

University of Birmingham

DiMOpt
 Salvado, João; Mansouri, Masoumeh; Pecora, Federico

DOI:
10.1109/IROS47612.2022.9981345

License:
Other (please specify with Rights Statement)

Document Version
Peer reviewed version

Citation for published version (Harvard):
Salvado, J, Mansouri, M & Pecora, F 2022, DiMOpt: a distributed multi-robot trajectory optimization algorithm. in
2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, pp. 10110-10117, 2022 IEEE/RSJ
International Conference on Intelligent Robots and Systems, IROS 2022, Kyoto, Japan, 23/10/22.
https://doi.org/10.1109/IROS47612.2022.9981345

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
This is the accepted manuscript for J. Salvado, M. Mansouri and F. Pecora, "DiMOpt: a Distributed Multi-robot Trajectory Optimization
Algorithm," 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Kyoto, Japan, 2022, pp. 10110-10117. Final
published version is available at https://doi.org/10.1109/IROS47612.2022.9981345
© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 27. Apr. 2024

https://doi.org/10.1109/IROS47612.2022.9981345
https://doi.org/10.1109/IROS47612.2022.9981345
https://birmingham.elsevierpure.com/en/publications/48f88d35-01d3-410f-a2c2-6a9c092939f1

DiMOpt: a Distributed Multi-robot Trajectory Optimization Algorithm

João Salvado, Masoumeh Mansouri, Federico Pecora

Abstract— This paper deals with Multi-robot Trajectory Plan-
ning, that is, the problem of computing trajectories for multiple
robots navigating in a shared space while minimizing for control
energy. Approaches based on trajectory optimization can solve
this problem optimally. However, such methods are hampered
by complex robot dynamics and collision constraints that couple
robot’s decision variables. We propose a distributed multi-
robot optimization algorithm (DiMOpt) that addresses these
issues by exploiting (1) consensus optimization strategies to
tackle coupling collision constraints, and (2) a single-robot
sequential convex programming method for efficiently handling
non-convexities introduced by dynamics. We compare DiMOpt
with a baseline centralized multi-robot sequential convex pro-
gramming algorithm (SCP). We empirically demonstrate that
DiMOpt scales well for large fleets of robots while computing
solutions faster and with lower costs. Finally, DiMOpt is
an iterative algorithm that finds feasible trajectories before
converging to a locally optimal solution, and results suggest
the quality of such fast initial solutions is comparable to a
converged solution computed via SCP.

I. INTRODUCTION

The Multi-Robot Trajectory Planning (MRTP) problem
has been receiving increasing attention in recent years [1].
Some existing methods decompose this problem into known
and well-studied problems such as motion planning, coor-
dination, and control, which are then solved in a loosely-
coupled manner at the cost of optimality [2]. Others focus
on computing paths on graphs instead of kinodynamically
feasible trajectories, thus making strong assumptions on
robot dynamics and/or requiring costly re-engineering of the
environment, processes, or robots [3].

This paper considers the motion planning and coordina-
tion problems jointly while exploring trajectory optimization
methods. These methods offer a powerful tool for modeling
the MRTP problem with optimality guarantees [4]. Never-
theless, they are hindered by non-convexities introduced by
two factors: complex robot kinodynamics, and a combina-
torial explosion of collision constraints due to the coupling
between robot decision variables. These factors lead to poor
scaling and hinder the practical use of trajectory optimization
methods outside of real applications.

There are, however, known methods for dealing with
these two factors. Sequential convex programming (SCP)
deals with non-convex functions [5], and distributed opti-
mization methods have been proposed for constraints that
couple decision variables in optimization [6]. In this paper,
we propose to combine these two lines of research to

João Salvado and Federico Pecora are with the AASS Research Centre,
Örebro University, <name>.<surname>@oru.se

Masoumeh Manosuri is with the School of Computer Science at the
University of Birmingham, m.mansouri@bham.ac.uk

realize an efficient MRTP solver. Specifically, we propose
DiMOpt (Distributed Multi-robot Trajectory Optimization),
which combines SCP for individual robots with a distributed
optimization scheme. More specifically, DiMOpt will lever-
age processor parallelization on a single multi-core computer
and we, therefore, do not consider network communication
delays, although there is no technical assumption forbidding
its implementation on a distributed multi-computer setting.

DiMOpt is evaluated in comparison to a standard cen-
tralized multi-robot sequential convex programming method
with non-convex dynamics (SCP) [7]. This standard method
is often utilized as a baseline, e.g. [8], since it finds efficiently
locally optimal solutions. For comparison fairness, we also
include recent developments in SCPs present in [9], as
described in Section IV-A. Our results indicate DiMOpt
scales exponentially better with the number of robots than the
baseline, while also finding lower-cost solutions. Also, the
results show that DiMOpt can find an initial feasible solution
fast with solution quality comparable to the baseline M-
SCP method. Finally, we also investigate how other factors,
including path length, affect the performance of DiMOpt.

II. RELATED WORK

Previously developed methods for solving the MRTP prob-
lem exploit efficient off-the-shelf motion/trajectory planning
solvers to pre-compute individual robot trajectories, while
collisions are avoided via scheduling [10], [2], or priority
planning [11], [12]. These approaches typically scale well,
but underestimate the interplay between robots, leading to
sub-optimal solutions. Others exploit efficient Integer Linear
Programming (ILP) and Max Flow solvers [13] [14] and are
suitable for solving the related Multi-Agent Path Finding
(MAPF) problem [15]. Although they scale well with the
number of robots [3], [16], these approaches often make un-
realistic assumptions about robot geometries and dynamics,
as a result of focusing on computing paths on graphs instead
of dynamically-feasible trajectories.

Conversely, trajectory optimization methods address the
problem of finding a set of controls that minimize a cost
functional while adhering to a set of constraints [17]. Such
approaches make fewer assumptions about the robots (e.g.,
adopting a realistic dynamic model) and provide optimality
guarantees, although at the cost of poorer scaling. This
paper proposes a trajectory optimization method. We build
upon existing efficient convex optimization solvers exploited
by sequential convex programming methods (SCP) [18] to
handle the non-convex parts of the problem. We handle
scaling in the number of robots via a distributed consensus
optimization method [19].

SCP methods have been applied in the context of multiple
robots via convexification of collision constraints with linear
dynamic models [7]. The popular TrajOpt ROS library for
single robots applies a l1-penalty SCP algorithm [20]. A
generalization of the SCP method for optimal control prob-
lems is provided in [21], where the authors introduce an
additional step of projection to the feasible set. Moreover,
it is possible [22] to decouple the problem via artificially
considering configurations of other robots as obstacles in
case a collision is detected, thus decomposing the problem
while losing optimality.

Distributed optimization traces back to primal/dual decom-
position methods that rely on the existence of sub-gradients
of the non-convex functions of interest. Furthermore, these
sub-gradients are fast to compute, which makes distributed
optimization applicable, and this has been leveraged in the
multi-robot context [23], [24], although not in the context
of trajectory optimization in [24], and with few robots
(three) and alternative consensus variables in [23]. More
recently, the Alternating Direction Method of Multipliers
(ADMM) brought additional robustness compared to pre-
vious decomposition methods that rely on a dual ascend
step with a step size that is difficult to estimate. That is,
ADMM in augmented Lagrangian form [25] relies on a
factor that is both represented in the cost function and
the dual step. ADMM has superior convergence to that of
decomposition methods [6]. In the context of multi-robot
trajectory optimization, this has been attempted in the case of
two robots [26], although they require solving a QP problem
on the consensus step and do not leverage SCP to handle non-
convex dynamics. Also an evaluation of scalability, as well
as the applicability of ADMM to larger multi-robot systems,
is missing. Derivatives of the ADMM algorithm were applied
to consensus optimization [27] problems where multiple
agents converge (i.e., reach a consensus) on quantities while
having local information and communicating with each other.
However, these quantities are not related to robot trajectories.

Other articles overlap several of the previously mentioned
fields or introduce new concepts. One of such works exploits
efficient MAPF solvers to generate multi-robot paths utilized
in the computation of traversable safe regions for each
robot [28]. This effectively decomposes the problem into
subsets of robots that do not interact but sacrifice optimality.
Similarly, the work [29] explores a MAPF solver to compute
a discrete schedule prior to trajectory optimization and
therefore ignores robot’s dynamics on the planned schedule.
Moreover, distributed optimization techniques have been
proposed [30] to compute multi-robot paths, although these
ignore robot dynamics, e.g. discrete linear system, in the
computation of trajectories and have no optimality guaran-
tees. Finally, buffered voronoi cells (BVP) [31] have been
used for collision avoidance achieving real-time performance
with no optimality guarantees.

III. PROBLEM STATEMENT

In the following, matrices are defined in uppercase bold
letters (e.g., M), vectors in lowercase bold letters (e.g., v)

and constants in non-bold uppercase (e.g., C). Moreover,
v[i] is the i-th element of vector v. Throughout the paper,
we will refer to the following sets and symbols: robots r ∈
{1, . . . , R}; polygons p ∈ {1, . . . , P}; goals g ∈ {1, . . . , G};
discrete time k ∈ {1, . . . , N}; continuous time t ∈ [0, 1].
Note that continuous time t is normalized as t = k

N .
Variables, functions, and constraints pertaining to a single-

robot are extended to the multi-robot case by dropping the
subscript r; similarly, multi-robot variables are restricted to
the single-robot case by introducing the subscript r. Addi-
tionally, we introduce an upper-script tilde ”∼” on functions
that are first-order Taylor’s approximated. For instance, if f
is a function describing the multi-robot dynamic system then
f̃r is the approximated dynamics of robot r.

A. Preliminary Definitions

In the interest of defining the Multi-robot Trajectory
Planning problem, we formulate components of this problem
individually. These are the objective function and constraints
modeling robot dynamics and collisions between robots and
obstacles. For clarity and without loss of generality, we
define the problem using the constraints assumed in the
experimental evaluation. Note that our method is not specific
to a particular dynamic model.

1) Dynamic Model: Each robot is considered to be circle-
shaped for robot-to-robot collision modeling purposes and
follows a differential drive model defined as,

ẋr = vr cos θr, ẏr = vr sin θr, θ̇r =
1

2Lr
ωr, (1)

where 2Lr is the distance between right and left wheel
(so Lr is the robot’s circle radius). The state space pose
is xr = [xr yr θr] ∈ SE(2) and the control space is
ur = [vr ωr] ∈ R2, where vr stands for speed and wr for
angular velocity. Car-like models, such as this one, impose
zero side-slip via non-holonomic Pfaffian constraints [32]
which lead to non-convex equality constraints of the general
form ẋr = fr (xr,ur). We will refer to the xy-Cartesian
position of robot r as qr = [xr yr].

2) Objective Function: We optimize for the control en-
ergy of the multi-robot fleet using the quadratic function

f0(u) =
∑
r

urWuT
r : W =

[
wv 0
0 wω

]
, (2)

where W � 0 is diagonal positive-definite with associated
penalty weights for speed wv and angular velocity wω .

3) Transcription Method: Our solution transforms the
continuous time dynamics into their discrete time equiv-
alent. To this end, we deploy a direct multiple shooting
transcription method [33], [34], i.e., we go from x(t) to
x[k] for k = {1, . . . , N}. More specifically, we start by
approximating the dynamic model equations for each k-knot
via the first-order Taylor’s expansion,˜̇xr[k] = fr(x

0
r[k],u

0
r[k]) +

∇fr
(
x0
r[k],u

0
r[k]
) [xr[k]− x0

r[k]
ur[k]− u0

r[k]

]
, (3)

where x0
r and u0

r are the state and control of robot r’s
reference trajectory. We integrate this approximation for each
discrete time interval and robot, resulting in the set of convex
linear equalities

f̃ r[k] = xr[k]− RK4
(˜̇xr[k],xr[k − 1],ur[k − 1]

)
(4)

F̃ = {f̃r[k] = 0 | r ∈ {1, . . . , R} k ∈ {1, . . . , N}}, (5)

where RK4 is a 4th-order Runge-Kutta’s integration method.
4) Obstacle Free Space: We approximate the free

space in the environment with a set of convex polygons
{P1, . . . ,PP }. A polygon is defined as an intersection of
multiple half-spaces. Let τP : {1, . . . , R} 7→ {1, . . . , P} be a
mapping between each robot and a polygon. We assume this
assignment to be given since it could be generated as in [28],
[35] via the creation of safe corridors. Furthermore, having
Lr as the radius of the circle enclosing the geometry of robot
r, we ensure that it remains in the obstacle-free region by
imposing the following set of convex linear inequalities

H = {Apqr[k]−bp1T + Lr[||a1||2 . . . ||aHp
||2]T ≤ 0

| ∀rp = τP [r]}, (6)

where Ap = [a1 . . . aHp]
T ∈ RHp×2 and bp ∈ R1×Hp , and 1

is an identity row vector of appropriate dimensions, and Hp

is the number of half-spaces of polygon Pp.
5) Collisions: Robot-to-robot collisions are modeled via

coupling constraints, where the separation between robots is
enforced with the following l2-norm

cij [k] = ||qi[k]− qj [k]||22 − (Li + Lj)
2. (7)

Similarly to the approximation of the dynamics in equation
(3) we linearize the collision constraint of equation (7)
with a first-order Taylor’s approximation around a reference
trajectory, which we will refer to as c̃ij [k]. Thus, the set
of linear inequality constraints that excludes robot-to-robot
collisions is defined by the set of constraints

C̃ = {c̃ij [k] ≥ 0 | i 6= j ∈ {1, . . . , R}, k ∈ {1, . . . , N}}. (8)

6) Trust-Region: The approximations of collision and
dynamic model constraints are reliable in a trust-region
around a reference trajectory (x0,u0). Thus we impose that
our decision variables have to be inside a trust-region radius
τ defined as follows

T =

{
(x,u) |

∣∣∣∣∣
∣∣∣∣∣xT − x0T

uT − u0T

∣∣∣∣∣
∣∣∣∣∣
∞

≤ τ

}
. (9)

A bigger τ value entails the approximation correctly models
the problem around the reference trajectory while optimizing
at a faster convergence rate, with the caveat that a better
approximation is more computationally demanding (e.g., re-
quiring a convex second-order Taylor’s expansion or particle
fitting method).

B. Optimization Problem

We define our problem of interest as follows:
Problem 1 (Multi-Robot Trajectory Planning):

minimize
x,u

f0(u)

subject to F ,H, C
x[0] = xstart, x[N] = xgoal

u ≤ u ≤ u

with upper (u) and lower (u) bounds on the input controls.
Problem 1 has realistic complex dynamics (F) and coupling
non-convex collision constraints (C). In the next section, we
exploit the approximations previously defined as a tool to
solve this problem efficiently.

IV. APPROACH

Problem 1 is hard to solve due to the non-convexities in-
troduced by complex robot dynamics and due to the collision
constraints that couple decision variables of different robots.
Non-convexity can be handled by a process of successive
convexification of non-convex optimal problems, a locally
optimal incomplete approach that is known as Sequential
Convex Programming (SCP) [5]. The problem of coupling
collision constraints is addressed by exploiting distributed
consensus optimization algorithms [19]. In Section IV-A, we
will describe the baseline multi-robot SCP [7], implemented
using an l1-penalty method [20] with recent developments [9]
to solve Problem 1. Moreover, a single-robot SCP will be
exploited in Section IV-B, where a distributed consensus
algorithm efficiently parallelizes the problem in terms of
robots while ensuring solution convergence.

A. Multi-robot Sequential Convex Programming (SCP)

We define an l1-penalty function approximation as

φ̃(x, u) = f0(u)+∑
r

λf r

∑
k

|f̃r[k]|+ λc
∑
k

∑
i6=j

|c̃ij [k]|+ (10)

where we penalize dynamic infeasibility and robot collisions
by manipulating λf r and λc, respectively. Note that |c(·)|+ =
max(c(·), 0). In other words, we move dynamic and collision
equations from the set of constraints to the cost function, thus
allowing and penalizing initial infeasibility.

Next, we define an approximation of Problem 1 around
a reference trajectory. This approximated MRTP problem
(Problem 2) is a combination of the previously defined l1-
penalty cost function (10) with the approximated constraints
(i.e., dynamic and collision constraints F̃ and C̃, respec-
tively), whereas the non-approximated constraints remain
unaltered (e.g., obstacle free space constraints H).

Problem 2 (Approximate Multi-Robot Trajectory Planning):

minimize
x,u

φ̃(x,u)

subject to (x,u) ∈ T (11)
x[0] = xstart, x[N] = xgoal (12)
u ≤ u ≤ u (13)
H (14)

In summary, the decision variables (x,u) of Problem 2 must
lie in the trust-region (11) and robots must navigate in the
free space (14) while starting and finishing in a predefined
state (12), with bounds on controls (13).

To solve the overall non-convex Problem 1 we can now
exploit sequentially computed solutions of the convex Prob-
lem 2 as described in the SCP Algorithm 1. Note that
although starting in infeasibility due to convexification, this
method will stop in a feasible solution once it converged
[5]. The SCP algorithm is composed of three main loops,
where the outer loop [line 1] ensures there is no constraint
violation, while the inner loops ensure convergence of the
approximated problem solution trajectories [line 3] as well
as the trust-region [line 5].

We explain the details of Algorithm 1 starting from the
inner loops. The trust-region loop [line 5] is responsible
for expanding or shrinking this region depending on how
accurate the approximated φ̃ is versus the actual reduction
in cost φ (n.b. costs are scalars), as measured by the fraction
δ̃/δ. In the approximation loop [line 3], we approximate/-
convexify both dynamic and collision functions over the
current trajectory [line 4], using the first-order Taylor’s
expansion described in equation (3), and we test if either
the solution trajectory or the overall cost has converged [line
24]. Moreover, in the outer violation loop [line 1] we check
for constraint violations and increase by a factor of k the
violation penalties λ if necessary. Finally, Problem 2 [line 6]
is solved using an interior-point method implemented by an
off-the-shelf solver.

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 2 4 6 8 10 12

0

200

400

600

800

10001.4

1.2

1

0.8

0.4

0.2

0

-0.2

0.6

0 2 4 6 8 10 12
0

200

400

600

800

1000

Fig. 1: Approximated and actual penalty costs (red and green
curves with right y-axis) and maximum violation of dynamic,
free space, and collision constraints (yellow, blue, and purple
curves, respectively, with left y-axis) over each iteration (x-
axis) of Algorithm 1. This represents the evolution of these
quantities for a problem with 5 robots.

In conclusion, we apply a standard l1-penalty SCP method
to the MRTP problem at hand. For additional details on the
properties of the SCP method and their use in single-robot

Algorithm 1: SCP
Parameters:
τ− ≤ 1, τ+ ≥ 1 : expand and shrink factors
γ0 ≈ 0, γ1 ≤ 1 : convergence parameters
x(0), u(0) : initial guess trajectory
k : violation penalty factor
ctol ≈ 10−3,ftol = ∆tol ≈ 10−2 : tolerances
i← 0 : iteration number

Output: x(i), u(i) : multi-robot trajectory
1 while (Constraint Violations) do
2 τ ← τ0 /* reset trust-region */
3 while (¬Approximation Converged) do
4 f̃ , c̃← convexity(f, c,x(i),u(i))
5 while (¬Trust-Region Converged) do
6 x∗,u∗ ← solve Problem 2

/* Approx. and Actual Reduction */
7 δ̃ = φ(x(i),u(i))− φ̃(x∗,u∗)
8 δ = φ(x(i),u(i))− φ(x∗,u∗)
9 if δ/δ̃ ≥ γ0 then /* accept solution */

10 (x(i+1),u(i+1))← (x∗,u∗)
11 i← i+ 1

12 if δ/δ̃ ≥ γ1 then
13 τ ← τ+ τ .go to 4 /* expand T */
14 else
15 τ ← τ− τ /* shrink T */

16 if δ/δ̃ < 0 then /* line-search */
17 (x(i+1),u(i+1))←recover(x(i),u(i),x∗,u∗)
18 i← i+ 1
19 . go to 25

20 if τ < τmin then .go to 4 /* T small */
21

/* cost change */
22 ∆f = |f0(u(i+1))− f0(u(i))|

/* solution change */

23 ∆ =

∣∣∣∣∣∣∣∣u(i+1) − u(i)

x(i+1) − x(i)

∣∣∣∣∣∣∣∣
∞

24 if (∆f ≤ ftol ∪∆ ≤ ∆tol) then .go to 25

25 for r = {1, . . . , R} do /* dynamics violation */
26 if max (Fr) ≤ ctol then λfr ← k λfr

27 if max (C) ≤ ctol then λc ← k λc/* colliding */

systems, or, more generally, in optimal control problems,
please consult [20], [9]. Given that our approach deals with
a multi-robot problem, there are some differences worth
mentioning. Firstly, the violation penalty λfr increases per
individual robot once dynamic constraints are violated. Sec-
ondly, we tailor the exiting criterion of each loop to the
problem at hand. Finally, we introduce a backtracking line-
search mechanism that recovers a trajectory if the predicted
cost diverges (shown in Algorithm 2).

Note that the penalty function with no approximation
φ(x, u) is similarly defined as φ̃(x, u) but with the actual
dynamics (fr) and collision constraints (cij).

1) General Notes: Figure 1illustrates the standard behav-
ior of the SCP method described in Algorithm 1 per iteration
until a solution is found. For instance, the actual (φ) and
model (φ̃) costs converge over iterations 3–5, whereas they
diverge at iteration 6. This means that iterations 3–5 occurred
inside the while loop at line 3, and once the costs converged
(iteration 5), the while loop is exited. Next, the violation of
the dynamic constraints (yellow curve iteration 5) is detected
at line 25 and penalized, thus resulting in a reduction of the
dynamic violation and an initial divergence in the costs at

Algorithm 2: recover(x(i),u(i),x∗,u∗)
Parameters: α < 0.5,β > 1, t = 1

1 ∆x = x∗ − xi, ∆u = u∗ − ui
2 while φ

(
xi − t∆x,ui − t∆u

)
≤

φ(xi,ui)− α t
(
φ(xi,ui)− φ̃(x∗,u∗)

)
do

3 t = t
β

4 x(i) ← x(i) + t∆x

5 u(i) ← u(i) + t∆u

6 return
(
x(i),u(i)

)
iteration 6. The same behavior occurs at iteration 8 but now
with a violation of the collision constraints (purple curve).
Finally, as expected, the free space constraints (blue curve)
are always ensured and SCP finds a solution at iteration 11
with converged costs and no constraint violations.

B. Distributed Multi-robot Optimization Method (DiMOpt)

The previously described method is able to handle non-
convexity efficiently. Nevertheless, the number of constraints
increases combinatorially with the number of robots, result-
ing in poor problem scaling. Therefore, we have developed
a Distributed Multi-robot Optimization method (DiMOpt) to
overcome this issue, while leveraging a single-robot SCP to
efficiently handle robot’s non-convex dynamics.

A key idea of this distributed method is to redefine
collision constraints such that Problem 2 can be decoupled
in terms of robots. The method then iteratively solves for
each robot, in parallel, while keeping the trajectories of other
robots fixed. As a result, the collision constraint becomes

ciĵ [k] = ||qi[k]− q̂j [k]||
2
2 − (Li + Lj)

2, (15)

where qi[k] is a decision variable representing i-th robot’s
xy-coordinates, while q̂j [k] is a constant representing j-
th robot’s xy-coordinates. As a consequence, it is now
possible to decompose the l1-penalty cost function shown
in equation (10) per robot in the following manner,

φ̃r(xr, ur) = f0r (ur)+

λf r

∑
k

|f̃r[k]|+ λcr
∑
k

∑
r 6=j

|c̃rĵ [k]|
+ (16)

where c̃rĵ [k] is the first-order Taylor’s approximation of
crĵ [k]. Notice that the pair of collision constraints ciĵ [k]
and cîj [k] refer to the same distance between robot i and j,
wherein ciĵ [k] robot j is fixed and vice-versa. In other words,
each robot has a local representation of where the others
are. Therefore, the missing piece of the puzzle is that these
quantities need to converge, which is the same as stating
that in the end, each robot will know the trajectories of the
other robots. For that, we propose a consensus optimization
algorithm, described in Algorithm 3, where we introduce
a consensus variable zr[k] ∈ R2 for each robot position
qr. We penalize for deviations of the consensus variable in
augmented Lagrangian form with scaled dual variables as

ψ̃r(xr, ur) = φ̃r(xr, ur)+

1

2
ρal

∑
k

(
||qr[k]− zr[k] + λzr [k]||22

)
,

(17)

Algorithm 3: DiMOpt
Parameters:
x̂, û : initial guess trajectory
ρal ← 0.1 : augmented Lagrangian constant
zr ← q̂r : consensus variables
λr ← 0 : consensus multipliers

Output: x∗, u∗ : multi-robot trajectory
1 while (¬ Cost Converged ∪ Colliding) do

/* 1) Solve - In parallel */
2 In Parallel
3 for r = {1, . . . , R} do /* robot SCP */
4 update Problem 3 (x̂r,zr,λr)
5 x∗r ,u

∗
r ← Algorithm 1 [solve Problem 3]

/* 2) Update / Share Knowledge */
6 for r = {1, . . . , R} do /* trajectories */
7 x̂r ← 1

2
(x∗r + x̂r)

8 for r = {1, . . . , R} | i 6= j do /* consensus */
9 for k = {1, . . . , N} do

10 zr[k]← 1
2

(q∗r [k] + zr[k]) + b (q∗r [k]− zr[k])
11 λr[k]← λr[k] + (q∗r [k]− zr[k])

12 if max (C) ≤ 0 ∪∆f ≤ ftol then break

where λzr [k] ∈ R2 are multipliers that penalize for non-
consensus, and ρal is the augmented Lagrangian constant.
The consensus variable zr can be understood as a local
copy of robot r’s trajectory that all the other robots have,
and therefore we penalize robot r deviating from this trajec-
tory. Finally, the full optimization problem each robot will
iteratively solve is

Problem 3 (Single-Robot Consensus Optimization):

minimize
xr,ur

ψ̃r(xr,ur)

subject to (xr,ur) ∈ Tr
xr[0] = xstartr , xr[N] = xgoalr

ur ≤ ur ≤ ur

Hr (18)

In contrast with Problem 2, here we have single robot
decision variables and the cost function is a combination
of exact penalty and consensus terms.

The distributed optimization described in Algorithm 3
starts by solving single robot SCPs in parallel, followed by a
consensus optimization step where trajectories and penalties
are shared between robots. This is an iterative process that
ends when the cost has converged and there are no collisions.

The single robot’s SCP is similar to the multi-robot case
described in Algorithm 1. However, instead of solving for
multi-robot optimization Problem 2 we now solve for single-
robot consensus optimization Problem 3 [Algorimth 1 line 6]
and the exact penalty function φ(·) is substituted with ψ(·)
[Algorimth 1 lines 7- 8]. Moreover, the single-robot consen-
sus problem 3 is updated after the consensus optimization
step with the last trajectory of the other robots x̂r, consensus
variables zr and penalty multipliers λr [line 4]. Effectively
the newly updated problem penalizes deviation from the
consensus trajectory zr with penalty λr while fixing other
robots trajectories xr. This combined with ADMM procedure
to compute zr and λr leads to solution convergence [6].

Fig. 2: Evolution of several quantities for each iteration until DiMOpt (Algorithm 3) finds an optimal solution.

Finally, the single robot SCP exit criterion for non-collision
[line 27] is alternatively the maximum violation of the set of
approximated collision constraints C̃ instead of the set C.

Once robot SCPs are solved, the trajectories are updated as
well as the consensus multipliers and variables according to
what is described in lines 10–11. That is, the new trajectory
will be an average between the last trajectory and the newly
computed one [line 7], while the consensus variable and mul-
tipliers are computed according to consensus optimization
via the ADMM algorithm with scaled dual variable described
in [6] such that zr converges to qr. Notice that we introduce
a momentum term b (q∗r [k]− zr[k]) [line 10] characteristic
of heavy ball methods, aimed at accelerating the convergence
rate [36], where we decide b = R−1

R .

Fig. 3: Trajectories are computed at each iteration of Di-
MOpt. It. 1: robots compute trajectories without considering
collisions. It. 2: orange and purple robots avoid each other,
while the blue robot moves outwards; at this iteration, robots
are no longer colliding. It. 3: the cost of the trajectories
is reduced, correcting a previous overshooting due to over-
penalizing of collisions. It. 4: a locally optimal solution is
found. See also the video in Section V-C.

1) General Notes: The standard behavior of Algorithm 3
is illustrated in Figures 2 and 3. This represents a particularly
difficult problem with 5 robots since in almost all iterations
the robots are colliding (minimum clearance distance is
negative). The graph entitled Sum of Robot-Robot Distances
shows three curves: the real sum of distances between robots
cij , the sum ciĵ as seen from robot i, and the other sum cî,j as
seen from robot j (i.e., collision constraints are pairwise). We
can see these converging as the consensus variables z con-
verge. Notice that the solving time of the algorithm iteration
is equal to the most computationally demanding robot, i.e.,
the dotted upper bound in Figure 2. Note also that initial iter-
ations have often a lower solving time. This happens because
we reuse the previously computed solution as an initial guess
between iterations. Moreover, this downward effect would
be more accentuated when the minimum clearance distance
is not negative, since intuitively the trajectories would not

change as much. Note that if the original Problem 1 were
convex, both SCP and DiMOpt methods would converge to
the same optimal solution, whereas since the problem is non-
convex they are both incomplete and locally optimal. This
means the two algorithms can find different locally optimal
solutions [5], [6].

V. EXPERIMENTS AND RESULTS

A. Setup

The presented method was tested on a PC running Ubuntu
20.04.3 LTS equipped with a AMD® Ryzen 9 5900x 12-
core processor and 24 threads. Our software is available as
open source1, and uses the CasADi library [37] for non-linear
optimization and optimal control, and the Open MPI [38]
message passing interface for parallel computing. Each robot
is associated with one MPI process with its own memory,
thus the need for message passing. When there are more MPI
processes/robots than processors (R > 12), the performance
of OpenMPI and consequently DiMOpt degrades.

Results are presented below. We compare SCP and Di-
MOpt in terms of scalability, and we further analyze the
performance of DiMOpt in five challenging scenarios.

B. Comparison between SCP and DiMOpt

We have conducted a set of 200 experiments per fleet
sizes ranging from 2 to 18 robots, where robots with
diameter 0.1m navigate in a square room of 25m2 (i.e.,
four free space constraints per robot, as described in equa-
tion (6)). Additionally, we choose the discretization N of
the transcribed dynamics such that a robot footprint overlaps
between consecutive configurations (i.e., computed using
maximum velocity 1m/s2), and we use as an initial guess a
straight line trajectory between start and goal configurations.
We compare SCP, DiMOpt and DiMOpt 1. DiMOpt 1 is an
altered version of DiMOpt that stops once the first feasible
solution is found. Both SCP and DiMOpt stops once paths
are collision free and cost has converged.

1) Scaling — Number of Robots: Figure 4 depicts the
computation time with respect to the number of robots for
SCP and DiMOpt, showing an exponential growth for SCP
and a linear growth for DiMOpt. It is also shown that the
first feasible (but likely suboptimal) solution of DiMOpt 1
can be found in less than 3 s for 18 robots.

1https://github.com/joaosalvado/DiMOpt

https://github.com/joaosalvado/DiMOpt

Fig. 4: Computation time (y-axis) of SCP, DiMOpt and
DiMOpt 1 vs. number of robots.

Fig. 5: Value of the cost function for the SCP and DiMOpt
methods and for the first solution (DiMOpt 1) for the 10%,
50%, and 90% quantile.

2) Solution Quality: Figure 5 plots the quality of the
solutions obtained by SCP, DiMOpt, and DiMOpt 1. DiMOpt
yields solutions with lower cost (both on average and for the
95-percentile) than SCP. This is unexpected, since SCP is
known to compute solutions with the lowest cost in the liter-
ature; however DiMOpt is also locally optimal and therefore
the solution of both methods depends on the initial guess.
Since the problem is non-convex, DiMOpt will explore the
solution space differently, which could explain the result.
Interestingly, we can see that the cost of the final solution
of SCP and DiMOpt 1 is rather similar on average, however
when the number of robots is greater than 8, DiMOpt 1
incurs a higher cost. This can be because robots require more
coordination in difficult cases, which makes it more likely
that the initial solution obtained by DiMOpt is suboptimal.

C. DiMOpt on selected challenging scenarios

The scenarios illustrated in Figure 6 are particularly diffi-
cult to solve using DiMOpt. This is due to high interference
between robots, as seen in the multiple crossings between
robot trajectories. For a better intuition about the level of
interference, please see the video2 showing the execution
of the computed trajectories. Table I shows that the “Circle”
scenario is the hardest, followed by the “Take Over”, “Cross”
and “One Down” scenarios with similar difficulty, and finally
the “Square Sided” scenario.

VI. CONCLUSIONS AND FUTURE WORK

We have proposed DiMOpt, an approach for solving the
Multi-robot Trajectory Planning problem effectively with a
mixture of sequential convex programming and distributed
consensus optimization methods. We have evaluated our
approach by comparing it with a baseline multi-robot SCP

2https://odysee.com/@joao.salvado:7/dimopt:a

method. We have shown that DiMOpt outperforms the
baseline, and that it can quickly find a feasible suboptimal
solution before converging to the final locally optimal one.

We have detected that DiMOpt and SCP both fail or
require longer computation time when the fleet scenario
occupation is high. For instance, when the scenario occu-
pation is 50% the success rate is around 70%. Such highly
constrained scenarios are out of the scope of our work and
are known to be hard to solve.

DiMOpt assumes that each robot navigates in a polygon
free of obstacles, hence, in order to deploy this algorithm in
an environment with obstacles, we would require a reced-
ing horizon strategy that provides consecutive obstacle-free
convex polygons [35]. Also, trajectory duration in DiMOpt
is estimated using the distance between start and goal and a
constant reference speed. However, the longer the trajectory,
the harder it is to estimate goal boundary state constraints as-
sociated with trajectory duration. This may limit applicability
to online fleet planning, but could potentially be addressed
by using a function that models the progress of robots from
start to goal state, as done in [39] to measure the progress
of a vehicle following a road centerline.

In future work, we intend to integrate DiMOpt with a
multi-robot coordination framework suitable for industrial
settings [2], where trajectories computed via DiMOpt are
used as references, and safety and liveness are ensured via
online revision of precedences.
Acknowledgments. This work is supported by Vinnova
project AutoHauler and KKS Synergy TeamRob.

REFERENCES

[1] J. K. Verma and V. Ranga, “Multi-robot coordination analysis, taxon-
omy, challenges and future scope,” Journal of Intelligent & Robotic
Systems, vol. 102, no. 1, pp. 1–36, 2021.

[2] A. Mannucci, L. Pallottino, and F. Pecora, “On provably safe and live
multi-robot coordination with online goal posting,” IEEE Transactions
on Robotics, pp. 1–19, 2021.

[3] J. Li, A. Tinka, S. Kiesel, J. W. Durham, T. S. Kumar, and S. Koenig,
“Lifelong multi-agent path finding in large-scale warehouses.” in
AAMAS, 2020, pp. 1898–1900.

[4] J. T. Betts, Practical methods for optimal control and estimation using
nonlinear programming. Siam, 2010, vol. 19.

[5] J. Duchi, S. Boyd, and J. Mattingley, “Sequential convex program-
ming,” in Lecture Notes EE364b. Stanford Univ., 2018.

[6] S. Boyd, N. Parikh, and E. Chu, Distributed optimization and statisti-
cal learning via the alternating direction method of multipliers. Now
Publishers Inc, 2011.

[7] F. Augugliaro, A. P. Schoellig, and R. D’Andrea, “Generation of
collision-free trajectories for a quadrocopter fleet: A sequential convex
programming approach,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots
Syst. (IROS). IEEE, 2012, pp. 1917–1922.

[8] J. Tordesillas and J. P. How, “Mader: Trajectory planner in multiagent
and dynamic environments,” IEEE Transactions on Robotics, 2021.

[9] Y. Mao, M. Szmuk, X. Xu, and B. Açikmese, “Successive convexifi-
cation: A superlinearly convergent algorithm for non-convex optimal
control problems,” arXiv preprint arXiv:1804.06539, 2018.

[10] M. Bennewitz, W. Burgard, and S. Thrun, “Optimizing schedules for
prioritized path planning of multi-robot systems,” in Proceedings 2001
ICRA. IEEE Int. Conference on Robotics and Automation (Cat. No.
01CH37164), vol. 1. IEEE, 2001, pp. 271–276.

[11] M. Erdmann and T. Lozano-Perez, “On multiple moving objects,”
Algorithmica, vol. 2, no. 1-4, p. 477, 1987.

[12] D. Bareiss and J. van den Berg, “Generalized reciprocal collision
avoidance,” Int. J. Rob. Res. (IJRR), vol. 34, no. 12, pp. 1501–1514,
2015.

https://odysee.com/@joao.salvado:7/dimopt:a

One Down Take Over Circle Square Sided Cross

Fig. 6: Trajectories for five symmetrical problems with 12 robots.

One Down Take Over Circle Square Sided Cross
Number of Robots (R) 6 12 20 3 6 12 6 12 20 6 12 20 6 8 12
Iteration of First Solution 7 2 7 4 11 2 24 10 12 2 2 2 2 7 1
Time to compute first solution (s) 1.1 1.4 13 0.6 2.4 1.5 5 6 30 0.2 1 2 0.2 1.4 0.7
Time to compute final solution (s) 1.9 2.8 17 1 3 4.2 6 7 36 0.8 2 6 1 2 3.7

TABLE I: Results for the scenarios depicted in Figure 6 with different numbers of robots.

[13] J. Yu and S. M. LaValle, “Optimal multirobot path planning on graphs:
Complete algorithms and effective heuristics,” IEEE Transactions on
Robotics, vol. 32, no. 5, pp. 1163–1177, 2016.

[14] J. Salvado, M. Mansouri, and F. Pecora, “A network-flow reduction
for the multi-robot goal allocation and motion planning problem,” in
2021 IEEE 17th International Conference on Automation Science and
Engineering (CASE). IEEE, 2021, pp. 2194–2201.

[15] G. Sharon, R. Stern, A. Felner, and N. R. Sturtevant, “Conflict-based
search for optimal multi-agent pathfinding,” Artificial Intelligence, vol.
219, pp. 40–66, 2015.

[16] K. Solovey and D. Halperin, “k-color multi-robot motion planning,”
The International Journal of Robotics Research, vol. 33, no. 1, pp.
82–97, 2014.

[17] J. T. Betts, Practical methods for optimal control and estimation using
nonlinear programming. SIAM, 2010.

[18] D. P. Bertsekas, “Nonlinear programming,” Journal of the Operational
Research Society, vol. 48, no. 3, pp. 334–334, 1997.

[19] A. Nedić and J. Liu, “Distributed optimization for control,” Annual
Review of Control, Robotics, and Autonomous Systems, vol. 1, pp.
77–103, 2018.

[20] J. Schulman, J. Ho, A. X. Lee, I. Awwal, H. Bradlow, and P. Abbeel,
“Finding locally optimal, collision-free trajectories with sequential
convex optimization.” in Robotics: science and systems, vol. 9, no. 1.
Citeseer, 2013, pp. 1–10.

[21] Y. Mao, M. Szmuk, and B. Açıkmeşe, “Successive convexification of
non-convex optimal control problems and its convergence properties,”
in 2016 IEEE 55th Conference on Decision and Control (CDC).
IEEE, 2016, pp. 3636–3641.

[22] Y. Chen, M. Cutler, and J. P. How, “Decoupled multiagent path
planning via incremental sequential convex programming,” in 2015
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2015, pp. 5954–5961.

[23] M. T. Shahab and M. Elshafei, “Distributed optimization of multi-robot
motion with time-energy criterion,” in Path Planning for Autonomous
Vehicles-Ensuring Reliable Driverless Navigation and Control Maneu-
ver. IntechOpen, 2019.

[24] A. Falsone, K. Margellos, S. Garatti, and M. Prandini, “Dual de-
composition for multi-agent distributed optimization with coupling
constraints,” Automatica, vol. 84, pp. 149–158, 2017.

[25] B. Houska, J. Frasch, and M. Diehl, “An augmented lagrangian based
algorithm for distributed nonconvex optimization,” SIAM Journal on
Optimization, vol. 26, no. 2, pp. 1101–1127, 2016.

[26] A. Engelmann, Y. Jiang, B. Houska, and T. Faulwasser, “Decomposi-
tion of nonconvex optimization via bi-level distributed aladin,” IEEE
Transactions on Control of Network Systems, vol. 7, no. 4, pp. 1848–
1858, 2020.

[27] N. Parikh and S. Boyd, “Proximal algorithms,” Foundations and
Trends in optimization, vol. 1, no. 3, pp. 127–239, 2014.

[28] J. Park and H. J. Kim, “Online trajectory planning for multiple
quadrotors in dynamic environments using relative safe flight corridor,”
IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 659–666,
2020.

[29] W. Hönig, J. A. Preiss, T. S. Kumar, G. S. Sukhatme, and N. Ayanian,
“Trajectory planning for quadrotor swarms,” IEEE Transactions on
Robotics, vol. 34, no. 4, pp. 856–869, 2018.

[30] C. E. Luis, M. Vukosavljev, and A. P. Schoellig, “Online trajectory
generation with distributed model predictive control for multi-robot
motion planning,” IEEE Robotics and Automation Letters, vol. 5, no. 2,
pp. 604–611, 2020.

[31] B. Şenbaşlar, W. Hönig, and N. Ayanian, “Robust trajectory execution
for multi-robot teams using distributed real-time replanning,” in Dis-
tributed autonomous robotic systems. Springer, 2019, pp. 167–181.

[32] R. M. Murray, Z. Li, and S. S. Sastry, A mathematical introduction to
robotic manipulation. CRC press, 2017.

[33] C. R. Hargraves and S. W. Paris, “Direct trajectory optimization using
nonlinear programming and collocation,” Journal of guidance, control,
and dynamics, vol. 10, no. 4, pp. 338–342, 1987.

[34] M. Kelly, “An introduction to trajectory optimization: How to do your
own direct collocation,” SIAM Review, vol. 59, no. 4, pp. 849–904,
2017.

[35] R. Deits and R. Tedrake, “Computing large convex regions of obstacle-
free space through semidefinite programming,” in Algorithmic Foun-
dations of Robotics XI. Springer, 2015, pp. 109–124.

[36] B. T. Polyak, “Some methods of speeding up the convergence of
iteration methods,” Ussr computational mathematics and mathematical
physics, vol. 4, no. 5, pp. 1–17, 1964.

[37] J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl,
“CasADi – A software framework for nonlinear optimization and
optimal control,” Mathematical Programming Computation, vol. 11,
no. 1, pp. 1–36, 2019.

[38] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M.
Squyres, V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine, R. H.
Castain, D. J. Daniel, R. L. Graham, and T. S. Woodall, “Open MPI:
Goals, concept, and design of a next generation MPI implementation,”
in Proceedings, 11th European PVM/MPI Users’ Group Meeting,
Budapest, Hungary, September 2004, pp. 97–104.

[39] P. F. Lima, G. C. Pereira, J. Mårtensson, and B. Wahlberg, “Progress
maximization model predictive controller,” in 2018 21st International
Conference on Intelligent Transportation Systems (ITSC). IEEE,
2018, pp. 1075–1082.

	Introduction
	Related Work
	Problem Statement
	Preliminary Definitions
	Dynamic Model
	Objective Function
	Transcription Method
	Obstacle Free Space
	Collisions
	Trust-Region

	Optimization Problem

	Approach
	Multi-robot Sequential Convex Programming (SCP)
	General Notes

	Distributed Multi-robot Optimization Method (DiMOpt)
	General Notes

	Experiments and Results
	Setup
	Comparison between SCP and DiMOpt
	Scaling — Number of Robots
	Solution Quality

	DiMOpt on selected challenging scenarios

	Conclusions and Future Work
	References

