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Abstract— Autonomous Driving requires high levels of co-
ordination and collaboration between agents. Achieving ef-
fective coordination in multi-agent systems is a difficult task
that remains largely unresolved. Multi-Agent Reinforcement
Learning has arisen as a powerful method to accomplish
this task because it considers the interaction between agents
and also allows for decentralized training—which makes it
highly scalable. However, transferring policies from simulation
to the real world is a big challenge, even for single-agent
applications. Multi-agent systems add additional complexities to
the Sim-to-Real gap due to agent collaboration and environment
synchronization. In this paper, we propose a method to transfer
multi-agent autonomous driving policies to the real world. For
this, we create a multi-agent environment that imitates the
dynamics of the Duckietown multi-robot testbed, and train
multi-agent policies using the MAPPO algorithm with different
levels of domain randomization. We then transfer the trained
policies to the Duckietown testbed and compare the use of the
MAPPO algorithm against a traditional rule-based method. We
show that the rewards of the transferred policies with MAPPO
and domain randomization are, on average, 1.85 times superior
to the rule-based method. Moreover, we show that different
levels of parameter randomization have a substantial impact
on the Sim-to-Real gap.

I. INTRODUCTION
Coordination of Autonomous Vehicles (AVs) in traffic is

a hard problem with a non-trivial optimization objective. On
the one hand, rule-based policies can provide acceptable
solutions to specific and heavily-simplified situations, but
cannot possibly cover all scenarios that can happen in the real
world [1], and require manual crafting of the rules. Moreover,
rule-based methods cannot achieve effective coordination be-
tween agents and cannot adapt to changing environments. On
the other hand, multi-agent learning algorithms can achieve
effective agent-agent coordination and can potentially ex-
plore a great number of different environment configurations.

Multi-Agent Deep Reinforcement Learning (MARL) is
potentially a powerful scalable framework for developing
control policies for AVs. MARL uses Deep Neural Networks
to represent complex value functions or agents policies
that would otherwise require specific hand-crafted rules.
However, MARL cannot be trained in live Autonomous
Driving systems due to safety concerns [2], [3] . Furthermore,
these algorithms must be trained using thousands or even
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Fig. 1. The goal is to train autonomous vehicles to go around a track as
fast as possible while avoiding collisions, parked obstacles, and leaving the
track. Policies are trained using Multi-Agent Deep Reinforcement Learning
in a simulated environment with a kinematic model and different levels of
domain randomization that reduce the sim-to-real gap by adding noise and
uncertainty to the simulations. The trained policies are then transferred to
a real fleet of Duckiebot robots, with a motion capture camera system that
obtains the vehicles’ real pose.

millions of steps, which cannot be achieved in the real world.
Therefore, MARL algorithms must be trained in simulation
environments, and then the policies can be transferred to the
real system.

Simulations have been an essential tool in the field of
reinforcement learning, providing a flexible environment
to train and test new algorithmic developments efficiently.
However, the performance of policies trained in simulation
is not likely to be replicated in the real world. The difference
between a simulated environment and its real counterpart is
called reality gap [4], and is usually observed through the
overfitting of the learned policy to the unique characteristics
of the simulations.

The reality gap can become even larger for multi-agent
systems, such as those involving AVs. These systems in-
troduce additional complexities to the Sim-to-Real problem,
such as agent collaboration, environment synchronization
and limited agent perception. Little work has been done on



bridging the gap between simulation and reality in multi-AV
systems. Attempts have been made to make MARL more
robust to uncertainty [5], [6], although these methods have
not been tested in the real world. Therefore, in this study,
we propose a method to train multi-AV driving policies
in simulation and effectively transfer them to reality. For
this purpose, we present a multi-agent autonomous driving
gym environment that resembles the Duckietown testbed [7],
which consists of small differential drive robots with two
conventional wheels and a passive caster wheel. We then
train different multi-agent policies in simulation and transfer
them to the Duckietown using Domain Randomization [4].
We compare the method against a traditional rule-based
method on a case study with 3 agents and 3 stationary vehi-
cles which act as obstacles, and show the benefit of training
policies with domain randomization when transferring them
to reality.

The rest of this paper is structured as follows. Section
II presents the background and related work. Section III
proposes the methodology including the MARL modeling
framework, the Duckietown testbed, the gym environment
and the Sim-to-Real transfer mechanism. Section IV presents
the main results and Section V concludes with insights to
future work.

II. RELATED WORK

A. Multi-Agent Learning for Autonomous Vehicles

A taxonomy for multi-agent learning in Autonomous
Driving was presented in [3], consisting of five levels, where
the first level M0 represents rule-based planning with no
learning, and the last level M5 represents agents with a high
degree of forward-planning, working to optimize the Price
of Anarchy of the overall traffic scenario [8], [9]. Most multi-
agent learning paradigms find it difficult to reach level M5, as
most traffic scenarios would be cataloged as massive multi-
agent games. Fortunately, a significant amount of algorithms
fit either in M3, allowing agents to behave and expect in
return partially cooperative behavior [10], and M4, where a
local Nash equilibrium is achieved through the grouping of
agents [11].

A few studies have addressed multi-AV problems using
MARL. [3] proposed an open-source MARL simulation
platform, that includes several traffic scenarios with the
possibility of choosing different AV controllers, environment
configurations and MARL algorithms. Similarly, [2] pre-
sented MACAD-gym, an Autonomous Driving multi-agent
platform based on the CARLA [12] simulator. [13] modeled
the multi-agent problem as a graph and used Graph Neural
Networks in combination with Deep Q Network to control
lane-changing decisions in environments with multiple Con-
nected Autonomous Vehicles (CAVs).

B. Sim-to-Real

To bridge the gap between simulation and reality, known
as reality gap, various domain-adaptation approaches have
been developed [14]. To this date, the area with the highest

amount of contributions in Sim-to-real is robotic manipu-
lation. The methods that have been used include imitation
learning, data augmentation and real world reinforcement
learning. The latter-most case is the most difficult one to
replicate due to lack of resources, safety concerns and
difficulty in resetting training runs. There are simple ways of
automating the reset in real world robotic manipulation [15],
or to continue training efficiently without resetting [16], [17].
However, in the case of AVs, human interference is needed
in order to reset the environment or to prevent catastrophic
events. Therefore, most of the techniques used in robotic
manipulation are impractical to adapt to environments with
AVs.

For AV scenarios, [18] proposed ModEL, a modular
infrastructure which considered perception, planning and
control, each being trained using reinforcement learning.
They used vision as the agent’s main sensorial perception,
and the CARLA simulator [12] during training for data
augmentation and domain generalization, in order to improve
overall agent robustness.

Furthermore, in the case of multi-agent systems, there
are more reality gaps compared to single-agent settings.
Three significant gaps have been reported in [5]: the control
architecture gap, which relates to the tendency of simulators
to synchronize the actions of all agents at each time step; the
observation gap, which relates to the limited perception of
agents in scaled-out environments; and the communication
gap which, similar to the previous one, relates to the highly
limited and inconsistent communication which in multi-agent
systems. Given traditional methods of software simulation,
the aforementioned gaps are non-trivial to overcome, even
with a redesign of the simulation itself. The study suggests
that more robust modeling of the interaction between agents
would be more beneficial. [5] proposed a method called
Agent Decentralized Organization (ADO), which encourages
agents to share a board of information provided at certain
time frames, without the necessity for the information to be
complete or up to date.

Although research in Sim-to-Real for AV learning is exten-
sive, the main focus of the literature is generalizability over
diverse environments, not different actors. This can make
progress in the literature slower, since the hardware is usually
significantly different and not open source. Thankfully, there
are attempts to standardize the research hardware, with open
source sets like Duckietown [7] and DeepRacer [19], which
ensure that more prior research becomes easier to reproduce
consistently. However, practically no study has focused on
transferring multi-agent policies for autonomous driving to
the real world.

III. METHODOLOGY
A. Multi-Agent Deep Reinforcement Learning

The MARL problem can be modeled as a Decentralized
Partially Observable MDP (Dec-POMDP), which can be
defined by the tuple 〈N,S,Ai, T,R,Ωi, O〉, where N is a
finite set of agents, S is the set of states, Ai is the set of
actions for agent i, T : S×A→ S is the transition function,



R : S × A × S → < is the reward function, Ωi is the
set of observations for agent i and O : S × A is the set
of observation probabilities. The goal of Dec-POMPD is to
find the joint optimal policy π∗ that maximizes the expected
return.

B. Multi-Agent Proximal Policy Optimization (MAPPO):

MAPPO [20] is an extension of the Proximal Policy
Optimization algorithm to the multi-agent setting. As an on-
policy method, it can be less sample efficient than off-policy
methods such as MADDPG [21] and QMIX [22]. Despite
this fact, MAPPO has been found to be a strong method for
cooperative environments, outperforming state-of-the-art off-
policy methods and achieving similar sample efficiency in
practice. In addition, knowledge of prior states gets recalled
through the usage of recurrent neural networks (RNNs) for
the actor and critic networks.

The architecture of MAPPO consists of two separate
networks: an actor and a critic network. The actor network
uses the observation of each agent, while the critic network
observes the whole global state. Therefore, it is directly
related to the Centralized Training Decentralized Execution
(CTDE) paradigm. The centralized critic can foster coop-
eration among agents during training, but during execution
agents’ policies (actors) are implemented in a decentralized
way. We assume that all agents share both networks for sim-
plicity, even though MAPPO allows for different networks
for each individual agent.

C. Duckietown testbed

Duckietown [7] is a multi-robot testbed that consists
of several small autonomous robots (Duckiebots) [23] that
transit inside a city (Duckietown). Each Duckiebot is a
differential drive vehicle equipped with wheel encoders, a
monocular camera, an Inertial Measurement Unit (IMU) and
a time of flight sensor.

For positioning, we use a NaturalPoint OptiTrack MoCap
system, with 8 PrimeX13 cameras tracking at 120 Hz,
to obtain the real-time pose of the Duckiebots. A unique
asymmetric passive marker configuration is used for each
car, and the system was calibrated to be accurate up to
0.5 mm. The 3D pose of each car is broadcasted to the
simulator through the NatNet SDK such that position (x, y)
and orientation (θ) are directly obtained after a coordinate
transformation, and velocities are calculated from applying
finite differences to consecutive measurements.

D. Duckietown Multi-Agent Autonomous Driving Environ-
ment (Duckie-MAAD)

For the purpose of training and evaluating multi-AV poli-
cies, we introduce a new environment called Duckietown
Multi-Agent Autonomous Driving Environment (Duckie-
MAAD), which is based on the Gym-Duckietown envi-
ronment [24]. The original Gym-Duckietown is a single-
agent lane-following environment that can be used to test
different Reinforcement Learning methods. We extend this
environment to the multi-agent setting and allow agents to
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Fig. 2. Test track, used in sim and reality, for the Duckie-MAAD gym
environment. Yellow circles represent the waypoints along each lane, which
extend all the way around the loop. The goal point is determined by the
Path Following function and the steering angle required to reach it is the
difference between the car’s direction in world coordinates and the angle
between the car’s position and the goal point.

take high-level decisions based on local observations. The
agents (Duckiebots) can move around a track, following
predefined lane paths and taking decisions to accelerate,
brake, or change lanes. In addition, each agent can perceive
nearby agents and objects in the track within a given radius.
Based on perception, proximity and collision penalties can be
assigned to agents, as well as a penalty for leaving the track.
Although the agents follow a path predefined by waypoints,
they have to learn to stay inside the track, because going
too fast will take them off. Figure 2 shows a test track
with 3 agents (the moving cars) for the Duckie-MAAD
environment.

Upon a new environment step, the MAPPO algorithm
takes in the observations of the agents and outputs a high-
level action A for each car. Using this as input, a Path
Following logic is implemented that determines for each
car its next goal waypoint (within a pre-defined list that
extends along each lane), and calculates the required linear
and angular velocities (v, ω) to reach it. These are passed
to the differential drive Inverse Kinematics models which
produces the left and right wheel velocities (Vl, Vr) that
lead to this motion. Said velocities are then either fed to the
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Fig. 3. Duckie-MAAD architecture. The step update loop is the following:
1) the agent takes an action following policy π; 2) using this, the Path
Following function selects the next target waypoint and calculates the linear
and angular velocities required to reach it; 3) the wheel velocities that
lead to such speeds are calculated using (linear) differential drive Inverse
Kinematics and sent to the agents (and domain randomization is added if
training MARL); 4) the resulting pose for each agent is obtained either from
real life or in the simulator, together with a reward R; If training MARL,
5) the policy is updated using MAPPO. The green elements, only when
training MARL.

simulated vehicles, where the pose is updated via a Non-
linear Dynamics model [25], or to the real cars, where the
pose is then updated via the OptiTrack MoCap system. The
new robot poses are then used to calculate the Reward R
and the end of of the step is reached. A detailed diagram
illustrating this step update in the environment can be found
in Figure 3.

We define the individual elements of the Duckietown
Multi-Agent Autonomous Driving Environment as follows:

• Agents N : Each Duckiebot is treated as an individual
agent. All agents are independent, have a local obser-
vation of the environment and obtain a unique reward.

• Observation Ω: The local observation of each Duckiebot
is composed by the steering angle, the distance to the
center of the lane, the angle with respect to a tangent
to the current lane, local distances to the closest Duck-
iebots in the same and opposite lane, their respective
longitudinal velocities, and a binary variable that shows
whether the agent is off the track or not.

• Action A: A discrete action space with four high-
level possible decisions – accelerate (0.25 m/s2); brake
(0.25 m/s2); change lane; keep previous velocity (no
acceleration). In each step agents can accelerate, brake,
change lane or do nothing.

• Reward function R: v − 5c− 5t− 0.5l; where v is the
agent’s measure velocity (m/s), and binary variables c
representing a collision, t capturing if the agent is out
of the track, and l if the agent is changing lanes.

E. Simulation to reality transfer

There is a significant gap between the simulation envi-
ronment and reality due to several reasons. First, the agent
dynamics within the Duckie-MAAD gym environment are
based on a dynamical model, which is based on various
assumptions, such as a symmetrical mass distribution of
the Duckiebots and that the motors operate in steady-state
mode. Second, in the simulator, agent steps are performed
sequentially according to the environment’s internal clock,
meanwhile in reality the agents may take their own step
asynchronously. Third, there are certain inaccuracies related
to the OptiTrack positioning system. Fourth, although all the
Duckiebots share the same architecture, in practice they all
behave differently due to small differences in their individual
components. All of the above create a significant Sim-to-
Real gap that must be addressed in order to successfully
implement multi-agent policies trained in simulation.

To tackle this gap, we use domain randomization, which
is a technique that consists in training a DRL model over a
variety of simulated environments with randomized parame-
ters. The objective is to train a model that can adapt to the
real world environment, which is expected to be a sample of
the space of environments created through the randomization
procedure.

We employ uniform domain randomization of the follow-
ing parameters within the Duckie-MAAD environment:

• Steering factor (unitless)
• Motor constant (K) (Nm/

√
W )

• Gain (unitless)
• Trim (unitless)
• Steering error (rad)

IV. RESULTS

To implement and validate the proposed methodology,
we made use of the Duckietown Multi-Agent Autonomous
Driving Environment for first training and then testing in
simulation various policies. Afterward, experiments in real
life were conducted following the same goals, rewards and
settings. The specific environment utilized consisted of 3
agents and 3 permanently parked cars randomly spawned
at the beginning of each episode throughout the test track
shown in Figure 2. Agents had the goal to maximize their
reward by going around the track as fast as possible while
avoiding leaving the bounds of the track and colliding
with other cars (either parked or other moving agents). A
minimum speed of 0.1 m/s was set for all agents; and a
maximum speed of 0.3, 0.4 and 0.5 m/s for each agent,
respectively. Both the simulations and real experiments were
run at discrete time-steps with a frame rate of 10 Hz.

We trained three policies using the MAPPO RL method
with the following parameters:

• N° episodes for training: 2000
• N° steps per episode: 400
• Learning Rate: 5× 10−4

• Critic Learning Rate: 5× 10−4

• PPO epochs: 15



• Entropy coefficient: 0.01
• Actor Network: MLP (64, 64, 4)
• Critic Network: MLP (64, 64, 1)

Each policy was trained using a different level of domain
randomization (none, medium, high) with the distributions
shown in Table I. All policies converged after approximately
500 episodes, as can be seen in the reward plot in Figure 4.
For training, a workstation was used with an AMD Ryzen
Threadripper 3990x 64-core processor and a NVIDIA RTX
3090 GPU, which resulted in a training time of approxi-
mately 3 hours for each policy.

TABLE I
DOMAIN RANDOMIZATION DISTRIBUTIONS

Policy Rule-based No D.R. Med D.R. High D.R.
Steer factor 1 1 U(0.8,1.2) U(0.5,1.5)
K 27 27 U(22,32) U(14,40)
Gain 1 1 U(0.8,1.2) U(0.5,1.5)
Trim 0 0 U(-0.1,0.1) U(-0.15,0.15)
Steer error 0 0 N(0,0.1) N(0,0.5)

Fig. 4. Reward convergence during training of Med D.R. policy.

As a baseline, we implemented Gipps’ lane changing
model [26] – which is a commonly used rule-based algorithm
for describing driving behavior – and set the safe following
distances according to the RSS model introduced in [27].

The four policies were tested first in the simulated envi-
ronment and then in the Duckietown testbed (real life) to
measure and compare their performance and transferability
to real life. To achieve statistical significance and reduce the
variance of the average of the metrics to be recorded, 30 runs
were executed in the simulator and then another 30 in real
life for each policy, with all cars being randomly spawned at
the beginning of each run. Each run lasted 400 steps, which
granted enough time to the agents to go around the track at
least once.

The average rewards achieved by each policy in the
simulated environment and real life are presented in Figure
5, where it can be seen that policies on average clearly
perform worse in reality than in the simulator. This is due
to the previously discussed reality gap, which in this case
is significant mainly because of the high unreliability of

the Duckiebot robots. The rule-based policy performed the
worst, as was expected, because despite following safety dis-
tances, it cannot adapt to other agents not precisely following
their lanes. The policy trained with MARL and no domain
randomization achieved the best rewards in simulation, but
the worst in real life among the MARL-trained policies. Note
that, despite slightly decreasing the simulated performance,
the addition of domain randomization improves the rewards
in real life. The policy with a medium level of domain
randomization performed better than the one with a high
level, because the latter learned to be more conservative, as
can be appreciated in the following figures. On average, the
med D.R. policy provides almost twice as large reward as the
rule-based method. The poor performance of the untrained
rule-based algorithm can be used as a proxy of the reality
gap caused mainly by the unreliability and unpredictability
of the real Duckiebots.

Fig. 5. Average rewards for policies in simulation and real life. MARL
policies clearly outperform in real life the rule-based baseline, which can
be used as a proxy of the reality gap.

To better understand the resulting rewards of the policies,
we analyze the four aspects that compose the reward func-
tion: speed, staying within the designated track, collisions,
and lane changes. The numerical results of both the simula-
tion and real tests are presented in 6. The average speed is
the highest for the rule-based policy, closely followed by the
med D.R. one. The policy with the slowest average measured
speed is the one with high D.R. – confirming that this is the
most conservative policy, especially in real life. Similarly,
for the times an agent goes outside the track bounds, the
rule-based presents the highest number and the high D.R.
the lowest; notice that this phenomenon happens mainly in
real life and not in the simulated environment. For collisions,
note that for all three MARL policies there are virtually
no collisions in simulation, and that the policies trained
with domain randomization tend to have lower collisions
compared to the other policies. Finally, the average number
of times an agent changes lanes is significantly larger in
real life compared to simulation for policies trained with
domain randomization, which can be interpreted as the
agents choosing to switch lanes more to avoid the potential
crashes that happen more often in real life.



Fig. 6. Distribution of performance metrics across different policies: 1)
measured speed; 2) number of times a vehicle left the track; 3) number of
collisions between vehicles; 4) number of times a vehicle changed lane.
INTERPRETATION: The rule-based method tends to present the highest
speed, track violations, and collisions; closely followed by the MARL policy
with no D.R. In general, the policies trained with D.R. perform better in
real life, this is partly because they change lanes significantly more times
(compared to simulation) to avoid hazardous situations. The policy the
medium D.R. (right-hand side policy) is the best one, followed by the one
with high D.R. which tends to be more conservative in terms of speed –
leading to the least number of track exits and collisions, especially in real
life.

V. CONCLUSIONS

Autonomous Vehicles hold an enormous potential to im-
prove safety and efficiency in various fields and applications.
However, achieving reliable solutions will require solving
the hard problem of coordination and collaboration of AVs.
MARL is a tool that can help solve this problem, for it is
an optimization-based method that can successfully allow
agents to learn to collaborate by using shared observations
and rewards. Nevertheless, the training of policies using
MARL and other RL methods is usually heavily depen-
dent on accurate simulation environments, which is hard to
achieve due to reality gaps.

We present a method to train policies using MARL and
to reduce the reality gap when transferring them to the
real world via adding domain randomization during training,
which we show has a significant and positive impact in
real performance compared to rule-based methods or policies
trained without different levels of domain randomization.

It is important to mention that despite the performance
improvements observed when using domain randomization,
its use presents diminishing returns as seen with the overly
conservative policy, for it cannot completely close the reality
gap without increasing the fidelity of the simulator. Addi-
tionally, the amount of domain randomization to be used

is case-specific and a theory for the selection of domain
randomization remains an open question. The quantification
and description of reality gaps presents another opportunity
for future research.
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