
Timestamp-Supervised Action Segmentation with Graph Convolutional
Networks

Hamza Khan Sanjay Haresh Awais Ahmed Shakeeb Siddiqui
Andrey Konin M. Zeeshan Zia Quoc-Huy Tran

Abstract— We introduce a novel approach for temporal
activity segmentation with timestamp supervision. Our main
contribution is a graph convolutional network, which is learned
in an end-to-end manner to exploit both frame features and
connections between neighboring frames to generate dense
framewise labels from sparse timestamp labels. The gener-
ated dense framewise labels can then be used to train the
segmentation model. In addition, we propose a framework
for alternating learning of both the segmentation model and
the graph convolutional model, which first initializes and then
iteratively refines the learned models. Detailed experiments on
four public datasets, including 50 Salads, GTEA, Breakfast,
and Desktop Assembly, show that our method is superior to
the multi-layer perceptron baseline, while performing on par
with or better than the state of the art in temporal activity
segmentation with timestamp supervision.

I. INTRODUCTION

Human activity understanding in videos has been an im-
portant research topic in the fields of robotics and computer
vision, with various applications ranging from human-robot
interaction, assisted living, healthcare, home automation to
manufacturing [1]–[3]. With the significant research efforts
in the last decade, one can expect great results for the
task of action recognition [4], [5], where the input video
is trimmed and captures a simple action. However, in many
real-world applications [6], [7], we are often required to deal
with untrimmed videos containing a complex activity. In this
paper, we want to tackle one such problem, i.e., temporal
activity segmentation, where given an input video capturing
a complex activity, the task is to assign each frame of the
video to one of the action/sub-activity classes.

The best performing methods for temporal activity seg-
mentation are fully-supervised approaches [8]–[12], where
framewise action class labels are required during training.
However, these framewise labels are difficult and costly
to obtain. In contrast, unsupervised approaches [13]–[19],
which require little annotation, have been developed in
the literature. Nevertheless, their performances are signifi-
cantly worse than the above fully-supervised counterparts,
which limits their practical applications. In order to bal-
ance between annotation efforts and segmentation accuracies,
weakly-supervised approaches [20]–[27], which leverage dif-
ferent forms of weak supervision, have attracted notable
research interest. Here, we are particularly interested in

All authors are with Retrocausal, Inc., Redmond, WA 98052, USA.
Website: www.retrocausal.ai
Email: {hamza,sanjay,awais,shakeeb,andrey,
zeeshan,huy}@retrocausal.ai

Framewise
 Features

Timestamp
Labels

Action Boundary
Estimation

Framewise
Labels

Framewise
 Features

Timestamp
Labels

Graph Convolutional
Network

Framewise
Labels

Pr
io

r W
or

k
O

ur
 M

et
ho

d

(a)

(b)

Fig. 1. (a) Li et al. [27] introduce a heuristic action boundary estimation
module which uses framewise features and sparse timestamp labels to gener-
ate dense framewise labels for training a segmentation model. In particular, it
detects action boundaries by minimizing distances between frame features
and action centers. (b) In contrast, we propose a learning module based
on graph convolutional network. More specifically, it leverages both frame
features and connections between neighboring frames to convert sparse
timestamp labels to dense framewise labels.

timestamp supervision [27] due to its superior accuracy as
compared to other types of weak supervision [20]–[26].

In timestamp-supervised setup [27], [28], only one (ran-
dom) frame is annotated for each action segment in a training
video. Naively training the segmentation model with just
these sparse timestamp labels leads to suboptimal results
since the major (unlabeled) part of the video is not used
effectively. In this work, we propose to learn a graph
convolutional network to convert sparse timestamp labels to
dense framewise labels for training the segmentation model
(see Fig. 1(b)). Our work is motivated by [29], where a graph
convolutional network is utilized for effectively propagating
labels from only a few labeled nodes to the remaining unla-
beled nodes. In our work, the graph convolutional network
is learned in an end-to-end manner to exploit not only
frame features but also connections between neighboring
frames. This is in contrast to the heuristic action boundary
estimation model in [27], which detects action boundaries
by minimizing distances between frame features and action
centers to generate dense framewise labels (see Fig. 1(a)).
In addition, to effectively learn both the segmentation model
and the graph convolutional model, we introduce an alter-
nating learning framework, which first initializes the learned
models from scratch and then iteratively improves them.

In summary, our contributions include:
• We present a novel method for activity segmentation

with timestamp supervision. Our main idea is to learn
a graph convolutional network, which exploits both

ar
X

iv
:2

20
6.

15
03

1v
4

 [
cs

.C
V

]
 2

 A
ug

 2
02

2

www.retrocausal.ai

frame features and connections between neighboring
frames to transform sparse timestamp labels to dense
framewise labels. Moreover, we develop a framework
for alternating learning of both the segmentation model
and the graph convolutional network.

• Extensive evaluations demonstrate that our method
outperforms the multi-layer perceptron baseline, and
performs on par with or better than the state of the
art in timestamp-supervised activity segmentation on
50 Salads, GTEA, Breakfast, and Desktop Assembly
datasets.

II. RELATED WORK

Below we summarize related works in temporal activity
segmentation and graph convolutional networks with a focus
on applications in video understanding problems.
Fully-Supervised Activity Segmentation. Temporal activ-
ity segmentation plays an important role in understanding
human activities [30]–[32]. Fully-supervised methods reason
about long-range dependencies in videos, which are typically
tackled by using a two-stage approach of feature extraction
and temporal reasoning with an HMM or RNN [8]–[10].
Recent approaches [11], [12] show that single-stage temporal
convolutions are capable of modeling long-range depen-
dencies effectively. Despite satisfactory results, the above
approaches need dense framewise labels for fully-supervised
training. Our method, on the other hand, requires weak
supervision in the form of sparse timestamp labels.
Weakly-Supervised Activity Segmentation. Many works
have focused on reducing the amount of annotations by using
transcript supervision [20]–[23], i.e., the order of actions
occurring in a given video. They mostly rely on aligning
frames with transcripts by using different alignment tech-
niques such as Dynamic Time Warping [23] and Viterbi [33].
Other approaches have also experimented with relaxing the
ordering assumption by using only a set of actions for
supervision, namely set supervision [24]–[26]. Although
these algorithms are efficient in terms of significantly less
annotation requirement, they perform notably worse than
fully-supervised approaches. To alleviate that, Li et al. [27]
propose to use timestamp supervision, i.e., for each action
segment in a training video, only one (random) frame is
annotated. Our method also uses timestamp supervision,
however, instead of heuristic action boundary estimation
in [27], we learn a graph convolutional network to generate
dense framewise labels.
Unsupervised Activity Segmentation. Unsupervised activ-
ity segmentation has received considerable research interest
due to little annotation requirement. Early methods [13]–
[15] leverage narration cues from accompanying scripts
to segment videos. Recent methods [16], [17] use pretext
tasks for learning frame representations before clustering
them by using K-means clustering to form action clusters.
Furthermore, Li et al. [18] exploit action-level cues to boost
the performance. More recently, Kumar et al. [19] perform
frame representation learning and clustering in a joint frame-
work via temporal optimal transport. Despite little annotation

requirement, the above methods perform significantly worse
than fully-supervised or weakly-supervised approaches.
Graph Convolutional Networks. Graph convolutional net-
works, e.g., [29], have been shown to work more effectively
on graph structured data in label-scarce settings than classical
neural network architectures. They have also been applied
recently to various video understanding problems such as
action recognition [34], object-object reasoning [35], and
action localization [36]. While the above works have focused
on using graph convolutional networks for video understand-
ing problems in fully-supervised settings, we leverage graph
convolutional networks to generate dense framewise labels
for activity segmentation in semi-supervised settings.

III. OUR APPROACH

We present, in this section, the details of our approach.
We first describe the task of temporal activity segmentation
and timestamp supervision in Sec. III-A. Next, the proposed
graph convolutional network module for generating dense
framewise labels is introduced in Sec. III-B. Lastly, we pro-
pose a framework for alternating learning of the segmentation
model and the graph convolutional network in Sec. III-C.

A. Activity Segmentation with Timestamp Supervision

Temporal activity segmentation aims to associate each
frame of an input video capturing a complex activity with
one of the action/sub-activity classes. In particular, let us
denote the input video as X = [x1, x2, . . . , xT], where T
is the number of frames in X . The task is to obtain the
action class for each frame of X , i.e., A = [a1, a2, . . . , aT]
with ai representing the action class for frame xi. For
fully-supervised methods [11], [12], [37], [38], a number
of videos X = {X} with corresponding framewise labels
A = {A} are given for training. These methods focus
on designing an effective segmentation model to extract
useful appearance and temporal cues in the videos and often
produce satisfactory results. However, framewise annotations
for all training videos are generally difficult and prohibitively
expensive to obtain.

In this work, we are interested in the timestamp-supervised
setting [27], [28]. Specifically, for each action segment in a
training video, only one (random) frame is labeled. Assuming
a training video X has N action segments (in general,
N � T), we can denote the timestamp labels for X as
ATS = [at1 , at1 , . . . , atN], where frame ti belongs to the
i-th action segment in X . According to [39], timestamp-
supervised setting requires a significantly less (i.e., one sixth)
labeling duration as compared to the above fully-supervised
setting. Nevertheless, simply using the sparse timestamp
labels for training the segmentation model (i.e., applying the
classification loss with these sparse timestamp labels) leads
to inferior results since the remaining (unlabeled) frames
are not utilized effectively. To address that, we propose, in
the next section, a graph convolutional network module for
generating dense framewise labels from sparse timestamp
labels so that all frames can be employed for training.

Video Segmentation
Model

Framewise
Features

Graph Convolutional
Network

Loss
Function 1

Loss
Function 2

Framewise
Classes

Timestamp
Labels

Framewise
Labels

(ii)
Training

Segmentation
Model

(i)
Training
Graph
Convolutional
Network

Initialization

Refinement

Fig. 2. Our alternating learning framework is shown above. During training, we first initialize the segmentation model by training it with sparse timestamp
labels (namely, the initialization stage). After that, we alternate between (i) training the graph convolutional network, which takes framewise features
from the segmentation model as input, uses sparse timestamp labels for supervision, and generates dense framewise labels as output, and (ii) training
the segmentation model, which uses dense framewise labels from the graph convolutional network for supervision (namely, the refinement stage). During
testing, the graph convolutional network is discarded while the segmentation model is employed to provide segmentation results.

B. Graph Convolutional Network for Label Generation

Let us represent each video as a graph, where frames
(along with their features) are nodes and there exist edges
between neighboring frames (within a temporal window).
Given only a few nodes with labels (i.e., sparse timestamp
labels), we want to classify the remaining nodes in the graph.
This problem, namely graph-based semi-supervised learning,
is typically solved by minimizing the following loss function:

L = Lclass + λLreg, (1)

where Lclass denotes the classification loss on the labeled
nodes, Lreg represents the explicit graph-based regularization
term [40]–[43], and λ is the balancing parameter.

Inspired by [29], we encode the graph structure directly
by using a graph neural network f(X,A). Here, X denotes
the node features, A represents the adjacency matrix, and
f is a graph neural network. That enables us to train f
with only Lclass since Lreg is implicitly embedded in f .
Depending f on both the node features and the adjacency
matrix allows gradient information to be distributed from
the labeled nodes to the unlabeled ones. Thus, the model is
able to learn effective representations for both labeled and
unlabeled nodes. In particular, we use a graph convolutional
network with the below propagation rule:

Hl+1 = σ

(
D̃
− 1

2 ÃD̃
− 1

2 HlWl

)
. (2)

Here, Ã = A + I is the adjacency matrix with added self-
connections (represented by the identity matrix I), while D̃ is
the degree matrix of Ã. Next, Wl, σ, and Hl are the weight
matrix for layer l, the activation function, and the activation
matrix for layer l respectively. As demonstrated in [29], the
above graph convolutional network can be derived from a
first-order approximation of spectral graph convolutions [44].

As we empirically show in Sec. IV-A, using weighted
graphs yields better results than using binary graphs. For
weighted graphs, we define the edge weight between nodes i
and j as the cosine similarity between corresponding features
xi and xj , which is written as:

Aij =
xi · xj
‖xi‖‖xj‖

, (3)

where · denotes the dot product.

C. Alternating Learning Framework

In the following, we present our alternating learning
framework for training the segmentation model and the
graph convolutional network. In particular, we divide the
training into two stages, i.e., the initialization stage and the
refinement stage. During the initialization stage, we train
only the segmentation model with sparse timestamp labels
for ε epochs (γ = 30). Next, in the refinement stage, we
perform γ iterations of alternating learning (ε = 20). For
each iteration, we (i) first train the graph convolutional
network for 300 epochs, where framewise features from the
segmentation model are input, sparse timestamp labels are
supervision signals, and dense framewise labels are output,
and (ii) then train the segmentation model for 3 epochs,
where dense framewise labels from the graph convolutional
network are supervision signals. At testing, the graph convo-
lutional network is discarded, and the segmentation model is
used to produce the segmentation result. Fig. 2 summarizes
our alternating learning framework. As we will show later
in Sec. IV-C, our alternating learning framework for training
the segmentation model and the graph convolutional network
outperforms the joint learning counterpart.

We use the conventional combination of classification loss
and smoothing loss [11], [12], [37], [38] for training the
segmentation model and graph convolutional network. In

addition, we include the confidence loss [27] in the training
of the segmentation model to boost its performance. We
summarize those losses below.
Classification Loss. We apply the cross-entropy loss be-
tween the predicted probabilities and the (generated) action
labels as:

Lclass =
1

T

∑
t

− log ỹt,a, (4)

where T is the number of frames in the video and ỹt,a is
the predicted probability that frame xt is assigned to action
class a.
Smoothing Loss. We employ the smoothing loss to tackle
the problem of over-segmentation as:

Lsmooth =
1

TC

∑
t,a

∆̃2
t,a, (5)

∆̃t,a =

{
∆t,a, ∆t,a ≤ τ
τ, ∆t,a > τ

, (6)

∆t,a = |log ỹt,a − log ỹt−1,a| , (7)

where C is the number of action classes in the activity and
τ = 4 is the thresholding parameter.
Confidence Loss. We adopt the confidence loss from [27]
to encourage the predicted probabilities to monotonically
decrease as the distance to the timestamps increases as:

Lconf =
1

T ′

∑
ati
∈ATS

 ti+1∑
t=ti−1

δati
,t

 , (8)

δati
,t =

{
max(0, log ỹt,ati

− log ỹt−1,ati
), t ≤ ti

max(0, log ỹt−1,ati
− log ỹt,ati

), t > ti
, (9)

where ti and ati are the i-th timestamp and its corresponding
action label, ỹt,ati

is the predicted probability that frame xt
is assigned to action class ati , and T ′ = 2(tN − t1) is the
number of frames contributing to the loss.
Final Losses. The final losses Lseg and Lgraph respectively
for training the segmentation model and the graph convolu-
tional network are written as follows:

Lseg = Lclass + αLsmooth + βLconf , (10)
Lgraph = Lclass + αLsmooth. (11)

Here, α = 0.15 and β = 0.075 are balancing parameters.
We have tried adding the confidence loss Lconf to the final
loss Lgraph for training the graph convolutional network but
did not get any performance gain.

IV. EXPERIMENTS

In this section, we benchmark our approach for timestamp-
supervised activity segmentation on various datasets, includ-
ing 50 Salads, GTEA, Breakfast, and Desktop Assembly.
Implementation Details. For a fair comparison, we fol-
low [27] to adopt the multi-stage temporal convolutional
network of [11] as our segmentation model. The I3D fea-
tures [45] used as input in [27] are also used as input
to our segmentation model. In addition, we implement a

two-layer graph convolutional network for label generation.
The first layer maps the input features (64-dimensional
vectors) to 32-dimensional vectors, which are subsequently
passed through ReLU activation, the second layer, and lastly
softmax classification. To construct the graph from an input
video, we consider frames along with their features as nodes
and connect each frame with its preceding 15 frames and
succeeding 15 frames (yielding a temporal window size of
31) to form pairwise edges. The input features to the graph
convolutional network are the output of the penultimate layer
of the segmentation model and are 64-dimensional vectors.
The segmentation model and the graph convolutional net-
work are learned via backpropagation respectively through
the losses in Sec. III-C. We implement our approach in
PyTorch [46]. We use the ADAM optimizer [47] and a
batch size of 8. The learning rate is set to 0.0005 and
0.01 respectively for the segmentation model and the graph
convolutional network. We use a weight decay of 0.0005 only
for the graph convolutional network. Our experiments are
conducted with an Nvidia V100 GPU on Microsoft Azure.
Competing Methods. We compare our approach (namely
“GCN”, short for Graph Convolutional Network) against the
state-of-the-art method of [27]1 (namely “ABE”, short for
Action Boundary Estimation) for timestamp-supervised ac-
tivity segmentation. Also, we add a fully-supervised baseline
(namely “Baseline”), which has the same architecture as our
segmentation model but is trained with ground truth dense
framewise labels for full supervision. Lastly, we include the
results of recent fully-supervised methods [11], [12], [37],
[38], transcript-supervised methods [10], [20], [22], [23],
[33], [48], [49], and set-supervised methods [24]–[26].
Datasets. We test the performance on four public datasets,
namely 50 Salads [50], Breakfast [51], GTEA [52], and
Desktop Assembly [19]. We summarize the datasets below:
• 50 Salads: The dataset consists of 50 videos with actors

preparing different kinds of salads. It contains 0.6M
frames annotated with one of the 17 action classes, and
the average video duration varies from 5 to 10 minutes.

• Breakfast: The dataset includes 1712 videos with actors
preparing various types of breakfast. It consists of 3.6M
frames annotated with one of the 48 action classes, and
the average video duration ranges from a few seconds
to several minutes.

• GTEA: The dataset consists of 28 videos with actors
performing various kinds of daily activities. It contains
32K frames annotated with one of the 11 action classes,
and the average video duration is 1 minute.

• Desktop Assembly: The dataset includes 76 videos with
actors performing the desktop assembly activity. It con-
sists of 59K frames annotated with one of the 22 action
classes, and the average video duration is 1.5 minutes.

We use the same timestamp labels for our method and ABE.
Metrics. We follow [27] to report the results on five metrics,
including framewise accuracy (Acc), edit distance (Edit), and

1We use the original code provided by the authors at
https://github.com/ZheLi2020/TimestampActionSeg

https://github.com/ZheLi2020/TimestampActionSeg

Edge Window F1@10 F1@25 F1@50 Edit Acc

F

B
in

ar
y

3 73.7 70.5 59.1 65.7 73.6

7 73.9 71.0 59.2 66.4 74.1

17 74.2 71.1 58.9 66.5 74.7

31 74.6 71.7 59.6 67.2 74.3

W
ei

gh
te

d

3 74.8 71.7 59.7 66.8 74.8

7 74.9 72.1 60.3 67.3 74.8

17 73.7 70.5 59.6 66.6 74.2

31 75.1 72.3 61.0 67.6 75.1

G

B
in

ar
y

3 78.4 73.9 58.7 72.0 64.7

7 79.2 75.4 59.4 72.8 65.2

17 79.8 76.3 59.2 73.3 65.4

31 79.3 75.7 57.5 73.4 65.5

W
ei

gh
te

d

3 78.1 74.5 58.9 72.6 64.6

7 79.6 75.9 60.1 73.0 65.5

17 79.6 75.2 59.8 73.1 65.9

31 81.5 77.5 60.8 75.6 66.1

TABLE I
ABLATION STUDY ON GRAPH CONSTRUCTION. BEST RESULTS ARE IN

BOLD. F DENOTES 50 SALADS AND G DENOTES GTEA.

F1 scores with overlapping thresholds of 10%, 25%, and
50%. To reduce the impact of randomness, we use K-fold
cross validation with K = 5 for 50 Salads and K = 4
for GTEA, Breakfast, and Desktop Assembly. Furthermore,
for timestamp-supervised methods, including ours and ABE,
we run each 3 times with 3 random seeds and report the
average results over the 3 runs. We would like to note that
this setup is different from the setup in [27], where the results
are reported over a single run. For other types of methods,
we simply obtain their results from [27].

A. Ablation Study on Graph Construction

We first conduct some ablation study experiments to
understand the impacts of graph structures on our approach.
In particular, we evaluate the performance of our method
when using different types of graphs, i.e., binary graphs
and weighted graphs, as well as various temporal window
sizes, i.e., 3, 7, 17, and 31. For weighted graphs, the edge
weight is defined as in Eq. 3. Tab. I presents the ablation
study results on graph construction on the 50 Salads and
GTEA datasets. From the results, temporal window size of
3 performs the worst, while larger temporal window sizes,
which are able to capture longer-range dependencies despite
having higher computational costs, often yield better results.
Next, temporal window size of 31 has the best performance
on both 50 Salads and GTEA datasets. Further, we have tried
with larger temporal window sizes than 31, however, they
yield little performance gains while having notably higher
computational costs. In addition, by leveraging additional in-

Method F1@10 F1@25 F1@50 Edit Acc

F MLP 70.8 68.0 57.6 63.6 73.1
GCN 75.1 72.3 61.0 67.6 75.1

G MLP 77.8 74.4 59.1 72.2 65.6
GCN 81.5 77.5 60.8 75.6 66.1

TABLE II
ABLATION STUDY ON MLP VS. GCN. BEST RESULTS ARE IN BOLD. F

DENOTES 50 SALADS AND G DENOTES GTEA.

γ ε F1@10 F1@25 F1@50 Edit Acc

F

0 50 43.5 36.6 24.6 42.2 38.2

10 40 51.3 44.9 33.1 48.5 50.4

30 20 75.1 72.3 61.0 67.6 75.1

50 0 58.1 54.0 43.3 48.7 71.2

G

0 50 21.6 20.3 15.9 16.9 29.6

10 40 22.8 21.7 16.9 17.3 29.9

30 20 81.5 77.5 60.8 75.6 66.1

50 0 63.0 58.4 45.1 56.2 57.1

TABLE III
ABLATION STUDY ON ALTERNATING LEARNING VS. JOINT LEARNING.
BEST RESULTS ARE IN BOLD. F DENOTES 50 SALADS AND G DENOTES

GTEA.

formation (i.e., similarity between frame features), weighted
graphs usually outperform binary graphs on both 50 Salads
and GTEA datasets. For all the remaining experiments in
this section, we will use temporal window size of 31 and
weighted graphs for our method.

B. Ablation Study on MLP vs. GCN

As mentioned in Sec. III-B, the graph convolutional
network embeds the graph-based regularization term Lreg

implicitly, which helps it exploit cues available in the graph
(i.e., frame features and connections between neighboring
frames). In this section, we study the benefit of leveraging
these cues via a graph convolutional network as compared to
using a plain multi-layer perceptron network. Tab. II shows
the results on the 50 Salads and GTEA datasets when using
a graph convolutional network (GCN) and a multi-layer
perceptron network (MLP) for label generation. Note that
they have the same set of hyperparameters, e.g., number of
layers, number of output channels, etc. As we can see from
Tab. II, GCN outperforms MLP across all metrics on both
datasets, which confirms the advantage of using GCN over
MLP for label generation.

C. Ablation Study on Alternating Learning vs. Joint Learn-
ing

Here, we conduct experiments to support our choice of
alternating learning over joint learning of the segmentation
model and the graph convolutional network. In particular,

Method F1@10 F1@25 F1@50 Edit Acc

F

Baseline 70.8 67.7 58.6 63.8 77.8

MS-TCN [11] 76.3 74.0 64.5 67.9 80.7

MS-TCN++ [12] 80.7 78.5 70.1 74.3 83.7

BCN [37] 82.3 81.3 74.0 74.3 84.4

ASRF [38] 84.9 83.5 77.3 79.3 84.5

Ti
ABE [27] 73.7 71.0 60.1 66.1 76.0

GCN (Ours) 75.1 72.3 61.0 67.6 75.1

Tr

CDFL [48] - - - - 54.7

NN-Viterbi [33] - - - - 49.4

HMM-RNN [10] - - - - 45.5

TABLE IV
COMPARISON ON 50 SALADS. BEST RESULTS ARE IN BOLD. F DENOTES

FULL SUPERVISION, TI DENOTES TIMESTAMP SUPERVISION, AND TR

DENOTES TRANSCRIPT SUPERVISION.

Ground Truth

GCN (Ours)

ABE

Fig. 3. Segmentation results on a 50 Salads video.

we compare the performance of joint learning (i.e., without
the initialization stage or {γ, ε} = {0, 50}) with two versions
of alternating learning (i.e., {γ, ε} = {10, 40} and {γ, ε} =
{30, 20}). Moreover, we compare with the naive learning of
the segmentation model using only sparse timestamp labels
(i.e., without the refinement stage or {γ, ε} = {50, 0}). The
results on the 50 Salads and GTEA datasets are shown in
Tab. III. It is evident from the results that alternating learning
outperforms both joint learning and naive learning by large
margins. Next, the bad performance of joint learning is likely
because as we train both models from scratch, during the first
few iterations, the features extracted by the segmentation
model and hence the framewise labels predicted by the
graph convolutional network are not meaningful. As a result,
the joint learning framework is unstable and yields worse
results than the alternating learning one. Lastly, the worse
performance of naive learning is likely because unlabeled
frames in the video is not utilized effectively. In the following
experiments, we will use alternating learning with {γ, ε} =
{30, 20} for our method.

Method F1@10 F1@25 F1@50 Edit Acc

F

Baseline 85.1 82.7 69.6 79.6 76.1

MS-TCN [11] 85.8 83.4 69.8 79.0 76.3

MS-TCN++ [12] 88.8 85.7 76.0 83.5 80.1

BCN [37] 88.5 87.1 77.3 84.4 79.8

ASRF [38] 89.4 87.8 79.8 83.7 77.3

Ti
ABE [27] 77.7 73.8 58.1 72.1 67.7

GCN (Ours) 81.5 77.5 60.8 75.6 66.1

TABLE V
COMPARISON ON GTEA. BEST RESULTS ARE IN BOLD. F DENOTES

FULL SUPERVISION AND TI DENOTES TIMESTAMP SUPERVISION.

Ground Truth

GCN (Ours)

ABE

Fig. 4. Segmentation results on a GTEA video.

D. Comparison on 50 Salads

We now compare the performance of our approach against
that of the state-of-the-art timestamp-supervised method
of [27] (ABE), on the 50 Salads dataset. In addition, we
include the results of fully-supervised methods [11], [12],
[37], [38] and transcript-supervised methods [10], [33], [48].
Tab. IV presents the results. As we see from Tab. IV, our
approach outperforms ABE on F1@10, F1@25, F1@50, and
Edit, while performing on par with ABE on Acc. Lower F1
and Edit indicate that ABE is more likely to suffer from
over-segmentation, since over-segmented results may have
high Acc but yield low F1 and Edit. In addition, timestamp-
supervised methods produce better results than transcript-
supervised ones. Fig. 3 visualizes some qualitative results
of our approach and ABE, where our result is closer to the
ground truth. Please see also our supplementary video2.

E. Comparison on GTEA

Tab. V presents the results of timestamp-supervised meth-
ods, i.e., ours and ABE [27], and fully-supervised meth-
ods [11], [12], [37], [38] on the GTEA dataset. Similar to the
results on 50 Salads, our approach achieves higher F1@10,
F1@25, F1@50, and Edit, and lower Acc than ABE on
GTEA. This also shows our method is less suffering from
over-segmentation as compared to ABE. In addition, some

2Our supplementary video is available at
https://youtu.be/tvV3soPMTIo

https://youtu.be/tvV3soPMTIo

Method F1@10 F1@25 F1@50 Edit Acc

F

Baseline 69.9 64.2 51.5 69.4 68.0

MS-TCN [11] 52.6 48.1 37.9 61.7 66.3

MS-TCN++ [12] 64.1 58.6 45.9 65.6 67.6

BCN [37] 68.7 65.5 55.0 66.2 70.4

ASRF [38] 74.3 68.9 56.1 72.4 67.6

Ti
ABE [27] 67.4 60.8 44.9 68.5 63.1

GCN (Ours) 67.9 61.0 45.3 67.0 61.4

Tr

CDFL [48] - - - - 50.2

MuCon [49] - - - - 47.1

D3TW [23] - - - - 45.7

NN-Viterbi [33] - - - - 43.0

TCFPN [22] - - - - 38.4

HMM-RNN [10] - - - - 33.3

ECTC [20] - - - - 27.7

S

SCT [25] - - - - 30.4

SCV [26] - - - - 30.2

Action Sets [24] - - - - 23.3

TABLE VI
COMPARISON ON BREAKFAST. BEST RESULTS ARE IN BOLD. F DENOTES

FULL SUPERVISION, TI DENOTES TIMESTAMP SUPERVISION, TR

DENOTES TRANSCRIPT SUPERVISION, AND S DENOTES SET

SUPERVISION.

Ground Truth

GCN (Ours)

ABE

Fig. 5. Segmentation results on a Breakfast video.

qualitative results of our method and ABE are plotted in
Fig. 4, where our result is closer to the ground truth.

F. Comparison on Breakfast

The results of methods with different forms of supervision,
including full supervision [11], [12], [37], [38], timestamp
supervision (ours and ABE [27]), transcript supervision [10],
[20], [22], [23], [33], [48], [49], and set supervision [24]–
[26], on the Breakfast dataset are shown in Tab. VI. From
Tab. VI, our approach obtains similar results as ABE (i.e., our
method has higher F1@10, F1@25, and F1@50, and lower
Edit and Acc). In addition, timestamp-supervised methods
yield better results than other weakly-supervised ones. Fig. 5

Method F1@10 F1@25 F1@50 Edit Acc

F
Baseline 90.2 87.2 76.9 89.9 79.4

ASRF [38] 91.4 90.3 83.2 86.6 81.9

Ti
ABE [27] 89.8 86.4 67.5 88.3 71.7

GCN (Ours) 90.4 88.0 75.1 87.3 77.1

TABLE VII
COMPARISON ON DESKTOP ASSEMBLY. BEST RESULTS ARE IN BOLD. F

DENOTES FULL SUPERVISION AND TI DENOTES TIMESTAMP

SUPERVISION.

Ground Truth

GCN (Ours)

ABE

Fig. 6. Segmentation results on a Desktop Assembly video.

plots some qualitative results of our approach and ABE,
where the two methods perform similarly.

G. Comparison on Desktop Assembly

Tab. VII presents the results of timestamp-supervised
methods, namely ours and ABE [27], and fully-supervised
methods, including the state-of-the-art method of [38], on the
Desktop Assembly dataset. From the results, our approach
outperforms ABE on F1@10, F1@25, F1@50, and Acc by
substantial margins, while performing on par with ABE on
Edit. In addition, Fig. 6 visualizes some qualitative results
of our approach and ABE, where our result is closer to the
ground truth.

V. CONCLUSION

We propose, in this paper, a novel method for timestamp-
supervised activity segmentation, which utilizes a graph
convolutional network for generating dense framewise labels
from sparse timestamp labels. The graph convolutional net-
work is learned in an end-to-end fashion to leverage not only
frame features but also connections between neighboring
frames. Moreover, we present a framework for alternating
learning of both the segmentation model and the graph
convolutional model. We show that our method is supe-
rior to the multi-layer perceptron baseline, while perform-
ing on par with or better than the state of the art in
timestamp-supervised activity segmentation on 50 Salads,
GTEA, Breakfast, and Desktop Assembly. Our future work
will explore the use of deep supervision [53]–[57] or self-
supervised losses [58], [59] for improving the performance.

REFERENCES

[1] L. D. Riek, “Healthcare robotics,” Communications of the ACM,
vol. 60, no. 11, pp. 68–78, 2017.

[2] T. Iqbal and L. D. Riek, “Human-robot teaming: Approaches from
joint action and dynamical systems,” Humanoid robotics: A reference,
pp. 2293–2312, 2019.

[3] A. Konin, S. N. Syed, S. Siddiqui, S. Kumar, Q.-H. Tran, and M. Z.
Zia, “Retroactivity: Rapidly deployable live task guidance experi-
ences,” in IEEE International Symposium on Mixed and Augmented
Reality Demonstration, 2020.

[4] D. Tran, H. Wang, L. Torresani, J. Ray, Y. LeCun, and M. Paluri, “A
closer look at spatiotemporal convolutions for action recognition,” in
Proceedings of the IEEE conference on Computer Vision and Pattern
Recognition, 2018, pp. 6450–6459.

[5] X. Wang, R. Girshick, A. Gupta, and K. He, “Non-local neural
networks,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2018, pp. 7794–7803.

[6] Y.-W. Chao, S. Vijayanarasimhan, B. Seybold, D. A. Ross, J. Deng,
and R. Sukthankar, “Rethinking the faster r-cnn architecture for
temporal action localization,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2018, pp. 1130–1139.

[7] D. Gong, L. Liu, V. Le, B. Saha, M. R. Mansour, S. Venkatesh, and
A. v. d. Hengel, “Memorizing normality to detect anomaly: Memory-
augmented deep autoencoder for unsupervised anomaly detection,” in
Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2019, pp. 1705–1714.

[8] H. Kuehne, J. Gall, and T. Serre, “An end-to-end generative framework
for video segmentation and recognition,” in 2016 IEEE Winter Con-
ference on Applications of Computer Vision (WACV). IEEE, 2016,
pp. 1–8.

[9] B. Singh, T. K. Marks, M. Jones, O. Tuzel, and M. Shao, “A multi-
stream bi-directional recurrent neural network for fine-grained action
detection,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 1961–1970.

[10] A. Richard, H. Kuehne, and J. Gall, “Weakly supervised action
learning with rnn based fine-to-coarse modeling,” in Proceedings of
the IEEE conference on Computer Vision and Pattern Recognition,
2017, pp. 754–763.

[11] Y. A. Farha and J. Gall, “Ms-tcn: Multi-stage temporal convolutional
network for action segmentation,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2019, pp.
3575–3584.

[12] S.-J. Li, Y. AbuFarha, Y. Liu, M.-M. Cheng, and J. Gall, “Ms-tcn++:
Multi-stage temporal convolutional network for action segmentation,”
IEEE transactions on pattern analysis and machine intelligence, 2020.

[13] J. Malmaud, J. Huang, V. Rathod, N. Johnston, A. Rabinovich, and
K. Murphy, “What’s cookin’? interpreting cooking videos using text,
speech and vision,” arXiv preprint arXiv:1503.01558, 2015.

[14] O. Sener, A. R. Zamir, S. Savarese, and A. Saxena, “Unsupervised
semantic parsing of video collections,” in Proceedings of the IEEE
International conference on Computer Vision, 2015, pp. 4480–4488.

[15] J.-B. Alayrac, P. Bojanowski, N. Agrawal, J. Sivic, I. Laptev, and
S. Lacoste-Julien, “Unsupervised learning from narrated instruction
videos,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2016, pp. 4575–4583.

[16] A. Kukleva, H. Kuehne, F. Sener, and J. Gall, “Unsupervised learning
of action classes with continuous temporal embedding,” in Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2019, pp. 12 066–12 074.

[17] R. G. VidalMata, W. J. Scheirer, A. Kukleva, D. Cox, and H. Kuehne,
“Joint visual-temporal embedding for unsupervised learning of actions
in untrimmed sequences,” in Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision, 2021, pp. 1238–1247.

[18] J. Li and S. Todorovic, “Action shuffle alternating learning for un-
supervised action segmentation,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2021, pp.
12 628–12 636.

[19] S. Kumar, S. Haresh, A. Ahmed, A. Konin, M. Z. Zia, and Q.-H. Tran,
“Unsupervised activity segmentation by joint representation learning
and online clustering,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2022.

[20] D.-A. Huang, L. Fei-Fei, and J. C. Niebles, “Connectionist temporal
modeling for weakly supervised action labeling,” in European Con-
ference on Computer Vision. Springer, 2016, pp. 137–153.

[21] H. Kuehne, A. Richard, and J. Gall, “Weakly supervised learning of
actions from transcripts,” Computer Vision and Image Understanding,
vol. 163, pp. 78–89, 2017.

[22] L. Ding and C. Xu, “Weakly-supervised action segmentation with
iterative soft boundary assignment,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2018, pp.
6508–6516.

[23] C.-Y. Chang, D.-A. Huang, Y. Sui, L. Fei-Fei, and J. C. Niebles,
“D3tw: Discriminative differentiable dynamic time warping for weakly
supervised action alignment and segmentation,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2019, pp. 3546–3555.

[24] A. Richard, H. Kuehne, and J. Gall, “Action sets: Weakly supervised
action segmentation without ordering constraints,” in Proceedings of
the IEEE conference on Computer Vision and Pattern Recognition,
2018, pp. 5987–5996.

[25] M. Fayyaz and J. Gall, “Sct: Set constrained temporal transformer for
set supervised action segmentation,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2020, pp.
501–510.

[26] J. Li and S. Todorovic, “Set-constrained viterbi for set-supervised
action segmentation,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2020, pp. 10 820–10 829.

[27] Z. Li, Y. Abu Farha, and J. Gall, “Temporal action segmentation from
timestamp supervision,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2021, pp. 8365–8374.

[28] D. Moltisanti, S. Fidler, and D. Damen, “Action recognition from sin-
gle timestamp supervision in untrimmed videos,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2019, pp. 9915–9924.

[29] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[30] H. Pirsiavash and D. Ramanan, “Parsing videos of actions with
segmental grammars,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2014, pp. 612–619.

[31] F. Caba Heilbron, V. Escorcia, B. Ghanem, and J. Carlos Niebles,
“Activitynet: A large-scale video benchmark for human activity under-
standing,” in Proceedings of the ieee conference on computer vision
and pattern recognition, 2015, pp. 961–970.

[32] D. Damen, H. Doughty, G. M. Farinella, S. Fidler, A. Furnari,
E. Kazakos, D. Moltisanti, J. Munro, T. Perrett, W. Price, et al.,
“Scaling egocentric vision: The epic-kitchens dataset,” in Proceedings
of the European Conference on Computer Vision (ECCV), 2018, pp.
720–736.

[33] A. Richard, H. Kuehne, A. Iqbal, and J. Gall, “Neuralnetwork-viterbi:
A framework for weakly supervised video learning,” in Proceedings
of the IEEE conference on Computer Vision and Pattern Recognition,
2018, pp. 7386–7395.

[34] R. Herzig, E. Levi, H. Xu, H. Gao, E. Brosh, X. Wang, A. Globerson,
and T. Darrell, “Spatio-temporal action graph networks,” in Proceed-
ings of the IEEE/CVF International Conference on Computer Vision
Workshops, 2019, pp. 0–0.

[35] S. Haresh, S. Kumar, M. Z. Zia, and Q.-H. Tran, “Towards anomaly
detection in dashcam videos,” in 2020 IEEE Intelligent Vehicles
Symposium (IV). IEEE, pp. 1407–1414.

[36] R. Zeng, W. Huang, M. Tan, Y. Rong, P. Zhao, J. Huang, and C. Gan,
“Graph convolutional networks for temporal action localization,” in
Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2019, pp. 7094–7103.

[37] Z. Wang, Z. Gao, L. Wang, Z. Li, and G. Wu, “Boundary-aware
cascade networks for temporal action segmentation,” in European
Conference on Computer Vision. Springer, 2020, pp. 34–51.

[38] Y. Ishikawa, S. Kasai, Y. Aoki, and H. Kataoka, “Alleviating over-
segmentation errors by detecting action boundaries,” in Proceedings of
the IEEE/CVF Winter Conference on Applications of Computer Vision,
2021, pp. 2322–2331.

[39] F. Ma, L. Zhu, Y. Yang, S. Zha, G. Kundu, M. Feiszli, and Z. Shou,
“Sf-net: Single-frame supervision for temporal action localization,” in
European conference on computer vision. Springer, 2020, pp. 420–
437.

[40] X. Zhu, Z. Ghahramani, and J. D. Lafferty, “Semi-supervised learning
using gaussian fields and harmonic functions,” in Proceedings of the
20th International conference on Machine learning (ICML-03), 2003,
pp. 912–919.

[41] D. Zhou, O. Bousquet, T. Lal, J. Weston, and B. Schölkopf, “Learning
with local and global consistency,” Advances in neural information
processing systems, vol. 16, 2003.

[42] M. Belkin, P. Niyogi, and V. Sindhwani, “Manifold regularization:
A geometric framework for learning from labeled and unlabeled
examples.” Journal of machine learning research, vol. 7, no. 11, 2006.

[43] J. Weston, F. Ratle, H. Mobahi, and R. Collobert, “Deep learning via
semi-supervised embedding,” in Neural networks: Tricks of the trade.
Springer, 2012, pp. 639–655.

[44] D. K. Hammond, P. Vandergheynst, and R. Gribonval, “Wavelets
on graphs via spectral graph theory,” Applied and Computational
Harmonic Analysis, vol. 30, no. 2, pp. 129–150, 2011.

[45] J. Carreira and A. Zisserman, “Quo vadis, action recognition? a new
model and the kinetics dataset,” in proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2017, pp. 6299–6308.

[46] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito,
Z. Lin, A. Desmaison, L. Antiga, and A. Lerer, “Automatic differen-
tiation in pytorch,” 2017.

[47] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

[48] J. Li, P. Lei, and S. Todorovic, “Weakly supervised energy-based
learning for action segmentation,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2019, pp. 6243–6251.

[49] Y. Souri, M. Fayyaz, L. Minciullo, G. Francesca, and J. Gall, “Fast
weakly supervised action segmentation using mutual consistency,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
2021.

[50] S. Stein and S. J. McKenna, “Combining embedded accelerometers
with computer vision for recognizing food preparation activities,”
in Proceedings of the 2013 ACM international joint conference on
Pervasive and ubiquitous computing, 2013, pp. 729–738.

[51] H. Kuehne, A. Arslan, and T. Serre, “The language of actions: Recov-
ering the syntax and semantics of goal-directed human activities,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2014.

[52] A. Fathi, X. Ren, and J. M. Rehg, “Learning to recognize objects in
egocentric activities,” in CVPR 2011. IEEE, 2011, pp. 3281–3288.

[53] C.-Y. Lee, S. Xie, P. Gallagher, Z. Zhang, and Z. Tu, “Deeply-
supervised nets,” in Artificial intelligence and statistics. PMLR, 2015,
pp. 562–570.

[54] C. Li, M. Zeeshan Zia, Q.-H. Tran, X. Yu, G. D. Hager, and
M. Chandraker, “Deep supervision with shape concepts for occlusion-
aware 3d object parsing,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2017, pp. 5465–5474.

[55] C. Li, M. Z. Zia, Q.-H. Tran, X. Yu, G. D. Hager, and M. Chandraker,
“Deep supervision with intermediate concepts,” IEEE transactions on
pattern analysis and machine intelligence, vol. 41, no. 8, pp. 1828–
1843, 2018.

[56] M. E. Fathy, Q.-H. Tran, M. Z. Zia, P. Vernaza, and M. Chandraker,
“Hierarchical metric learning and matching for 2d and 3d geometric
correspondences,” in Proceedings of the european conference on
computer vision (ECCV), 2018, pp. 803–819.

[57] B. Zhuang, Q.-H. Tran, G. H. Lee, L. F. Cheong, and M. Chandraker,
“Degeneracy in self-calibration revisited and a deep learning solution
for uncalibrated slam,” in 2019 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2019, pp. 3766–3773.

[58] H. Mobahi, R. Collobert, and J. Weston, “Deep learning from temporal
coherence in video,” in Proceedings of the 26th Annual International
Conference on Machine Learning, 2009, pp. 737–744.

[59] S. Haresh, S. Kumar, H. Coskun, S. N. Syed, A. Konin, Z. Zia, and Q.-
H. Tran, “Learning by aligning videos in time,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2021, pp. 5548–5558.

	I Introduction
	II Related Work
	III Our Approach
	III-A Activity Segmentation with Timestamp Supervision
	III-B Graph Convolutional Network for Label Generation
	III-C Alternating Learning Framework

	IV Experiments
	IV-A Ablation Study on Graph Construction
	IV-B Ablation Study on MLP vs. GCN
	IV-C Ablation Study on Alternating Learning vs. Joint Learning
	IV-D Comparison on 50 Salads
	IV-E Comparison on GTEA
	IV-F Comparison on Breakfast
	IV-G Comparison on Desktop Assembly

	V Conclusion
	References

