on Aerosp. and Electronic Syst., vol. 51,
no. 3, pp. 2406–2419, 2015. 7

[49] T. Stastny et al., “Nonlinear model predictive guidance for fixed-wing
UAVs using identified control augmented dynamics,” in Int. Conf. on

Unmanned Aircr. Syst. IEEE, 2018, pp. 432–442. 7
[50] J. Andersson et al., “CasADi: A symbolic package for automatic

differentiation and optimal control,” in Recent Advances in Algorithmic

Differentiation. Springer, 2012, pp. 297–307. 7
[51] A. Wächter et al., “On the implementation of an interior-point filter

line-search algorithm for large-scale nonlinear programming,” Mathe-

matical Program., vol. 106, no. 1, pp. 25–57, 2006. 7
[52] A. Seewald, “Beyond traditional energy planning: The weight of

computations in planetary exploration,” in IROS Workshop on Plan.

Exploration Robots. ETH Zürich, 2020, p. 3. 7

https://doi.org/10.21996/7ka6-r457

