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Abstract— Autonomous navigation of a robot in agricultural
fields is essential for every task from crop monitoring to
weed management and fertilizer application. Many current
approaches rely on accurate GPS, however, such technology
is expensive and can be impacted by lack of coverage. As
such, autonomous navigation through sensors that can interpret
their environment (such as cameras) is important to achieve the
goal of autonomy in agriculture. In this paper, we introduce a
purely vision-based navigation scheme that is able to reliably
guide the robot through row-crop fields using computer vision
and signal processing techniques without manual intervention.
Independent of any global localization or mapping, this ap-
proach is able to accurately follow the crop-rows and switch
between the rows, only using onboard cameras. The proposed
navigation scheme can be deployed in a wide range of fields
with different canopy shapes in various growth stages, creating
a crop agnostic navigation approach. This was completed under
various illumination conditions using simulated and real fields
where we achieve an average navigation accuracy of 3.82cm
with minimal human intervention (hyper-parameter tuning) on
BonnBot-I.

Keywords — Robotics and Automation in Agriculture and
Forestry; Agricultural Automation; Vision-Based Navigation.

I. INTRODUCTION

Novel agricultural robotic technologies need to ensure they
meet the needs of the key stakeholder, farmers. Usually, this
means being cost effective both as a platform and as a labor
(or mechanical) replacement technology. However, another
critical element is that the technology can be deployed to a
variety of fields and environmental conditions with minimal
intervention (supervision) from the farmer. In particular,
navigating through the field is central to the real-world
deployment of agricultural robotics.

Hence, automated field navigation for a robot is essential
for every task. For autonomous navigation it is common for
platforms to use precise real-time kinematic (RTK) GNSS as
it is being used in fully controlled and engineered agricultural
sites where they heavily rely on structural information [1],
[2]. But, robotic technologies will never be guaranteed accu-
rate GPS in every field, first due to its expense and second
because of the coverage. An example of this is that currently
most fields are seeded using traditional methods, not auto-
seeding geo-referenced systems, which creates a gap between
GPS capabilities and farming requirements [1]. As such,
utilizing GPS technology in unregistered fields increases the
risk of damaging crops [3]. In a worst-case scenario GPS
can fail, therefore, generally applicable crop-row following
techniques are required.
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Fig. 1: BonnBot-I following lanes of crops using two sym-
metrically mounted monocular camera in front and back.

In our prior work [4] we introduced a GPS independent
technique that was able to traverse a single crop-row and
switch between adjacent rows. This system was deployed
on a Husky and tested using a single artificial cropping
environment (including artificial plants). Furthermore, the
prior work was only applicable to navigating along a single
crop-row and did not take advantage of the overall planting
structure in the field. For instance, row-crops are planted in
parallel lines and this structure can be exploited to overcome
issues such as a lack of germination, which can leave gaps
in a crop-row, creating navigation issues for single crop-row
techniques. Such issues can lead to unrecoverable failure
cases for a single-crop-row navigation system, see Fig. 2.

In this paper we introduce a novel crop-agnostic vision
based navigation scheme as illustrated in Fig. 1. We greatly
extend our prior work [4] and use information from multiple
crop-rows to navigate a weeding robotic platform in five
different real fields under various weather conditions. The
proposed approach takes advantage of planting schemes
(standardized distances between rows of crops), ensures
minimum damage to crops and persistent coverage through-
out the field. The proposed approach relies on well-known
signal processing and computer vision approaches, however,
their combination is unique and their robustness has been
demonstrated by being applied to five crop types on a
robot in the field. We consider this approach as an extra
navigation controller modality for achieving more reliable
traverses in challenging real fields conditions and not denying
the potential of benefiting other technologies like GPS and
odometry which represents a complete system. To achieve
this we make the following novel contributions:

• a robust multi-crop-row detection strategy, capable of
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Fig. 2: Example images where crops have yet to germinate
leaving large gaps in a row, indicated by red boxes.

dealing with cluttered and weedy scenes for a variety
of crop types; and

• a multiple crop-row following approach which enables
autonomous guidance in real-fields; and

• a multi-crop-row lane switching strategy which enables
BonnBot-I to switch to a new lane independent of any
global positioning system; and

• deployed and evaluated on a real-sized weed manage-
ment robot in simulation and the field for five crop types
and (with different shapes: straight and curved crop-
rows); and

• releasing a novel crop-row dataset covering five crop
types with various growth stages under varying illumi-
nation conditions.

II. RELATED WORK

Autonomous agricultural robots could improve productiv-
ity [5], [6], enable targeted field interventions [7] and facili-
tate crop monitoring [8]. For uptake of these platforms they
should be deploy-able in a variety of scenarios including dif-
ferent cultivars, crop-row structures, and seeding patterns [9].
A key enabling technology is reliable navigation through the
whole field [10]. One potential solution to the navigation
problem is to make use of the Global Navigation Satellite
System (GNSS). Such an approach has been used for both
agricultural machinery [11] and robotic platforms [2]. The
downside of this approach is that it relies on an expensive
sensor and suffers from limitations such as possible GNSS
outages and reliance on geo-referenced auto-seeding. Thus,
crop-based navigation techniques leveraging the field struc-
ture were investigated for autonomous guidance [12], [4] and
in-field interventions [13].

In an attempt to use the structure of a field, Barawid et
al. [14] investigated LiDAR based orchards navigation sys-
tem a similar strategy was used in a simulated environment
by [15] for traversing row-crop fields. In addition, Winterhal-
ter et al. [16] proposed sensor-independent feature represen-
tation from different sensor modalities and detects crop rows.
They used LiDAR and camera images to extract single lines
in a row-crop field which were spaced equidistantly. While
these approaches enable side-applications such as obstacle
avoidance, frame drift in self-similar environments can cause
issues [17], including crop damage.

To avoid crop damage through GNSS or LiDAR failures,
RGB based navigation approaches directly exploit the avail-
able visual information. These techniques can vary signifi-
cantly in terms of cost, algorithm simplicity, and availability.
Classical machine vision approaches detect crop-rows with

juvenile crops [13] or detect crop-rows under challenging
illumination conditions [18]. Other classical approaches in-
clude crop stem locations from multi-spectral images [19],
and plant stem emerging point (PSEP) using hand-crafted
features [20]. While these approaches are generally real-time
and can, to varying degrees, navigate a lane they do require
hand selected features which reduces the learning abilities of
the techniques.

Kraemer et al. [21] used a deep learning approach to rec-
oncile the PSEP features by exploiting the likelihood maps of
deep neural networks (DNN). Also utilising DNNs, [22] pro-
posed a convolutional neural network (CNN) for strawberry
crop-row detection with accurate navigation. Lin et al. [23]
also showcase the potential of CNNs to reliably navigate
a tea field by classifying tea rows. These approaches are
often more accurate than their traditional counterparts for
detecting or segmenting specific plants. However, in contrast
to traditional approaches, CNNs require a significant amount
of labeled data and more computational resources both for
training and inference, while being less dynamic in nature
and requiring further tuning in different conditions. [24].

To perform vision based navigation two common ap-
proaches exist: proportional-integral-derivative (PID) or vi-
sual servoing. Billingsley et al. [12] extracted the row of
plants using a Hough transform, and used a PID con-
troller for navigation through a sugar-beet field. The visual-
servoing [25] technique was also exploited for autonomous
car guidance in urban areas [26] by road lane following with
obstacle avoidance using monocular camera. These methods
regularize the controlled agents motion within a loop directly
based on the current visual features.

The technique proposed in this paper draws inspiration
from our previous work [4] where we are able to both navi-
gate a single crop-row and switch lanes at the end. However,
this approach was only tested in a single artificially created
row-crop field, without considering real open-field challenges
like (different crop types, illumination variation, appearance
of weeds and uneven distribution of plants in rows). We
propose a real-field applicable method to automatically detect
the number of crop rows. Multi-crop-row switching is then
enabled by being able to correctly identify new crops as the
robot moves across the field. As real-time performance is
important our methods rely on traditional machine vision
techniques which we deploy on a real agricultural robot
(BonnBot-I) to autonomously navigate in real fields with five
different crops and three simulated fields. We also made its
implementation publicly available 1.

III. AUTONOMOUS NAVIGATION IN ROW-CROP FIELDS

Our navigation strategy is influenced by the robot that we
use. In this work we use a retrofitted Thorvald platform [27]
which we refer to as BonnBot-I. Below we provide, in brief,
the specifications of the BonnBot-I platform and then present
the high level guidance strategy of our proposed navigation
scheme.

1https://github.com/Agricultural-Robotics-
Bonn/visual-multi-crop-row-navigation

https://github.com/Agricultural-Robotics-Bonn/visual-multi-crop-row-navigation
https://github.com/Agricultural-Robotics-Bonn/visual-multi-crop-row-navigation


Fig. 3: In-field navigation strategy, (1) following crop-rows
with front camera, (2) exiting crop-rows using back camera,
(3) switching to the next crop-rows, and (4) following new
crop-rows with back camera.

A. BonnBot-I Platform

BonnBot-I is a prototype crop monitoring and weeding
platform. The platform is a lightweight Thorvald system
which has been adapted for arable farming and phenotyping
fields in Europe. The European phenotypic regulation pattern
(35 cm or 55 cm between crop-rows) leads to either two or
three crop-rows in each lane with a total width of 1.25m.
For this, the width of the platform was set to 1.4m wheel-
centre-to-wheel-centre with a vertical clearance of 0.86m to
ensure the platform could operate in the field during the early
growth cycle of most plants. The length of the robot was set
to 1.4m ensuring there is room for all the weeding tools, and
has a maximum speed of 1.5m/s. BonnBot-I has multiple
sensors, of interest for navigation a GNSS (with an IMU)
and two RGB-D cameras which are mounted equally distant
from the center of rotation of the robot symmetrically (in
front and back) illustrated in Fig. 1.

B. In Field Guidance Strategy

A benefit of crop-rows is that they are generally planted
in consistent long parallel structures. A downside to this
parallel structure is that there is no connection between
them. Therefore, the platform needs to not only follow the
crop-row without damaging the crop but also autonomously
switch between them. To achieve multi-crop-row following
we employ a similar high-level algorithm to our previous
work in [4] for a single crop-row. Fig. 3 outlines our multi-
crop-row following strategy. Starting in a corner of the field,
the platform autonomously follows the current set of crop-
rows (a lane) using vision based navigation techniques 1
until the front facing camera detects the end of the current
lane. The rear camera then guides the robot to the exit
point, end of the lane, actively guiding the robot at all
times 2 . Using the omni-directional capability, the robot
then switches to the next set of crop-rows 3 to be traversed.
The benefits of the omni-directional platform prevails here
as we can directly navigate to the new lane without turning
around 4 , this also outlines the benefit of symmetrically
mounted sensors at the front and rear. In the next section we
describe the vision-based crop-row following and crop-row
switching algorithms.

IV. VISION-BASED GUIDANCE IN FARMING FIELDS

We propose a multi-crop-row following approach that can
successfully guide a real-sized agricultural robot in row-
crop fields of five different crops. In achieving this we have

(a) Lemon-balm (b) Coriander

Fig. 4: The vegetation segmentation (in green) with plant
boundaries (in bold green) and the resultant plant centers
(magenta dots). In (a) individual plants are easy to see and
(b) is a case where crop boundaries have to be estimated.

developed a multi-crop-row detection approach described
in Sec. IV-A, integrate information from multiple detected
crop-rows to perform visual-servoing based crop-row fol-
lowing in Sec. IV-B, and present a multi-crop-row switching
approach in Sec. IV-C.

A. Multi-Crop-Row Detection

The first step in a successful vision system capable of
traversing a field is the assumption that crop-rows are planted
in a parallel fashion. To have a completely crop agnostic
navigation system the varying distances between the rows
for the different crops is an important element. Therefore, it
is imperative to have a system that can detect the number of
crop-rows before instantiating the navigation algorithm.

We perform crop-row detection by employing a novel slid-
ing window based approach. This extracts the location of the
prominent crop-rows while being robust to the appearance
of weeds between them. Our detection approach consists of
three steps. First, we perform vegetation segmentation fol-
lowed by connected components operations to find individual
regions (plants) and their center points. This allows us to
remain agnostic to the crop that has been planted. Second, we
automatically detect the number of crop-rows by employing
an estimate of the moving-variance which we use to describe
the field structure. Finally, we track the detected crop-rows
by centering a parallelogram on each row while the robot is
traversing the lane. We detail each of these steps below.

1) Vegetation Mask and Crop Center Extraction: In the
first stage, we summarize a row by the position of the
individual plants along it. Each plant is represented by its
center point. We obtain this by first computing the vegetation
mask of the input RGB image using the excess green index
(ExG) [28]. To separate foreground and background pixels
in the image based on ExG we employ Otsu’s method [29]
which obviates the need for manual tuning of a threshold.
Then, each connected component in the vegetation mask is
converted to an object of interest (plant) with the unique
center point obtained from the center of mass.

One issue associated with this technique occurs when
multiple “plants” are absorbed into a single large region most
often occurring with bushy plants. A single region represent-
ing an entire crop-row negatively impacts later stages such as
line fitting. To reconcile this we divide contours into smaller



subsections if they exceed a predefined maximum height,
depicted in Fig. 4. Ultimately, this step allows us to cater for
a larger variety of canopy types.

2) Detecting Individual crop-rows: Fig. 5 illustrates the
crop-row detection algorithm, First, a sliding window Ψ
scans the image from left to right with a stride of S. The size
of the sliding window (w and h) and the stride S are set to
ensure a large overlap between adjacent steps in the scans.
For the n-th sliding window Ψn we compute a line (Ln)
based on the crop centers inside the sliding window using
least-squares method. We then find the intersection point In
of the line Ln with the bottom axis of the image; we only
retain lines that intersect within the image bounds. Each line
is then described by its point of intersection In = [x, y] and
the angle of intersection φn such that Ln = (In, φn).

We use the estimated crop lines in conjunction with the
moving variance [30] to represent the local structure of the
field. The moving variance of the estimated crop line angles,
φn, is calculated over a window of size k such that

σ2(φn) =

∑n+k/2
i=n−k/2(φn − φ̄n)2

k
; φ̄n =

∑n+k/2
i=n−k/2 φi

k
.

(1)
The moving variance operator yields peaks when there is
discord between the local hypothesised crop lines, this occurs
between the crop-row lines. Troughs occur when there is
consistent agreement regarding the hypothesised crop lines,
this occurs in the presence of crop-rows. A depiction of this
field structure signal is given in Fig. 5.

The peaks (N) and troughs (O) of the field structure
signal are detected using peak prominence with a constant
threshold. To detect the troughs, the signal is flipped (via
negation) and peak prominence is applied with the same
threshold. The detection of troughs is more complex as crop-
rows can yield multiple peaks. We resolve this by computing
the weighted average of the possible solutions in the local
neighbourhood, where the local neighbourhood is defined
to be adjacent sampling positions with similar standard
deviation values. An example of this is given in Fig. 5 where
the final trough is denoted by �. The output of this step is
the set of detected crop-row lines L.

3) Crop-Row Tracking: For each detected crop-row
line Ln we form a parallelogram Pn with a width relative
to the canopy width of the crops forming line Ln. All
parallelograms have a minimum constant width of 5% of the
image size to avoid shrinking to zero size width in regions
without vegetation or having only tiny plants. For every new
camera image, we update the position of each line Ln based
on the crop centers within the parallelogram Pn at its latest
position. If a crop-row line is not detected, the position of
the previous line (and parallelogram) is maintained for a few
seconds, this allows our approach to continue guiding the
robot even when there is an uneven crop distribution in the
crop-rows. The L is then tracked and used to update the
robot’s position to ensure that the crop is always beneath the
robot, using a visual-servoing controller. Finally, when all of
the crop centers are in the top half of the image we consider

Fig. 5: The sliding window Ψ is applied progressively. The
moving-variance of the estimated line angles are used to
represent the field structure. The peaks (N) and troughs (O)
from the field structure are used to find the crop-rows and the
center of the between crop-rows respectively. The weighted
average of multiple troughs leads to the final trough �.

that we have reached the end of the crop-row and employ
the multi-crop-row switching algorithm (Sec. IV-C).

B. Visual-Servoing Based Crop-Row Following

To guide the robot within the crop-rows, we utilize our pre-
viously developed in-row guidance approach [4] which relies
on the image-based visual servoing (IBVS) controller [25].
The guiding feature L is the average line of the set of
detected crop-row lines L illustrated in Sec. IV-A computed
from the current camera image. The desired feature L∗ =
[0, H

2 , 0] is located at the bottom center of the image I,
illustrated in Fig. 6. And, the IBVS controls law leads the

current feature L = [a,
H

2
, Θ] to towards L∗, where H

denotes the height of the image and a is the deviation from
the image center of the intersection point I. By continuously
regulating the robot’s motion based on this controller and
observation features explained in Sec. IV-A.3, we ensure the
robot stays in the middle of the path and follows the desired
crop-rows to their end. At the end of crop-rows, we switch
to the next lane by using the switching technique described
in the next section.

C. Multi-Crop-Row Switching

To autonomously navigate over an entire row-crop field
a robot must be able to both navigate down lanes and
shift between them. Utilizing an only image-based motion
controller in conjunction with other localization techniques
(like GPS and wheel odometry) could considerably improve
the reliability of the system in cases of outage of motion
information due to hardware problems and environmental
situations. In our previous work [4] the task of changing lanes
was managed successfully, however, it was only designed to
handle a single crop-row in a lane under a highly engineered
condition. This method was strongly reliant on the seeding
pattern of the crops-rows and struggled with cases which



Fig. 6: The image frame I and L = [I, Θ] denotes the
dominant line estimated from the visible crop-rows.

often occur in a real-fields like: uneven seeded crop-rows,
unexpected distances between the rows, and appearance
cluttered and weedy regions. Furthermore, it required sig-
nificant space to perform the switching maneuver and could
not reconcile differences between rows and subsequently
following the incorrect lane.

In this work we propose a multi-crop-row switching tech-
nique that detects and counts the rows as it progressively
shifts between them. This takes advantage of the side-ways
movement of BonnBot-I allowing easier transitions while
requiring less space. To detect a new crop-row we exploit
SIFT features to ensure we only traverse the desired number
of crop-rows to confirm our new lane is in the correct
location without relining on any motion information neither
odometry nor GPS.

We start by considering the robot to have found the end of
the crop-row; stage 3 of the navigation scheme Sec. III-B.
The multi-crop-row detection algorithm Sec. IV-A provides
us with the number of crop-rows C that have been traversed.
To find new crop-rows, lane switching, we need to move
across C rows and then restart the crop-row following
algorithm. To do this we describe each crop-row by a set
of SIFT features and follow the algorithm described below.

Assuming we are moving left-to-right, we store the fea-
tures of the right most parallelogram in the image forming
a feature set G. The robot then starts moving to the right-
side with a constant uy = 0.15m/s velocity. Upon receiving
a new image we detect the crop-rows in a similar manner
outlined in Sec. IV-A.2 and then only consider the right most
side of the image. We extract a new set of SIFT features from
the right most parallelogram in the image forming a feature
set G∗. The new feature set, G∗, is potentially a new crop-
row. To determine if G∗ is a new crop-row we compare it
to the stored SIFT features G. If a new crop-row has been
detected, we update the stored features (G=G∗) and continue
this process until we have moved across C new crop-rows.

To compare the SIFT features, we use a FLANN-matcher
to obtain the best matches Ω between the two sets G and
G∗. This results in the Euclidean distances between G and
G∗ being stored in Ω. We then take the average of the m
matches in Ω which are above a threshold λ. This is used to

(a) Sim-Curved (b) Sim-Large-Gaps (c) Sim-Dense-Weed

Fig. 7: Simulated Fields with different plant sizes as weeds
(small) and crops (big), for purpose of visualization soil
background in simulation is removed.

provide a distance measure between the two sets of features:

D(G,G∗) =
1

m

m∑
i=1

Ωm (2)

When D(G,G∗) exceeds a threshold τ we assume a new
crop-row has been found, τ is a crop type specific constant.

V. EXPERIMENTAL EVALUATIONS

We performed three experiments to show the capability
and robustness of our proposed approaches. These experi-
ments were carried out on both simulated and real phenot-
pying fields. The simulated fields are built in the Gazebo
environment with either two or three rows in a lane. It is also
designed with various challenging arrangements, such as:
curved crop-rows (Sim-Curved), crop-rows with large inter-
crop gaps (Sim-Large-Gaps), and lanes of crops having dense
weed appearance (Sim-Dense-Weed), which are depicted
in Fig. 7. The real fields represent up to five different crops
with non-similar canopy shapes and varying numbers of
crop-rows per lane. All results outlined in this section are
based on the evaluation data and required limited human in-
tervention (apart from minor hyper-parameter tuning) during
run-time and navigation.

A. Experimental Setup

The experiments of all five crop types were completed on
BonnBot-I at Campus Klein-Altendorf of the University of
Bonn under various illumination and weather conditions such
as: relatively wet and very dry grounds, cloudy and sunny
day-times with long and short shadow cases (with minimal
hyper-parameter tuning). To fast track the field experiments
we used a 1:1 scale Gazebo simulation model with a realistic
field. From this simulation, we were able to derive our
algorithmic hyper-parameters. On BonnBot-I, the front and
back navigation cameras are fixed at a height of 1.0m and
tilt angle ρ = 65◦. Both camera resolutions are 1280× 720
with a capture rate of 15 fps. For all experiments, the width
w of sliding window Ψ was kept constant w = W/10 = 128
with a height of h = 720 pixels. This window size and
S = 13 ensures ' 95% overlap between consecutive sliding
windows. Also, we empirically set k = 10 in Eq. (1) which
in simulation provided the best trade-off between sample
consistency and neighbourhood relationship. As the primary
goal of this platform is to perform weeding we set its
velocity to be a constant v∗x = 0.5m/s. We use differential
velocity control within the crop-rows and omni-directional
control for switching between the lanes. Our approach is



(a) Sugar-beet (b) Coriander (c) Potato (d) Beans

Fig. 8: Illustrations of four crops (top row) RGB images with marked vegetation index of detected rows and their
corresponding field structure signal (bottom row). The detected peaks (blue triangle) and troughs (orange square) obtained
via their prominence in the signal are also provided. Denote that, the field structure signal only include the values of lines
intersecting with the bottom axes of the image.

implemented using Python and PyCuda ensuring real-time
operation (while with CPU only machines performance is
still acceptable) and runs on a user grade computer (Cincose
DS-1202).

B. Multi-Crop-Row Detection

The first experiment is a qualitative analysis on the ability
to detect crop-rows in the field using the technique described
in Sec. IV-A. We use ExG with Otsu’s technique [29] to
differentiate foreground from background as this obviates the
need for individual hand-tuned plant segmentation thresh-
olds. The goal of this technique is to exploit the dominant
crop locations and accurately detect the best location for
traversing a lane (i.e. keeping the crop-rows under the plat-
form). Due to weeds growing between the crop-rows this can
be a challenging proposition in real fields. Qualitative results
for four crops (sugar-beet, coriander, potato, and beans) are
presented in Fig. 8; we refrained from adding Lemon-balm
and simulated fields results due to space limitations. The
illustrated crops have diverse canopy types (see Fig. 8) and
are arranged in two standard patterns with two and three
crop-rows per lane. In the bottom row of Fig. 8 it can be seen
that our approach to detection crop-row lines through peaks
and troughs works for these chosen crops even with varying
number of crop-rows. This is true even for the challenging
crops such as coriander and beans.

For all crops we were able to consistently detect both the
peak (no crop-row) and trough (crop-row) locations regard-
less of the presence of weeds. This is especially evident in
coriander where even with the small distance within the crop-
row (between the coriander plants) we are still able to detect
the crop-rows. This is an example where dividing single large
regions into sub-regions is essential. Sugar-beet, Fig. 8-a, is
another interesting use case. Visually it is considerably more
difficult to discern the crop locations, however, this technique
was still able to extract the required locations (crop-rows).
Overall, this technique for crop-row detection successfully

located the required troughs in order to navigate a lane,
providing accurate information required for the other stages
of our system.

To further analyze the robustness of crop-row detection
technique we perform a quantitative evaluate. For each of
the five crops (those listed in Fig. 8 and lemon-balm) and
the simulated field, 100 images were annotated using data
from BonnBot-I where the camera tilt angle ρ was varied
from 55◦ to 75◦. The annotations contain ground-truth of all
the crop-row lines located underneath the robot and crop
masks belonging to the main crop-rows. To measure the
accuracy we compare the predicted lines of each image to the
ground-truth using two parameters: position and orientation.
The position of a line is defined based on its intersection
with bottom edge of the image, where the distance between
the prediction and the ground truth is normalized based
on the width of the image. Fig. 9 outlines the quantitative

Fig. 9: Performance of multi crop-row detection technique:
accuracy of detections (a) position (w.r.t the image width)
and (b) orientation w.r.t the acceptable thresholds

.



performance result of real fields and averaged performance
of simulated fields.

We observe our method is able to estimate crop row
positions with a mean accuracy of 88.1% and standard
deviation of 8% over all types of real crops. Similarly,
we see that the algorithm is able to correctly estimate the
orientation of crop-rows in more than 88.3% of cases when
the acceptance threshold is set to 11 degrees. The crop-row
lines of beans and sugar-beet were the hardest to estimate.
For sugar-beet, we attribute this to the fact that the crop
was at an early growth stage, as seen in Fig. 8, and this
made it more complicated to detect the crop lines. For beans,
we attribute this to its branchy canopy shape, disarranged
seeding pattern, and plant vibration due to the wind in the
field. One potential use case where the approach may fail is
when the number of weeds is close to or greater than the
number of crops in the image (very high weed pressure).
Furthermore, difficulties may be faced when navigating the
field once full canopy closure has been achieved and there are
no visible crop lanes to follow (full vegetation). Nevertheless,
overall we observe our novel crop-row detection method
could estimate lines of crops in a variety of challenging real-
world conditions for different crop types reliably.

C. Navigating Along The Crop-Rows

To analyse the performance of our crop-row navigation
technique we require accurate ground truth information.
We collected the ground truth information by manually
driving the robot down each of the row-crop fields for all
crop types and stored the associated information (e.g. GPS
measurements) for later evaluation. Also, all simulated crop
rows came with reference lines coordinates from simulation
environment. The associated GPS measurements are then
used as the “correct” position (accurate to 1cm). Even though
manual operation can cause some errors we consider this to
be an appropriate ground truth to compare to as the crop-
rows are not guaranteed to be planted in a straight line.

The five crops (sugar-beet, coriander, potato, beans, and
lemon-balm) provide a range of challenges such as different
canopy types, weed densities, and varying growth stages.
Tab. I outlines the performance of our full pipeline, including
the navigation system, on these crops as well as three
challenging simulated fields. The most challenging crop for
navigation was sugar-beet and we attribute this to two rea-
sons. First, the crop was at an early growth stage, as seen in
Fig. 8, and this made it more complicated to detect the crop
lines. Second, not all of the sugar-beet had germinated and
this led to gaps or long “dead space” along the rows, which
the same effect can be seen in Sim-Large-Gaps results too.
However, tracking multiple crop-rows allowed our technique
to still navigate over the entire evaluation area without any
manual intervention. This evaluation shows that multiple
crop-row following has considerable benefits over techniques
that only track a single crop-row.

From a navigational perspective the bean crop had a
large standard deviation between real fields and Sim-Curved
among simulated fields when considering angular error. The

weather conditions played a crucial part in this as heavy
winds consistently changed the location of the leaves of the
crops. This limitation in the navigation technique leads to
large angular variations while traversing the lane.

Across the five real crop types the average deviation from
the ground truth was 3.82cm or approximately 10% of the
crop-row distance. This minor fluctuation is sufficient to
ensure safe navigation without damaging crops. Finally, this
navigational accuracy was sufficient for the technique to
traverse all the crops in the field without manual intervention.

D. Multi-Crop-Row Switching

Our final evaluation is based on the lane switching tech-
nique outlined in Sec. IV-C. To evaluate the performance
of this technique we manually annotated randomly selected
positive and negative samples from our three main crop
types: beans, coriander, and sugar-beet and simulated fields
as we did not have the switching information for potato and
lemon-balm due to a technical problem. We store one of the
positive annotations as our main row and compare it to each
of the other positive and negative rows. Fig. 10 outlines the
precision-recall curves achieved on each of the main crops.

We outline the F1 score here which provides a trade-off
between precision and recall. For this simple matching tech-
nique we are able to achieve promising results across all crop
types, even sugar-beet which, like outlined Sec. V-C, had a
number of added complexities. The early germination stage
of the crop added extra complications to crop-row switching
as, even visually, the rows appeared similar. However, we
were able to achieve an F1 score of 62.1, which was the
lowest performing crop.

Overall, from these evaluations we were able to empiri-
cally set thresholds that favored high precision in order to
remove false positives. From this we were able to provide
a lane switching technique that was robust to the challenges
of each crop type. In experiments in the field and deployed
on a robot, it successfully switched 6 lanes of crop, across
the three main crop types, without any manual intervention.
Furthermore, we used this technique in simulated crop-row
fields for 20 lane switching cases which outlined an average
success rate of 90% percent.

A final key analysis of our crop-row switching technique
is the distance needed to perform the maneuver. In our
experiments an average of 0.7m was required from the end
of the crop to the location of the camera. This is a marked
TABLE I: Lane following performance of BonnBot-I using
proposed method in real and simulated fields.

Crop Length µ± σ of
dist. to crop-rows

µ± σ of
angular error

Sim-Curved 200 m 9.01 ± 2.63 cm 4.52 ± 3.52 deg
Sim-Large-Gaps 200 m 6.75 ± 3.15 cm 4.76 ± 2.69 deg
Sim-Dense-Weed 200 m 7.41 ± 2.86 cm 3.91 ± 1.73 deg

Beans 52 m 3.49 ± 2.89 cm 3.73 ± 3.21 deg
Potato 37 m 2.18 ± 3.01 cm 4.91 ± 1.63 deg

Coriander 54 m 2.91 ± 2.38 cm 2.57 ± 1.05 deg
Sugar-beet 69 m 8.41 ± 3.79 cm 3.25 ± 1.27 deg

Lemon-balm 40 m 2.12 ± 1.58 cm 3.21 ± 2.83 deg



Fig. 10: The precision recall plot for switching the platform
across lanes, includes, beans, coriander, and sugar-beet.

improvement over [4] which required more empty space to
perform the switching than the length of the robot itself.

VI. CONCLUSION

In this paper, we presented a novel approach to enable
autonomous navigation in row-crop fields empowering pre-
cision farming and crop monitoring tasks. This approach ex-
ploits the crop-row structure using only the local observation
from the on-board cameras without requiring any global or
local position awareness. To achieve this, we have proposed
a novel multi-crop-row detection strategy that can deal with
cluttered and weedy scenes. We also proposed a novel lane
switching strategy which enables BonnBot-I to switch to a
new lane independent of any global positioning system or
human intervention. We evaluated our approach on BonnBot-
I on up to five crop types (with varying canopy shapes) in
real field conditions and three challenging simulated fields
achieving an average navigation accuracy of 3.82cm in real
fields. Future work could explore alternative approaches to
detecting individual plants (crop/weed semantic segmenta-
tion) and consider how global positioning could augment the
robustness of the current system.
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