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Abstract—Signal temporal logic (STL) provides a powerful,
flexible framework for specifying complex autonomy tasks; how-
ever, existing methods for planning based on STL specifications
have difficulty scaling to long-horizon tasks and are not robust to
external disturbances. In this paper, we present an algorithm for
finding robust plans that satisfy STL specifications. Our method
alternates between local optimization and local falsification,
using automatically differentiable temporal logic to iteratively
optimize its plan in response to counterexamples found during the
falsification process. We benchmark our counterexample-guided
planning method against state-of-the-art planning methods on
two long-horizon satellite rendezvous missions, showing that
our method finds high-quality plans that satisfy STL spec-
ifications despite adversarial disturbances. We find that our
method consistently finds plans that are robust to adversarial
disturbances and requires less than half the time of competing
methods. We provide an implementation of our planner at
https://github.com/MIT-REALM/architect.

Index Terms—formal methods, differentiable programming,
temporal logic

I. INTRODUCTION & RELATED WORK

There is a substantial gap between how many users dream
of interacting with intelligent robots and how those robots
are programmed in reality. The dream is for the human user
to instruct their robot in something not too far from natural
language, e.g. “please visit both the gas station and the grocery
store, and make sure you get back here within 30 minutes”, or
“land at one of three landing pads, but stay clear of other air-
craft”. Unfortunately, robots today usually expect much more
concrete guidance, such as a specific trajectory or feedback
controller. As the tasks we wish to assign our robots grow
increasingly complex, there is a correspondingly increased
need for flexible specification of robot programs and tools to
automatically derive concrete plans from those specifications.
Moreover, since the real world is unavoidably messy, any plan
thus derived must also be robust to unforeseen variation in the
environment; the robot must be able to accomplish its plan
even when the environment changes.

Luckily, when it comes to flexibly specifying complex tasks,
we have a convenient tool in the form of temporal logic.
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the authors with their research, but this article solely reflects the opinions
and conclusions of its authors and not DSTA Singapore or the Singapore
Government.

There are many flavors of temporal logic, but most relevant
to many robotics problems is signal temporal logic (or STL),
which provides a flexible language for specifying requirements
for continuous real-valued signals [1]–[3]. STL allows a user
to specify a wide range of planning problems by combining
logical and temporal operators to express requirements about
ordering and dependencies between subtasks. In addition,
although the formal syntax of STL can seem opaque at first,
it is often quite easy to translate STL formulae into readily-
understood natural language. Due to its flexibility, STL is
a common choice for specifying robotics problems such as
trajectory planning [4], [5] and combined task and motion
planning [2], [6], [7].

A number of classical methods exist for planning from
STL specifications, the most common being abstraction-based
methods [6], mixed-integer optimization-based methods [2],
[8], and nonlinear optimization methods [4], [5], [9] (other
approaches include sampling-based methods such as [10]
and [11]). Abstraction-based methods have the longest history;
these methods first construct a discrete abstraction (in the
form of a graph or automaton) of the continuous state space,
then plan over this discrete abstraction [6]. The drawback
of abstraction-based methods is that the size of the discrete
abstraction grows exponentially with the dimension of the state
space, limiting the scalability of these methods.

Other methods, based on mixed-integer optimization, ex-
ploit the fact that STL specifications can be expressed as linear
constraints with integer variables, and the resulting optimiza-
tion formulation provide soundness and completeness guar-
antees. Unfortunately, although mixed-integer optimization is
sound and complete, these mixed-integer programs quickly
become intractable as the planning horizon increases [8],
[12], [13]. Some works reduce the size of the program by
using timed waypoints instead of a receding horizon [2], but
this requires assumptions (such as access to a bounded-error
tracking controller) that can be restrictive.

A more recent line of work has focused on solving STL
planning problems using nonlinear optimization [3]–[5], [7],
[9]. In these approaches, the STL specification is replaced with
a continuously differentiable approximation and optimized
using local gradient-based methods. These approaches achieve
increased generality and scalability by sacrificing complete-
ness and optimality guarantees.
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A significant gap in the state of the art is that existing
optimization-based STL planners [2]–[5], [7], [9] do not
explicitly consider the effects of environmental disturbances
while planning. These approaches include some amount of
robustness implicitly, typically by maximizing the margin by
which a plan satisfies the STL specification, but this is often
not sufficient in practice to prevent the plan from failing in
response to small changes in the environment. Some methods
do explicitly consider robustness to disturbances [12], but our
experiments show that they yield mixed-integer problems that
are intractable in practice.

In this paper, we fill this gap by developing a robust
planner that uses counterexamples (examples of environmental
changes that cause the plan to fail) to refine its plan using
nonlinear optimization. This planner relies on an iterative
optimization process, inspired by solution methods for multi-
player games, that alternates between finding a plan that
performs well for all counterexamples seen so far and find-
ing new counterexamples to guide the optimization process.
Our framework relies on differentiable simulation and dif-
ferentiable temporal logic to derive gradients of the plan’s
performance with respect to both the planning parameters and
the environmental disturbance, enabling an efficient search for
new plans and counterexamples.

We compare our approach against state-of-the-art methods,
including both mixed-integer methods [12] and nonlinear
optimization methods [4], [5], [9]. We find that our method not
only finds plans that succeed despite worst-case disturbances
from the environment, but it also requires less than half the
time of the next-most-successful method. Our approach easily
scales to handle long-horizon tasks with complex STL specifi-
cations that are not tractable for mixed-integer programming,
and the plans found using our method are consistently more
robust than those found using existing methods.

II. PRELIMINARIES

We begin by introducing the syntax and semantics of signal
temporal logic, or STL. STL defines properties about real-
valued functions of time s : R+ 7→ Rn called signals.
For our purposes, a signal is defined by a finite number of
sampled points (ti, xi), and we assume that the signal is
piecewise-affine in between sampled points and constant after
the last sample. Syntactically, an STL formula is constructed
from predicates based on functions µ : Rn 7→ R, logical
connectives, and temporal operators [14]. The syntax of an
STL formula ψ is defined inductively as:

ψ = true | µ(x) ≥ 0 | ¬ψ | ψ1 ∧ ψ2 | ψ1 UI ψ2

where I is a closed (but potentially unbounded) time interval
and UI is the “until” operator (read as: within interval I , ψ1

must be true until ψ2 becomes true). For convenience, when
I is omitted it is assumed to be [0,∞). Additional temporal
operators such as eventually ♦I ψ = true UI ψ and always
�I = ¬♦I ¬ψ follow from this basic syntax, as do logical
operators such as ∨ and =⇒ .

For any signal s, an STL formula is satisfied at a given time
t according to the following Boolean semantics [14]:

s, t |= true
s, t |= µ(x) ≥ 0 iff µ(s(t)) ≥ 0

s, t |= ¬ψ iff s, t 6|= ψ

s, t |= ψ1 ∧ ψ2 iff s, t |= ψ1 and s, t |= ψ2

s, t |= ψ1 UI ψ2 iff ∃ t′ ∈ t+ I s.t. w, t′ |= ψ2

and w, t′′ |= ψ1 ∀ t′′ ∈ [t, t′]

A useful feature of STL is that, in addition to the Boolean
semantics defined above, it also admits a quantitative seman-
tics giving the margin of satisfaction (or robustness margin)
of an STL formula, denoted ρ. The formula is satisfied when
ρ > 0 and not satisfied when ρ < 0. The robustness margin
can also be defined inductively:

ρ(true, s, t) = >
ρ(µ(x) ≥ 0, s, t) = µ(s(t))

ρ(¬ψ, s, t) = −ρ(ψ, s, t)

ρ(ψ1 ∧ ψ2, s, t) = min{ρ(ψ1, s, t), ρ(ψ2, s, t)}
ρ(ψ1UI ψ2, s, t) = sup

t′∈t+I
min{ρ(ψ2, s, t

′), inf
t′′∈[t,t′]

ρ(ψ1, s, t
′′)

where > is a constant taken to be greater than all other real
values. In practice, linear-time algorithms exist for evaluating
ρ given a piecewise-affine signal s [14].

It is important to make a distinction between the robustness
margin of the specification, ρ, and the robustness of a plan
designed to satisfy that specification. ρ measures the margin
by which the specification is met for a particular execution
of a plan, but it does not provide much information about
whether the specification will hold across multiple executions,
particularly when external disturbances can affect those exe-
cutions. In the next section, we formalize the robust planning
problem, which aims at finding a plan that will satisfy the STL
specification even when affected by external disturbances.

STL syntax may appear opaque at first glance, but its
myriad symbols belie the fact that it is often straightforward
to translate an STL formula into easily-understood natural
language. For example, ♦[10,20]((�[0,5] x ≥ 0) U y ≤ 0) can
be read as “between 10–20 s from now, x must be positive for
5 s before y becomes negative.” We provide more examples of
STL formulae for robotics problems in Section V.

III. PROBLEM STATEMENT

In this paper, we focus on the problem of robust planning
from an STL specification, which we view as a sequential
two-player zero-sum game between the planner and its envi-
ronment. In the first step of this game (planning time), the
planner has the opportunity to tune a set of design parameters
θ, but in the second step (run-time) the environment can
change a distinct set of exogenous parameters χ to degrade the
performance of the plan. Together, θ ∈ Θ and χ ∈ X define
the behavior of an autonomous system ξ : Θ × X 7→ XT ,
which we assume is a known simulator function mapping
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design and exogenous parameters to a length-T trace of states
xt ∈ X . We assume that ξ is deterministic, so all uncertainty
must be imported via χ, but we assume that χ may be chosen
adversarially to degrade the performance of our chosen θ as
much as possible. We also assume that the designer must
commit to a choice of θ before the adversary chooses χ

The performance of a plan is given by a cost function
J : XT 7→ R assigning a scalar cost to a behavior trace. To
accommodate STL specifications, we deal mainly with cost
functions of the form

Jψ(θ, χ) = −ρ (ψ, ξ(θ, χ)) + λJother(θ, χ)

where ρ (ψ, ξ(θ, χ)) is the robustness margin of the behavior
trace with respect to a given STL specification ψ. We negate
ρ so that minimizing J maximizes the robustness margin, and
the λJother term permits us to consider other factors in the
plan’s performance (e.g. fuel use). The scaling factor λ is
typically small to prioritize satisfying the STL specification.

Since we assume that χ can vary adversarially to impose
worst-case performance for any plan θ, our goal is to find θ that
are robust to this variation. Concretely, our goal is to solve an
optimization problem representing a two-step sequential zero-
sum game with two players:

max
χ∈X

min
θ∈Θ

J(θ, χ) (1)

To make this discussion concrete, consider a simple example
of path planning for an aerial robot. In this case, ψ might
specify that we eventually (♦) reach a goal and always (�)
avoid some obstacles, θ might represent the locations of
waypoints along the path and the parameters of a trajectory-
tracking controller to follow those waypoints, and χ might
represent the force from wind that attempts to drive the
robot off course. The behavior ξ might be a function that
simulates the dynamics of the robot flying through wind, and
the additional cost Jother might impose a small penalty on
large control inputs to conserve battery life. We provide more
in-depth examples in Section V.

Our formulation differs from that presented in [4] and [5];
although both of these works seek to maximize the robustness
margin ρ, neither consider the effect of disturbances χ. Our
formulation is also distinct from the mixed-integer formulation
in [2], since we consider ρ as part of an objective rather than as
a constraint. Our unconstrained approach does not provide the
same completeness guarantees as a mixed-integer constrained
optimization (used in [2], [12], [13]), but empirical results in
Section V demonstrate that our approach scales much better.

Of course, solving (1) to global optimality in the general
nonlinear case is intractable. Instead, we take advantage of
this game structure to design an iterative algorithm to find
the generalized Nash equilibrium: the design parameters θ
and corresponding χ such that neither the planner nor the
adversary have an incentive to change their choice [15].
The next section describes this iterative algorithm, which we
implement using nonlinear programming with differentiable
simulation and differentiable temporal logic.

IV. APPROACH

To solve the robust STL planning problem (1), we need
to address two key points. First, we must develop a meta-
heuristic to find a generalized Nash equilibrium of the se-
quential game (1), taking care that we do not overfit to any
particular value of χ. We solve this challenge by develop-
ing an iterative counterexample-guided nonlinear optimization
framework. Second, in order to solve this problem using
nonlinear optimization, we need an efficient way to compute
gradients of J with respect to both θ and χ, which requires
us to differentiate not only the behavior function ξ but also
the robustness margin computation ρ. We address this chal-
lenge using differentiable programming, which we discuss
next before introducing our high-level counterexample-guided
optimization strategy.

A. Differentiable Simulation and Temporal Logic

Although it is possible to solve nonlinear optimization
problems without access to the gradients of the objective or
constraint functions, either by estimating gradients [16] or
using zero-order methods [17], it is often much faster to use
exact gradient information when it is available. However, exact
gradients can be difficult to derive symbolically for complex
optimization problems. Instead, recent works have turned to
automatic differentiation using differentiable programming to
automatically compute gradients in problems such as 3D shape
optimization [18], aircraft design optimization [19], robot
design optimization [20], [21], and machine learning [22].

Inspired by this trend, we implement ξ using the JAX
framework for automatic differentiation [22], yielding a dif-
ferentiable simulation of the underlying autonomous system.
For a system where the behavior is defined by continuous-
time dynamics ẋ = f(x, θ, χ, t), implementing numerical
integration in a differentiable language such as JAX allows us
to automatically back-propagate through the simulator to find
the gradients ∇θξ and ∇χξ. These gradients can typically be
computed much more quickly using automatic differentiation
than by finite-difference methods [20].

We can use a similar differentiable programming approach
to obtain gradients through the quantitative semantics of an
STL specification. Before doing so, we must replace the
discontinuous max and min operators used to compute ρ with
smooth approximations:

m̃ax(x1, x2, . . .) =
1

k
log
(
ekx1 + ekx2 + . . .

)
m̃in(x1, x2, . . .) = −m̃ax(−x1,−x2, . . .)

where k is a smoothing parameter and limk→∞ m̃ax = max.
This differentiable relaxation was introduced in [3] and later
used in [4], [5]; [9] uses a slightly different approximation.

Using these smooth approximations, we implement the fast,
linear-time algorithms for computing the robustness margin
proposed by [14], using the JAX framework to enable effi-
cient automatic differentiation. In contrast to [9], our method
achieves computational complexity that is linear in the length
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of the state trace T (the complexity of the stlcg framework
in [9] is quadratic in T for the U operator).

By combining smooth approximations of STL quantitative
semantics with differentiable programming, we can efficiently
compute the gradients ∇θρ and ∇ξρ. By combining these
gradients with those found using differentiable simulation, we
can efficiently compute the gradient of the objective J with
respect to both the design parameters θ and the adversary’s
response χ. Usefully, our use of differentiable programming
means that we are not restricted to considering trajectory
planning separately from the design of a tracking controller, as
in [4] and [2]. Instead, we can consider an end-to-end gradient
that combines the planned trajectory and controller parameters
in θ and optimizes them jointly (see Section V for an example
of this end-to-end optimization). In the next section, we
discuss how end-to-end gradients enable an iterative algorithm
for counterexample-guided robust optimization.

B. Counterexample-guided Optimization

To solve the planning problem in (1), we need to find a
generalized Nash equilibrium between the planner and the
adversary; i.e. values of θ and χ where neither we nor the
adversary has any local incentive to change. A common
solution strategy for such problems is the family of nonlinear
Gauss-Seidel-type methods [15]. These methods solve max-
min problems like (1) by alternating between θ and χ, tuning
one set of parameters while keeping the others constant; i.e.
alternating between the two optimization problems:

θ∗ = arg min
θ

J(θ, χ∗) (2a)

χ∗ = arg max
χ

J(θ∗, χ) (2b)

Although these methods are not guaranteed to converge, it is
known that if they do, then the convergence point (θ∗, χ∗) is
a Nash equilibrium [15].

A risk of applying such a simple alternating scheme is that
the nonlinear optimization for both θ and χ can easily get
caught in local minima. Such local minima not only reduce
the performance of the optimized plan, but also increase the
risk of “overfitting” to a particular value of χ∗. This risk
is particularly salient because the planner must commit to a
choice of θ before the adversary has a final opportunity to
choose χ. To mitigate this risk and improve the robustness of
our optimized plan, we extend a standard Gauss-Seidel method
with two ideas from the machine learning and optimization
literature. First, we take inspiration from the success of domain
randomization in robust machine learning [23]: instead of
optimizing θ with respect to a single fixed χ∗, we can maintain
a dataset XN = {χi}i=1,...,N and optimize the performance
of θ across all of these samples:

θ∗ = arg min
θ

EXN
[J(θ, χi)] (3a)

χ∗ = arg max
χ

J(θ∗, χ) (3b)

Incorporating domain randomization into the Gauss-Seidel
method has the potential to improve the robustness of the

resulting equilibria, but it is relatively sample inefficient; it
may require a large number of random samples χi. To address
this sample inefficiency, we take inspiration from a second
idea in the optimization and learning literature: learning from
counterexamples [24]. The key insight here is that we can
do better than simply randomly sampling χi; we can use the
values of χ∗ found during successive iterations of the Gauss-
Seidel process as high-quality counterexamples to guide the
optimization of θ. This insight results in our counterexample-
guided Gauss-Seidel optimization method, which is outlined
in pseudocode in Algorithm 1.

Our algorithm proceeds as follows. We begin by initializing
the dataset with N0 i.i.d. examples χi, then we alternate
between solving the two optimization problems in (3a). At
each iteration, we add our current estimate of the adversary’s
best response χ∗ to the dataset, and we stop either when
the algorithm reaches a fixed point (the adversary’s best
response after solving (3a) is the same as the best response
from the previous round) or when a maximum number of
iterations is reached. As we show experimentally in Section V,
this counterexample-guided optimization achieves a higher
sample efficiency than simple domain randomization, in that
it finds plans that are more robust to adversarial disturbance
while considering a much smaller dataset. Although our use
of nonlinear optimization means that our algorithm is not
complete, we find empirically that it succeeds in finding a
satisfactory plan in the large majority of cases.

It is important to note that this algorithm is fundamentally
enabled by the automatic differentiation approach detailed in
Section IV-A; without access to the gradients of J it would
be much more difficult to solve the subproblems in lines 4
and 5 of Algorithm 1. Although some previous approaches
obtain gradients of STL satisfaction with respect to θ using
standard trajectory optimization formulations, as in [4], we
are not aware of any approaches that make use of gradients
with respect to disturbance parameters. There has been some
work on using counterexamples to guide mixed-integer plan-
ning [12], but our experiments in the next section demonstrate
that these mixed-integer programs are intractable for long
horizon problems. Specifically, we find that solving even a
single mixed-integer program can take more than an hour, so
solving multiple programs to derive counterexamples is not a
practical solution. In the next section, we demonstrate that our
gradient-based counterexample-guided approach outperforms
these existing approaches, not only finding more robust plans
but requiring substantially less computation time to do so.

V. EXPERIMENTS

We validate our approach by means of two case studies
involving the satellite rendezvous problem posed in [25].
We benchmark against state-of-the-art planning algorithms to
show the robustness and scalability benefits of our approach.

In this satellite rendezvous problem, the goal is to maneuver
a chaser satellite to catch a target satellite. We can express this
problem in the Clohessy-Wiltshire-Hill coordinate frame [25],
which assumes that the target’s orbit is circular and constructs
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Algorithm 1: Counterexample-guided Gauss-Seidel
method for solving robust planning problems

Input: Starting dataset size N0

Maximum number of iterations M
Output: Optimized design parameters θ∗

Dataset of counterexamples XN
1 XN ← N0 examples χi ∈ X sampled uniformly i.i.d.
2 χ∗prev ← ∅
3 for i ∈ {1, . . . ,M} do
4 θ∗ = arg minθ EXN

[J(θ, χi)]
5 χ∗ = arg maxχ J(θ∗, χ)
6 if χ∗ = χ∗prev then
7 break
8 χ∗prev ← χ∗

9 Append χ∗ to XN
10 return θ∗, XN

a coordinate frame with the origin at the target, the x-axis
pointing away from the Earth, the y-axis pointing along the
target’s orbit, and the z-axis pointing out of the orbital plane.
In this frame, the chaser’s dynamics are approximately linear,
with positions px, py , pz and velocities vx, vy , vz varying
according to controlled thrust in each direction ux, uy , uz:

ṗx
ṗy
ṗz
v̇x
v̇y
v̇z

 =


vx
vy
vz

3n2px + 2nvy + ux/m
−2nvx + uy/m
−n2pz + uz/m


n =

√
µ/a3 is the mean-motion of the target, determined by

the Earth’s gravitational constant µ = 3.986× 1014 m3/s2 and
the target’s altitude a (i.e. the length of the semi-major orbital
axis, 353 km in low Earth orbit). m = 500 kg is the mass of
the chaser satellite [25].

In this setting, we construct STL specifications for two
rendezvous missions: a simple low-speed rendezvous and a
more complex loiter-then-rendezvous mission, illustrated in
Fig. 1. The STL specifications for each mission, ψ1 and ψ2,
are given formally as:

ψ1 = ψreach target ∧ ψspeed limit

ψ2 = ψreach target ∧ ψspeed limit ∧ ψloiter

ψreach target = ♦ (r ≤ 0.1)

ψspeed limit = (r ≥ 2.0)U � (v ≤ 0.1)

ψloiter = ♦�[0,Tobs] (2.0 ≤ r ∧ r ≤ 3.0)

where r =
√
p2
x + p2

y + p2
z and v =

√
v2
x + v2

y + v2
z .

Informally, ψ1 requires that “the chaser eventually comes
within 0.1 m of the target and does not come within 2 m
of the target until its speed is less than 0.1 m/s”, and ψ2

additionally requires that “the chaser eventually spends at
least Tobs seconds in the region between 2–3 m from the

Fig. 1. Two satellite rendezvous missions used to test our framework. In
the first mission, the chaser satellite must eventually reach the target while
respecting a maximum speed constraint in the region immediately around
the target. In the second mission, the chaser must still reach the target and
obey the speed limit, but it must also loiter in an observation region for some
minimum time before approaching. The first mission requires an STL formula
with three predicates and three temporal operators, while the second mission
requires five predicates and five temporal operators.

target.” For each mission, the design parameters θ include
both state/input waypoints along a planned trajectory and the
feedback gains used to track that trajectory, and the exogenous
parameters χ represent bounded uncertainty in the initial state
of the chaser (px(0), py(0) ∈ [10, 13], pz(0) ∈ [−3, 3],
vx(0), vy(0), vz(0) ∈ [−1, 1]). We use a 200 s-long simulation
with a 2 s timestep for both missions, and Tobs = 10 s.

For each mission i = 1, 2, we define a cost function as
Ji = ρi + λI , where ρi = ρ(ψi, ξ(θ, χ), 0) is the STL
robustness margin at the start of the trajectory, I is the
total impulse required to execute the maneuver (in Newton-
seconds), and λ = 5 × 10−5. By applying our iterative
counterexample-guided optimization strategy to this problem,
we find the optimized trajectories for mission 1 and 2 shown in
Figs. 2 and 4 along with the worst-case χ. In these examples,
we use N0 = 8 initial examples and M = 10 maximum
rounds, but the algorithm converges in less than 10 rounds
in all trials. In both missions, our approach reliably finds a
solution that remains feasible despite worst-case variation in
the exogenous parameters, achieving a positive STL robustness
margin in > 90% of trials in each case. Our counterexample-
guided approach requires an average of 53.7 s to solve mission
1 and 194.2 s to solve mission 2 (averaged across 50 trials).

We can quantitatively compare our approach against two
state of the art approaches: a mixed-integer STL planner
based on that in [12] and [13] and the nonlinear optimization
approach in [4], [5]. The mixed-integer planner (MIP) in [12]
uses a model-predictive control formulation and proposes to
add counterexamples after solving each instance of the mixed-
integer program; however, we found that even a single instance
could not be solved to optimality within 1 hour for either
mission, and so we compare with the best solution found
within a given period of time. Even though the size of the
mixed-integer program in [12] grows linearly with the horizon
of the problem, the complexity of solving the resulting MIP
grows exponentially in the number of integer variables (these
problems require between 2800–4500 integer variables when
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Fig. 2. The optimized trajectory found using our counterexample-guided
optimization strategy for mission 1 (rendezvous with speed constraint). The
chaser satellite only enters the speed-limit zone once it has slowed down
sufficiently.

Fig. 3. Comparison of different STL planning methods on the first example
mission, averaged over 50 random seeds. Left: the robustness margin ρ(ψ1)
computed for the optimized design parameters and worst-case exogenous
parameters. Right: the planning time required by each method. Our method
(CG) achieves much higher robustness than all other methods (satisfying the
STL specification despite adversarial perturbations in all but 3 instances) and
runs twice as fast as the next-most-robust method.

solved using Gurobi). Since it was not tractable to solve even
once instance of the MIP, we were unable to use any MIP-
generated counterexamples as proposed in [12]; instead, we
take the best feasible solution found after 500 s for the first
mission and after 1000 s for the second mission.

We also compare with an extension of the nonlinear opti-
mization from [4], [5], where we add domain randomization
to the authors’ existing trajectory optimization formulation,
averaging the objective over either 32 or 64 different val-
ues of χ. We note that these methods rely on a similar

optimization approach as those proposed in [9], but we re-
implement the authors’ method to ensure a fair comparison
(our implementation makes use of just-in-time compilation to
speed the optimization process, and so comparing with off-
the-shelf implementations like stlcg [9] would not be fair).

A comparison of our counterexample-guided approach
(CG), nonlinear optimization with domain randomization
(NLopt), and the mixed-integer planner (MIP) is shown in
Fig. 3 for the first mission and Fig. 5 for the second mission.
In all cases, we compare across 50 random trials, computing
the time required to solve each instance and the robustness of
the optimized plan when subject to adversarial disturbances.
All experiments were run on a laptop computer with 8 GB
RAM and a 1.8 GHz 8-core processor.

We find that our method is consistently more robust than
prior methods; in the first mission, it satisfies the STL spec-
ification in all but 3 trials, despite adversarial disturbances.
For comparison, the next-best method (NLopt with domain
randomization across 64 examples) failed to solve the first
mission in 14 out of 50 trials and took more than twice as long
on average to find a plan (114.3 s as opposed to 53.7 s for our
method). This advantage is due to the quality of the examples
used during optimization; instead of 64 random samples, our
method uses 8 initial random samples and between 1 and 4
counterexamples (median 2) representing worst-case variation
in χ, making our method much more sample-efficient.

We also find that our method finds more robust solutions
than the MIP method, since MIP cannot tractably consider
variation in χ (the MIP method is also unable to find a
feasible solution within 500 s in 16 out of 50 trials). MIP’s
performance also suffers due to discretization error, since we
were forced to discretize the continuous-time dynamics with
relatively few knot points (one every 2 s) to yield a tractable
MIP optimization problem.

Our method also performs well on the second mission
planning problem: only our method consistently finds solutions
that are robust to variation in χ (see Fig. 5). Due to the
increased complexity of this example, the MIP method finds
a feasible solution within 1000 s in only 16 out of 50 trials
(the MIP encoding of this mission requires 7769 continuous
variables, 2806 binary variables, and 1479 constraints), and
the feasible solutions found within 1000 s tend to be of
poor quality. The second-most-robust method, NLopt with 64
random examples, takes more than twice as long as our method
and fails to satisfy the STL specification in 17 out of 50 trials
(compared to only 4 failures for our method). Our method
required a median of 2 counterexamples in addition to the 8
initial examples to solve this planning problem (the slowest
trial required 7 additional examples).

These data demonstrate that our counterexample-guided
approach to planning from STL specifications is faster, more
sample efficient, and more robust to adversarial disturbances
than state-of-the-art approaches. A software implementation
of our method is available online at https://github.com/
MIT-REALM/architect.
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Fig. 4. The optimized trajectory found using our counterexample-guided opti-
mization strategy for mission 2 (loiter then rendezvous with speed constraint).
The optimized plan satisfies the additional mission requirement of spending
time in the observation region before approaching the target.

Fig. 5. Comparison of different STL planning methods on the second example
mission, averaged over 50 random seeds. Left: the robustness margin ρ(ψ2)
computed for the optimized design parameters and worst-case exogenous
parameters. Right: time required by each method to find a plan. Our method
(CG) finds much more robust plans, satisfying the specification in all but 4
instances compared to 17 failures for the next-best method (NLopt with 64
examples). Our method also runs more than twice as fast as the next-most-
robust method.

A. Hardware Demonstration

We also validate our approach in hardware by solving
the loiter-then-rendezvous mission for a Turtlebot 3 ground
robot. We replace the satellite dynamics with nonlinear Du-
bins dynamics and plan a trajectory that satisfies ψ =
ψreach target ∧ψloiter (we do not include the speed limit because
the Turtlebot already has a relatively small maximum speed).
Our counterexample-guided planner solves this problem in
26.22 s, yielding the trajectory shown in Fig. 6. A video of
this demonstration is included in the supplementary materials.

Fig. 6. The trajectory found using our counterexample-guided planner
successfully moves the robot through the observation zone (where it must
spend at least 10 s) and into the docking zone. Odometry data indicate that
the planned trajectory achieves an STL robustness margin of 0.0255.

VI. CONCLUSION

In this paper, we introduce a novel framework for robust
optimization-based planning from temporal logic specifica-
tions. We frame the robust planning problem as a sequential
two-player game between the planner, which chooses a set
of design parameters at planning time, and the environment,
which picks disturbances adversarially in response to the
planner’s choice. We develop an iterative counterexample-
guided algorithm to find plans that robustly satisfy temporal
logic specifications despite worst-case disturbances from the
environment. Our method, which relies on differentiable pro-
gramming for simulation and evaluating the temporal logic
specification, not only finds more robust plans than state-of-
the-art methods but also runs substantially faster. We apply
our method to two planning problems involving time horizons
>100 s and STL specifications with multiple nested temporal
operators, and we provide source code for our approach at
https://github.com/MIT-REALM/architect.

In future work, we hope to extend our framework to offer
completeness guarantees by combining our counterexample-
guided optimization with complete model checking and STL
falsification methods, such as the Breach framework [1]. We
also look forward to exploring applications of this framework
to problems involving multiple agents, particularly for human-
robot interaction, and to combining local gradient-based opti-
mization with sampling based methods to solve more complex
task-and-motion planning problems.
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