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Abstract— Mobility-on-demand systems are transforming the
way we think about the transportation of people and goods.
Most research effort has been placed on scalability issues
for systems with a large number of agents and simple pick-
up/drop-off demands. In this paper, we consider fair multi-
vehicle route planning with streams of complex, temporal logic
transportation demands. We consider an approximately envy-
free fair allocation of demands to limited-capacity vehicles
based on agents’ accumulated utility over a finite time horizon,
representing for example monetary reward or utilization level.
We propose a scalable approach based on the construction of
assignment graphs that relate agents to routes and demands,
and pose the problem as an Integer Linear Program (ILP).
Routes for assignments are computed using automata-based
methods for each vehicle and demands sets of size at most the
capacity of the vehicle while taking into account their pick-up
wait time and delay tolerances. In addition, we integrate utility-
based weights in the assignment graph and ILP to ensure ap-
proximative fair allocation. We demonstrate the computational
and operational performance of our methods in ride-sharing
case studies over a large environment in mid-Manhattan and
Linear Temporal Logic demands with stochastic arrival times.
We show that our method significantly decreases the utility
deviation between agents and the vacancy rate.

I. INTRODUCTION

With the development of urbanization, the demand for
transporting people and goods is expanding. Yet simply
increasing the number of private vehicles is inefficient for
road traffic and not environmental-friendly. On the other
hand, the mobility-on-demand system can be economical and
sustainable. This system allows passengers to specify their
demands and employ a large scale of ride-sharing on the
road map, thus reducing the traveling cost, alleviating the
traffic congestion and emission [1], [2], [3]. However, less
attention has been paid to how fair transportation requests
are distributed to drivers in mobility-on-demand systems.

A wealth of research has investigated the system and has
focused on the real-time route planning and scalability issues
with a large number of agents. Rebalance policies for the
congestion and high demand were studied in [4], [5], [6].
In mesoscopic optimization, using the estimations of traffic
congestion, joint operations for autonomous vehicles fleet
was studied in [7], [8]. From a microscopic perspective, the
requests assignment with a defined cost can be formulated as
an optimization problem [9]. One approach is to construct a
shareability graph between vehicles and requests for the ride-
sharing[10], [11]. Based on this approach, Alonso-Mora et al.
create a Requests-Trip-Vehicle (RTV) assignment graph [12].
The large ride-sharing problem is encoded using integer
linear programming (ILP) and solved almost in real-time.
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However, among the studies above, the requests mainly
consisted of simple atomic tasks, such as driving from
point A (pick-up location) to point B (drop-off location).
This leaves an unexploited scenario where the requests are
complex. For example, a customer may want to purchase a
gift from store A or store B, while another customer wants
dinner at a restaurant near store A. Suppose both of them
have close pick-up positions and send out the requests at a
similar time; one vehicle may be able to accommodate both
of them by driving to the restaurant and store A, should the
waiting and delay times be acceptable for them. This kind of
request can be represented using linear temporal logic (LTL),
which is employed in [13] for a single-vehicle routing to
tackle complex requests assignment. The map and vehicles
are modeled as weighted transition systems (WTS), and the
demands are formulated using co-safe LTL (scLTL). Then
we graph search algorithms check the ride-sharing feasibility
and make the assignment based on the defined cost function.

Furthermore, research into ride-sharing has often focused
on the customer side. The objective of requests assignment
and route planning is to minimize travel costs and fairness is
usually considered from the customers’ perspective[14], [15].
However, drivers’ preferences may not agree with the assign-
ment they received. Moreover, the demand for drivers may
exceed the number available, e.g., during peak hours, which
can give drivers an edge in the request-driver relationship,
as drivers can have more choice. Also, there might be some
vacant vehicles in the assignment when there is less demand
for vehicles during off-peak. Therefore, fairness should also
be considered from the drivers’ perspective when allocating
requests to tackle the utility disparity among drivers. There
are different criteria to judge the fairness, for example,
maximizing the minimum utility for vehicles [16], [17].

The contributions of this work are the following 1) we
propose a multi-vehicle routing problem with fairness con-
straints on the assignment of temporal logic demands; the
arrival time of demands is a priori unknown; we consider
fairness in sequential decision making. 2) we propose a com-
bined automata and ILP-based approach that decomposes the
problem into a set of small routing problems with scLTL
specifications. 3) we propose a weighting scheme for the
assignment graph that corrects the history of utility collected
by vehicles. 4) we show the performance of our approach
in case studies on part of mid-Manhattan (Fig. 1); and we
show that our approach significantly reduces the deviation of
collected utility between vehicles, and the vacancy rate with
respect to baseline without fairness considerations.

II. PRELIMINARIES

In this section, we introduce the notation used in the paper
and review concepts in formal language and automata theory.
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Fig. 1: The road network corresponding to part of mid-
Manhattan is shown. Travel duration estimates are inferred
from real taxi travel data in hourly increments [12].

We denote the set of real and integer numbers as R and
Z. The real and integer numbers greater than a are denoted
by R>a and Z>a. Similarly, we have R≥a and Z≥a for real
and integer numbers greater or equal than a. For a finite set
S, we denote its cardinality and the power set as ∣S∣ and 2S .

Definition 1 (Finite Automaton). A deterministic finite state
automaton (DFA) is a tuple A = (QA, qAinit,2Π, δA, FA),
where QA is a finite set of states; qAinit ∈ Q is the initial
state; 2Π is the input alphabet; δA ∶ QA × 2Π → QA is a
transition function; FA ⊆ QA is the set of accepting states.

An input word σ = σ0σ1 . . . σn over alphabet 2Π generates
the trajectory of the DFA q = q0q1 . . . qn with qinit = q0 and
qk+1 = δA(qk, σk), for all k ∈ {0, . . . , n − 1}. The trajectory
q is called accepting if qn ∈ FA.

Definition 2 (scLTL). A co-safe Linear Temporal Logic
(scLTL) formula over a set of atomic propositions Π is
defined recursively as:

φ ∶∶= π ∣ ¬π ∣ φ1 ∨ φ2 ∣ φ1 ∧ φ2 ∣◯φ ∣ φ1Uφ2 ∣ ◊φ,

where φ1, φ2 are scLTL formula, π ∈ Π is an atomic propo-
sition, ¬ (negation), ∧ (disjunction), and ∨ (conjunction)
are Boolean operators, and U (until), ◯ (next), and ◊
(eventually) are temporal operators.

The semantics of scLTL formulae are defined over infinite
words with symbols from 2Π. Intuitively, ◯φ holds if φ
is true at the next position in the word; φ1Uφ2 expresses
that φ1 is true until φ2 becomes true; and ◊φ expresses
that φ becomes true at some future position in the word.
The formal definition of the semantics can be found in [18].
Given a word σ over the alphabet 2Π that satisfies the scLTL
formula φ, we denote the satisfaction as σ ⊧ φ. A finite
word σ satisfies scLTL formula φ if for all infinite σ′ the
concatenated (infinite) word σσ′ ⊧ φ. The finite word σ is
minimal if none of its prefixes satisfies φ.

scLTL formulae can be translated to DFAs using off-the-
shelf tools such as scheck [19] and spot [20].

Definition 3 (Weighted Transition System). A weighted
transition system (WTS) is a tuple T = (S, sinit ,D,W,Π, L),
where S is a finite set of states, sinit ∈ S is the initial state,

D ⊆ S × S is a transition function, W ∶D → R+ is a weight
function, Π is a set of atomic propositions and L ∶ D → 2Π

is a labeling function.

The transition from the current state s at time t to the next
state s′ is reached at time t′ = t +W ((s, s′)) if (s, s′) ∈ D.
A trajectory of T is a finite sequence s = s0s1 . . . sn, such
that s0 = sinit, and (sk, sk+1) ∈D for all k ∈ {0, . . . , n − 1}.
The length of the trajectory s is n, and its total duration is
W (s) = ∑n−1

i=0 W ((si, si+1)). The output trajectory induced
by s is o = L(s0)L(s1) . . . L(sn). A finite trajectory s
satisfies a scLTL formula φ, denoted s ⊧ φ, if the induced
output trajectory o satisfies φ.

III. PROBLEM FORMULATION

In this section, we formulate the fair mobility-on-demand
problem with requests expressed as scLTL specifications
and vehicle sharing. Our goal is to compute assignments of
sequentially incoming scLTL requests to a fleet of vehicles
such that the total traveling cost is minimized, and fairness
among the drivers over the planning horizon is ensured.

A. Vehicle, Environment, and Request Models

Consider a fleet of vehicles V = {v1, v2, . . . , vp} deployed
in a road network with intersections S and roads D ⊆ S ×
S, where (s, s′) ∈ D represents a road from intersection s
to s′. The initial position of vehicle v ∈ V is sinit,v ∈ S.
All vehicles evolve in discrete time t ∈ Z≥0 synchronized
via a global clock. The traversal duration of road (s, s′) is
W ((s, s′)) ∈ Z>0.

Vehicles are tasked with satisfying a finite set of request
R = {r1, r2, . . . , rm} that arrive sequentially over the horizon
time H ∈ Z>0. A request r ∈ R is defined as a tuple r =
(πpick,r, φr, treq,r, ρr,Ωmax,r,∆max,r), where

● πpick,r is a proposition marking the pick-up location;
● φr is the scLTL formula specifying the request;
● treq,r ∈ {0, . . . ,H} is the request’s arrival time;
● ρr ∈ Z>0 is the number of required seats;
● Ωmax,r ∈ Z>0 is the maximum waiting time, i.e., the

latest accepted pick-up time is treq,r +Ωmax,r;
● ∆max,r ∈ Z>0 is the maximum allowed delay.
Vehicles have limited transportation capacities. We denote

by Capv ∈ Z>0 and cv(t) ∈ {0, . . . ,Capv} the maximum
capacity and the available capacity at time t for vehicle v ∈
V . A vehicle v is said to be available at time t if cv(t) > 0,
otherwise it is occupied, i.e., cv(t) = 0. The set of available
vehicles at time t is denoted by Va

t .
A group of vehicles V ⊆ V completes a request r ∈ R

if they pick up r at the intersection marked with πpick,r
such that their overall available capacity is greater than ρr.
Formally, we have sv ⊧ φ̃r, vehicle v is available at time
tpick,r,v for all vehicles v ∈ V , and ∑v∈V cv(tpick,r,v) ≥ ρr,
where φ̃r = ◊(πpick,r ∧ φr), sv is the finite trajectory of v
and tpick,r,v is the pick-up time for r by v. Note that we do
not require all vehicles V to pick up their share of request
r at the same time.

The delay ∆r is the difference between the actual and opti-
mal satisfaction duration. Formally, ∆r = maxv∈V tdrop,r,v −
treq,r−t∗r , where tdrop,r,v is the drop off time of request r by



vehicle v. (sv(0∶tdrop,r,v) is a minimal satisfying word for
φ̃r) and t∗r is the optimal satisfaction time, i.e., the amount of
travel time if a vehicle picks up the request at t = treq,r and
not share with other requests. We require that ∆r ≤ ∆max,r.

At current time t ∈ Z≥0, a request is active if treq ≤ t and it
has not been picked-up yet; a request is in progress if it has
been picked-up and not completed. The sets of active and in
progress requests at time t are Ra

t and Rp
t , respectively.

Example 1. A small road map in WTS form with the set of
atomic proposition Π = {A, . . . , F} is depicted in Fig. 2. The
pick-up locations πpick,1 and πpick,2 shown in red dots at C
and B represent requests with scLTL formulas specifying as
φ1 = ◊(D∧◊E) and φ2 = ◊(D∧◊F ), respectively. The blue
dot represents the initial position of an empty vehicle v1. The
least travel times are t∗1 = 9 and t∗2 = 5 and the assignment
planning result is shown in Table. I.

Fig. 2: Example of road map model as a WTS, the drivable
paths are labeled with weights as traveling cost between
each connected nodes. For an empty vehicle at location A,
assuming both requests are active and the maximum delay
and waiting time are satisfied, the route of the vehicle v1 with
minimal travel cost is A→ C →D → B →D → F → E.

An assignment Asgt ∶ Ra
t → 2V

a

at time t = treq,r
allocates active requests to vehicles when request r arrives.
If the assignment Asgt(r) = ∅, then r is unassigned at time
t. In case this holds for all t ∈ {treq,t, . . . , treq,r +Ωmax,r},
r is unassigned. An assignment for r may involve multiple
vehicles, i.e., ∣Asgt(r)∣ > 1. Requests that are in progress
cannot be reassigned and vehicles need to be available before
picking up new requests. Between request arrivals times, i.e.,
t ≠ treq,r, assignments do not change.

The total cost for all requests is defined as

J({Asgt}Ht=0,{sv}v∈V) =
m

∑
i=1

∆ri + λko∣Υ∣, (1)

where Υ = {r ∈ R ∣ Asgt(r) = ∅,∀t ≥ treq,r} is the set
of unassigned requests, and λko > 0 is a penalty for not
fulfilling a request. The cost depends on the requests assigned
to vehicles, and the routes computed to complete them.

B. Envy-Free Fairness

The cost J captures customer satisfaction (performance
of the mobility-on-demand system). However, it is equally
important to consider fairness in allocating requests from
the drivers’ perspective. We formalize the notion of utility
for vehicles, and impose envy-free division [21] of requests
over finite time horizons.

Let Γv ⊆ R be set of requests completed by vehicle v.
The utility of vehicle v with maximum capacity Capv is

Uv(Γv) =
H

∑
t=0

(Capv − cv(t)), (2)

and captures the utilization of v over the time horizon H .
The request assignment over the time horizon H is called

envy-free if Uv(Γv) ≥ Uv′(Γv′), for all v, v′ ∈ V . Due to
the sequential arrival of requests, we can not impose the
envy-free condition over the total utility in the time horizon
H . Instead, we investigate the slightly weaker condition
that the vehicles’ utilities are envy-free when re-computing
assignments at requests’ arrival times.

Problem 1 (Fair Request Assignment). Given the set of
vehicles V deployed in environment (S,D,W ), and the set
of requests R = {r1, . . . , rm} arriving sequentially over
time horizon H , compute assignments Asgt at each time
t ∈ {0, . . . ,H} and routes sv for all vehicles v ∈ V such that
the vehicles’ utilities satisfy the envy-free fairness conditions
and minimizes the cost J .

Summary of the approach. When a new request arrives, or a
vehicle becomes available, We construct an assignment graph
to match requests and vehicles. The RTV graph has three
layers (1) requests, (2) trips, and (3) vehicles. Edges that
connect vehicles to trips serving a subset of active requests
are computed via an automata-based routing procedure. We
construct product automata between the motion model (road
network) of a vehicle, and the DFAs corresponding to the
requests. The route is then computed via a shorted path
method (e.g., Dijkstra algorithm) applied on the product
automaton graph and projection onto the motion model.
If maximum waiting and delay times constraints are met,
we add the edge to the assignment graph. Lastly, we can
formulate an ILP problem to minimize the sum of travel
costs such that the envy-free constraints hold for the allocated
utilities of each vehicle. The solution of the ILP provides the
assignment scheme.

IV. SOLUTION

The mobility-on-demand ride-sharing problem can be
translated to an ILP problem through the construction of a
shareability graph and an assignment (RTV) graph [10], [12].
Then we can apply graph search algorithms and provide effi-
cient solutions. This paper uses automata theory to construct
the assignment graph, and applies fair planning through
envy-free constraints and a proposed graph weight correction
method. In the following, we drop the time subscript t to
improve readability, and whenever it is clear from context.

A. Request-Trip-Vehicle (RTV) Graph

The RTV graph batch assignment was introduced in [12].
First, we construct the undirected Request-Vehicle (RV)
graph GRV = (Ra∪Va,ERV ) that captures requests that may
be performed by a vehicle in a single trip without violating
the waiting time, and maximum delay constraints. The RV
graph’s nodes are the requests and vehicles. Edges e(r, r′)
between two requests capture their shareability, i.e., can be



TABLE I: Example for requests in Figure. 2

Pick-up Location scLTL spec Arrival Time Pick-up time Drop-off Time Delay
r1 spick ,1 = C ◊(D ∧ ◊E) treq,1 = 0 tpick,1 = 2 17 8
r2 spick ,2 = B ◊(D ∧ ◊F ) treq,2 = 0 tpick,2 = 8 13 8

Fig. 3: Example of RTV graph: The graph includes 4 requests
and 3 vehicles. The fourth requests requires two vehicles.
The red edges indicate a possible assignment scheme.

served at the same time by a vehicle. Edges e(v, r) indicate
whether vehicle v can serve request r under the required
timing constraints.

Next, we construct the undirected RTV graph GRTV with
nodes Ra ∪ Tr ∪ V and edges ERTV , where Tr is the set
of trips, see Fig. 3. A trip Tv ⊆ Ra is a subset of requests
serviced by a vehicle v. Multiple vehicles v1, v2, . . . vnr may
be needed to service a single request r, in which case the r
is part of all their trips Tvi , for all i ∈ {1, . . . , nr}. Trips are
formed from the RV graph by selecting its cliques [12] that
satisfy timing and capacity constraints for vehicles. Thus, the
RTV graph contains only potentially feasible trips of active
requests for available vehicles. Edges e(r, T ) ∈ ERTV denote
request r is part of trip T , while edges e(T, v) denote that
v can serve requests in trip T , see Fig. 3.

Next, we define procedures to decide if edges e(v, r) and
e(v, T ) belong to the RV graph GRV and the RTV graph
GRTV , respectively, for all v ∈ Va, r ∈R, and T ∈ Tr.

B. Automata-based Route Planning

We construct product automata to obtain the RTV graph
for scLTL requests and vehicles represented as a tran-
sition system (TS). Formally, we have the TS Tv =
(S, sinit ,D,W,Π, L) that captures vehicle v’s motion in the
environment. The set of propositions Π includes the active
requests’ pick-up propositions πpick,r.

Definition 4 (Weighted product automaton at time t). The
weighted product automaton P = T ⊗A1⊗. . .⊗Am of vehicle
v at time t is a tuple (QP ,Qinit,P , δP , FP ,WP), where

● QP = {s, q1,⋯, qm};

Algorithm 1: Fair Request Assignment Algorithm
Input: Ra – the active requests, Va – the available

vehicles
Output: Asg ∶ Va → Tr – vehicles to trips

assignment
// Construct RV Graph

1 GRV
= (R

a
∪ V

a,ERV
= ∅)

2 forall r, r′ ∈Ra, r ≠ r′ do
3 if check share(r, r′) then ERV

← EEV
∪ e(r, r′)

4 forall r ∈Ra, v ∈ Va do
5 if check trip(v,{r}) then ERV

← EEV
∪ e(r, v)

// Construct RTV Graph
6 Tr ← all the cliques of requests in GRV that satisfy timing

and capacity constraints
7 GRTV

= (R
a
∪Tr ∪ Va,ERTV

= ∅)

8 ERTV
← {(r, T ) ∣ r ∈ T}

9 forall T ∈ Tr, v ∈ Va do
10 if check trip(v,T) then ERTV

← EEV
∪ e(T, v)

11 Asg = solve ILP(GRTV
)

12 return Asg

● Qinit = {sj , πpick,1,⋯, πpick,m}, where sj is the current
node of the vk in the map, i.e., s0 = sinit;

qi,j =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

δi (πpick,i, L (sj)) if tpick,ri = t
δi (qi,j−1, L (sj)) if tpick,ri < t
qinit,i else,

,

where tpick,ri is the pick-up time for ri;
● δP ⊆ QP ×Q′

P is a transition function:
((s, q1, . . . , qm) , (s′, q′1, . . . , q′m)) ∈ δP if and only if
(s, s′) ∈ R
and (qi, L (s′) , q′i) ∈ δi;

● FP = {(s, q1,k, . . . , qm,k) ∣ qi,k ∈ Fi,∀i ∈ {1, . . . ,m}};
● WP : δP → R+ is the weight function given by
WP(((s, q1, . . . , qm) , (s′, q′1, . . . , q′m))) =W (s, s′).

1) Weighted product automaton for pairwise request-
request in RV graph (check share): This step checks if two
requests r and r′ can potentially be shared by the same
vehicle, i.e., check share procedure used in Alg. 1. Two
requests can be combined pairwise if a virtual vehicle starting
at one of their pick-up positions can complete both requests,
i.e., satisfy the maximum delay and maximum wait time
of both requests. To achieve this, we construct a weighted
automaton PRR = Tvirtual ⊗Ar ⊗Ar′ for r and r′. Tvirtual
is the transition system for the virtual vehicle with initial
position sinit,virtual ∈ {qinit,r, qinit,r′}. Then, we use a
graph search method such as Dijkstra’s algorithm to check
if an admissible path exists [22]. If it exists, edge e(r, r′)
is added to the RV graph. Moreover, these two requests
are a potential candidate for a trip T = {r, r′} denoted as
edges e(r, T ) and e(r′, T ) in the RTV graph. For example,



in Fig. 2, the trip Tk = (r1, r2) with corresponding edges
e(r1, Tk) and e(r2, Tk) is added to the RTV graph.

2) Weighted product automaton for pairwise request-
vehicle in RV graph (check trip with ∣T ∣ = 1): The construc-
tion of the weighted product automaton for request-vehicle
combination is similar to the product automaton for request-
request. For every available vehicle v and request r, we
construct a weighted product automaton PRV = Tv⊗Ar. The
difference in this product automaton is that real-time vehicle
information, i.e., the vehicle’s position, is used. Likewise,
v and r are connected in the RV graph via edge e(r, v) if
an admissible path is found in the product automaton. For
example, edges e(r1, v1) and e(r2, v1) are in the RV graph
for the case shown in Fig. 2.

3) Weighted product automaton for RTV graph
(check trip with ∣T ∣ > 1): The connected requests and
vehicles in the RV graph are feasible candidates for an
assignment in the RTV graph with trips containing only
one request, and the ride-sharing trips with more than one
request can be built based on the RV graph. For requests
r, r′ and vehicle vi, if the pair (r, r′) is present in the RV
graph, this means these two requests can share a vehicle, in
the best-case scenario, when the vehicle is at their pick-up
positions. And if (r, vi) and (r′, vi) are also present in
the RV graph, this means vi can serve r or r′ under no
sharing condition. If both these conditions are satisfied,
we can further validate the ride-sharing possibility of vi
to serve both r and r′ by constructing a weighted product
automaton PRTV = Ti ⊗ Ar ⊗ Ar′ . And if an admissible
path is found without violating the request constraints, vi
and Tj = {r, r′} are grouped as a potential valid trip in the
assignment and an edge e(Tj , vi) is created in the RTV
graph to denote a potential assignment (Tj , vi). For example
e(Tk, v1), Tk = {r1, r2} would be created for Fig. 2. The
RTV graph can be generated recursively for Capv ≥ 2. In
this paper, we consider the case where Capv = 2.

In the check trip step, for a vehicle vi and allocated trip
Tj = {r1,⋯, rn}, the travel cost σvi(Tj) and travel utility
Uvi(Tj) associated with each created edge are simultane-
ously generated as

σvi(Tj) =
n

∑
i=0

∆ri ,

Uvi(Tj) =
h

∑
t=0

(Capvi − cvi(t)),
(3)

where n = ∣Tj ∣ and h is the trip serving duration.
4) Weight Correction Based on History Utility: One prob-

lem of non-fair assignment is that it doesn’t consider the
history utility, which may create a significant vacancy rate
or disparity of total utility. For example, during an off-peak
hour, there might be a lesser number of requests than the
number of vehicles available. Thus, some vehicles may not
ever be allocated to any trips or only assigned with a low
utility trip. Therefore, we make a cost correction based on a
history utility to balance the accumulated utility over time.

For a RTV graph, at any time step, the travel cost associ-
ated with edge e(Tj , vi) is adjusted in the following way

σnew
vi (Tj) = σold

vi
(Tj) + α ⋅ (Uvi −Uavg), (4)

where α ∈ R>0 is a constant parameter and Uavg =
∑p

i=1Uvi/p, p = ∣V ∣ is the average history utility for all
vehicles. After the weight correction, the traveling cost
decreases for vehicles with low history utility and increases
for vehicles with high history utility, thus favoring trips for
vehicles with low history utility.

C. ILP Formulation
This section describes the solve ILP function in Al-

gorithm 1. We formulate the vehicle-sharing and fairness
problem using ILP, which needs to be updated when a new
request arrives, or a vehicle becomes available.

A binary variable εi,j ∈ {0,1} is introduced for each edge
e(Tj , vi) in the RTV graph, εi,j = 1 indicates that vehicle
vi is assigned to trip Tj . In addition, a binary variable χk ∈
{0,1} is introduced for each request rk. If χk takes the value
one, it means that request rk is not served by any vehicles.

For multiple vehicles serving a single request, for compat-
ibility with the bipartite graph representation, we divide the
original request ρi into j sub-requests with each ρi,j = 1 and
∑ρi,j = ρi. For example, φi is written as φi,1 = ◊(store 1)
and φi,2 = ◊(store 2) with the same treq. Then, we constrain
the assignment to contain either zero or all sub-requests.

The objective of the ILP is to minimize the assignment
cost. The ILP formulation is defined as:

min ∑
(i,j) ∶ e(Ti,vj)

σvi(Tj) εi,j +
m

∑
k=1

λkoχk, (5a)

s.t. ∑
i ∶ e(Rk,Ti)

∑
j ∶ e(Ti,vj)

εi,j + χk = 1, ∀rk ∈R, (5b)

∑
i ∶ e(Ti,vj)

εi,j ≤ 1, ∀vj ∈ V, (5c)

Uvi(Tm) − λ ⋅Uvj(Tn) ≥M(σvi(Tm) + σvj(Tn) − 2)
(5d)

The cost function defined in (5a) minimizes the sum of travel
cost plus a penalty λko for every unassigned request. (5b)
and (5c) indicate each request is assigned to one vehicle at
most, and each vehicle is assigned to one trip at most. The
envy-free fairness constraint is captured by constraint in (5d)
using the big M method, where M is a constant value that
is larger than the maximum value of all trip utilities.

Note that we do not need to compare the utilities of every
pair of vehicles at a time step. For example, Tm may be
infeasible for vj in (5d), thus lending the comparison trivial.
Moreover, some vehicles may not be available at t.

Note that in a strict envy-free allocation, the resulting
matching may be undesirable in some scenarios. For ex-
ample, suppose in a road network containing two vehicles
v1 and v2 and two requests r1 and r2, both v1, v2 can
serve r1 and only v1 can serve r2. Ideally, the optimal
solution matching pair is (v1, r2) and (v2, r1). However, if
r1 has larger utility than r2 for vehicle v1, then the envy-free
matching would only allocate (v1, r2) leaving r1 vacant and
v2 unoccupied. Otherwise, if either vehicle serves r1, then
they would envy the other.

To tackle the problem, we adapt the relaxation idea envy-
free up to one item. Two agents would not envy each
other if one item is removed from the environment [23].



However, the assignment is indivisible and one vehicle can
only be allocated to one assignment at a time, and as such
removing one item is not feasible. Thus, we introduce a
variable λ ∈ [0,1] to regulate the approximation of envy-free
to (5d). When λ = 0 the envy-free constraints is disabled, and
λ = 1 enforces strict envy-free. In the previous example, if
Uv1(r2) ≥ λ ⋅ Uv2(r1) holds for λ ≤ Uv1

(r2)
Uv2
(r1) , the envy-free

allocation is (v1, r2) and (v2, r1).
This approximately envy-free approach can still suffer

from the previous issue in extreme scenarios, for example,
when there is significant utility disparity between the two
available requests, making the relaxation λ be close to 0 to
obtain the optimal overall utility. And because of a large
number of requests and long working period, the total utility
deviation among vehicles can be similar regardless of the
envy-free enforced.

A greedy solution to maximize the serving rate while
minimizing the travel cost is first computed as an initial
guess for the ILP. Once solving the above ILP problem, the
assignment scheme constructs the optimal path for vehicles
as the accepted and shortest run in the corresponding product
automaton projected onto the transition system.

V. SIMULATION RESULTS

In this section, we present simulation results to demon-
strate the performance in terms of scalability and fairness in
a realistic road map.
A. Simulation Specifications

We simulated the result in the mid-Manhattan map, which
models the road intersections as nodes. The map contains 184
nodes, and the edges are weighted by real travel duration
obtained from real taxi driving data. For details about the
dataset, see [12]. Gurobi was used to solve the ILP [24].
The simulation duration is set to 20 minutes with varying the
number of vehicles and requests. The scLTL formulas were
generated from the following scLTL pattern stochastically.

scLTL pattern:
φ̃1 (spick, s1, s2) = ◊(spick ∧ ◊ (s1 ∧ ◊ (s2))),
φ̃2 (spick, s1, s2) = ◊(spick ∧ ◊ ((s1 ∨ s2) ∧ s3)),

φ̃3 (spick, s1, s2, s3) = ◊(spick ∧ ◊ (s1 ∧ (s2 ∨ s3))),
φ̃4 (spick, s1, s2,⋯, sn) = ◊(spick ∧ ◊ (s1 ∧ (¬s2 ∧⋯¬sn)),
where si are locations in the road map. The multi-vehicles
serving requests are combinations of the above scLTL pattern
echoing the sub-requests division technique. Furthermore, we
also generate random pick-up positions and arrival times for
each request in a uniform Poisson process. The maximum
waiting time and delay time are set to Ωmax = 2 and ∆max =
4 minutes for every request, respectively.

The vehicle’s transportation capacity is set to at most two
requests at a time for ride-sharing, i.e., Capv = 2, and we
generate the initial positions for the vehicles at time t = 0
stochastically. The envy-free variable λ is set to 0.5.

B. Simulation Results and Discussions

We simulate the results by varying the vehicle-to-request
ratio to demonstrate fairness and run time performance.

In the simulation shown in Fig. 4 we consider 50 vehicles
and 100 requests in the network. The figure shows the steady
serving pace along with the gradually arriving requests.

Fig. 4: Number of arrived and completed requests over time

Fig. 5 shows the comparison between fair planning versus
non-fair planning, i.e., plan without envy-free constraints
and weight correction. Each data point in the figure is the
average data of ten runs. We study the vacancy rate and
utility deviation as fair criteria.

The vacancy rate is defined as the percentage of unoccu-
pied vehicles in the entire simulation time. Intuitively, the
higher ratio of the vehicle to request, the higher the vacancy
rate, as shown in Fig. 5a. Under fair planning conditions, the
vacancy rate is significantly reduced.

In addition, Fig. 5b shows the history of utility devia-
tion. The figure shows that fair planning also significantly
decreases the utility deviation among vehicles. The result
of Fig. 5 is expected as the fair planning makes the ILP
solution favor vehicles with low utility and, thus, reduces the
vacancy rate as well. In Fig. 5b, when there are small number
of vehicles in the road, the utility deviation is similar. This
is also expected as almost every vehicle would receive an
assignment once it becomes available, making fair planning
similar to the non-fair baseline.

Fig. 6 shows the average computational run time perfor-
mance for the simulation. We fix the number of vehicles and
requests in Fig. 6a and Fig. 6b to demonstrate the scalability
of our approach. The construction of the road map and RTV
graph contribute most of the simulation time. The results
show run time is similar for a fixed number of requests, and
increases with the number of requests.

VI. CONCLUSIONS AND FUTURE WORK

A fair planning mobility-on-demand with temporal logic
requests study is presented in this paper. The scLTL formu-
lated requests allow passengers to define complex requests.
We employ envy-free allocation and a utility-based weight
correction to achieve a fair division of requests for vehicles.
We show that fair planning significantly decreases the va-
cancy rate and utility deviations between vehicles compared
to a baseline that does not consider fairness constraints.
Moreover, we show that our method scales well with the
number of vehicles and requests.



(a)

(b)

Fig. 5: Comparison between fair and non-fair planning. (a)
Vehicle Vacancy Rate. (b) Vehicle Utility Deviation
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