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Abstract—For performing robotic manipulation tasks, the core
problem is determining suitable trajectories that fulfill the task
requirements. Various approaches to compute such trajectories
exist, being learning and optimization the main driving tech-
niques. Our work builds on the learning-from-demonstration
(LfD) paradigm, where an expert demonstrates motions, and the
robot learns to imitate them. However, expert demonstrations
are not sufficient to capture all sorts of task specifications, such
as the timing to grasp an object. In this paper, we propose a
new method that considers formal task specifications within LfD
skills. Precisely, we leverage Signal Temporal Logic (STL), an
expressive form of temporal properties of systems, to formulate
task specifications and use black-box optimization (BBO) to
adapt an LfD skill accordingly. We demonstrate our approach
in simulation and on a real industrial setting using several tasks
that showcase how our approach addresses the LfD limitations
using STL and BBO.

I. INTRODUCTION

Learning from demonstration (LfD) is a paradigm that uses
expert demonstrations to derive robot control policies [1].
In manipulation tasks employing torque-controlled industrial
robots, kinesthetic teaching is often exploited, where an expert
operator physically moves the robotic arm to generate demon-
strations of a task [2]. However, these demonstrations alone
may not be sufficient for learning tasks that involve contacts
or high accuracy and reliability [3].

In industrial settings, there are several limitations while
generating demonstrations: First, it is difficult for the expert
to show accurate time constraints in the task execution. For
instance, reaching or avoiding a specific region during a given
time interval. Second, minor additions to the task require
additional full demonstrations to subsequently update the
learning model. These additions may be spatial (e.g. choosing
an alternative path) or temporal (e.g. completing different parts
of the task at different speeds or time intervals). And third, the
demonstrations do not always match the desired task perfor-
mance, and therefore there may be room for improvement in
task reliability, accuracy, or execution time.

Some of the aforementioned challenges may be addressed
by learning reward functions from expert examples via inverse
reinforcement learning [4]. However, the reward function
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learning heavily depends on expert data, which means that
when new task requirements arise, the human often needs to
provide additional demonstrations to trigger a new training
process of the model or the reward function. Also, defining
the specific structure of reward functions is not trivial.

Due to these difficulties, we tackle this problem from
an optimization perspective, as illustrated in Fig. 1. In our
method, when new task requirements arise, we use a black-box
optimization strategy to refine the LfD model parameters. This
optimization exploits an objective function that captures the
desired spatial and temporal constraints of the new task using
Signal Temporal Logic (STL) [5]. STL is a formalism capable
of representing high-level task objectives as logical semantics,
making their design more user-friendly. STL provides a real-
valued function called robustness degree, generated from a
logical specification, which makes the evaluation of task
satisfaction appealing for black-box optimizers.

There have been several works on leveraging STL on robotic
applications [6]–[9]. Aksarya et al. [6] proposed an optimal
policy learning scheme for satisfying STL specifications. Al-
though this method does not fully fall under our LfD-based
approach, it is worth highlighting that STL specifications can
be quantified and used as reward functions for learning a
robot policy. Additionally, unlike [6] where the agent acts in
a discrete environment, our approach focuses on continuous
signals. Innes et al. [10] used neural networks to learn the
expert demonstrations. For these networks, Linear Temporal
Logic (LTL) specifications were transformed into a differen-
tiable loss function. In contrast, our approach uses STL and
is therefore more general because STL captures continuous
propositions and robustness, as well as time intervals.

The closest approach to our work is [11], where a quan-
tified STL is used to rank the quality of demonstrations
as a function of robustness. Then, their approach learns a
reward function from which an optimal policy is derived via
reinforcement learning. This technique explores trajectories
around the demonstrations as possible states leading to high
rewards. Our approach differs from this technique in two ways:
First, we exploit expert demonstrations directly to learn an LfD
model without accounting for STL during this learning stage.
Second, we consider scenarios where new task requirements,
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Fig. 1. Illustration of the proposed method. We collect several demonstrations of robotic manipulation skills, which are then used to learn a TP-HSMM model.
This model encapsulates the observed spatial and temporal patterns of the demonstrations. We then define new task constraints based on STL specifications.
Finally, we leverage Bayesian optimization to update the TP-HSMM model parameters in order to fulfill the new STL-based task requirements.

previously unseen, may be added to existing skills.
In summary, our contributions are threefold: (1) We lever-

age STL specifications to design explicit task objectives on
top of previously-learned robotic skills; (2) We demonstrate
that Bayesian optimization for these STL-based specifications
overcomes the issue of suboptimal demonstrations and allows
the operator to include new task requirements in the skill
model; (3) We validate our approach in two experiments that
exploit STL rewards to achieve task objectives given by a
human operator, implemented in simulation and on a real
industrial setup.

II. BACKGROUND

This section provides a brief introduction to STL and
computation of traditional robustness degree using an example.
Further, we introduce the optimization technique and the LfD
model used in this work.

A. Signal Temporal Logic (STL)

Formally, an STL specification can be understood as fol-
lows: Consider a discrete time sequence1 t0:k ∈ Rk. The STL
formula ϕ is defined using the predicate µ (an atomic proposi-
tion, i.e. a point-wise constraint using > or < operators) that is
of the form f(x(t0:k)), where x(tk) is the state of the signal2

(e.g. a robot trajectory, joint velocity, joint torques, etc.) at
time tk. Moreover, the predicate function f : Rk → R maps
each time point to a real-value [5], [6]. Then, the STL syntax
is defined as,

ϕ := µ | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2

| GIϕ | FIϕ | ϕ1UIϕ2,
(1)

where I = [a, b] is the non-empty set of all t ∈ t0:k such
that a ≤ t ≤ b. The operators ¬,∧,∨ refer to Boolean nega-
tion, conjunction and disjunction, respectively. The temporal
operators G,F,U represent globally, eventually and until
statements, respectively. The satisfaction of µ is TRUE (>)

1We use subscripts to denote sequences of data. i.e. t0:k = {t0, · · · , tk}
2The signal is in discrete form with k steps and it is referred to as x(t)

throughout the paper for simplicity.
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Fig. 2. For the STL specification to visit region A and avoid region B, the
signal S1 satisfies it and the signal S2 violates it.

if the predicate is satisfied and FALSE (⊥) otherwise. The
globally G[a,b] operator states that ϕ must be true at all
times in [a, b], and the eventually F[a,b] operator states that
ϕ must be true at some time point in [a, b]. Similarly, the until
U[a,b] operator states that ϕ1 must be true until ϕ2 eventually
becomes true in the time interval [a, b].

As an example, let us consider the two one-dimensional
signals shown in Fig. 2. Also, consider the requirement: “The
signal should pass through region A during 2 to 4 seconds and
avoid region B during 2 to 8 seconds”. This can be translated
into an STL specification as follows:

ϕ =F[2,4]ϕA ∧ G[2,8]¬ϕB , (2)

where ϕA is given by the bounds 0.4 < Si(t) < 0.6. The
proposition for this is fA(Si(t)) := 0.1− |Si(t)− 0.5|. Also,
ϕB is defined accordingly. Figure 2 shows how the signal S1

satisfies the specification given by (2) whereas S2 fails due to
the violated requirement of avoiding region B.

B. Robustness Degree

The robustness degree, denoted as r(ϕ, x, t) ∈ R, is the
quantitative semantics of the STL formula ϕ that measures
“how well” the signal x is fulfilled at time t. The classical
way of defining these semantics is via space robustness [12].
This measure is positive if and only if the signal satisfies
the specification (i.e. soundness property). The closer the
robustness is to zero, the smaller the required changes of signal



values are to change the truth value. Formally, space robustness
and its corresponding operators are defined as follows

r(µ, x, t) =f(x(t)),

r(¬ϕ, x, t) =− r(µ, x, t),
r(ϕ1 ∧ ϕ2, x, t) = min(r(ϕ1, x, t), r(ϕ2, x, t)),

r(ϕ1 ∨ ϕ2, x, t) = max(r(ϕ1, x, t), r(ϕ2, x, t)),

r(G[a,b]ϕ, x, t) = min
tk∈[t+a,t+b]

(r(ϕ, x, tk)),

r(F[a,b]ϕ, x, t) = max
tk∈[t+a,t+b]

(r(ϕ, x, tk)).

(3)

Concerning our example depicted in Fig. 2, the robustness
value is 0.1 for the signal S1 and −0.05 for the signal S2.
The signal S2 gets a negative reward since it fails to satisfy
the global condition to avoid region B.

C. Black-box Optimization (BBO)

Black-box optimizers are widely used nowadays in several
fields of machine learning [13], [14]. BBO is a sample-efficient
technique to find optimal system parameters that maximize
a task-specific objective function [15]. In a typical BBO
setting, the objective and constraint functions are only ac-
cessible through (possibly noisy) output values, and therefore
gradient-based approaches are infeasible. For this work, we
use Bayesian Optimization (BO), which seeks an optimal set
of parameters,

θ∗ = argmin
θ∈Θ

g(θ). (4)

BO is a class of sequential search algorithms for optimizing
black-box functions [16]. BO finds a global minimizer θ∗

as in (4), where g is an unknown objective function defined
over a domain of interest Θ. The function g is not observed
directly, as only noisy output values are available. Using this
noisy information about the objective function, BO selects a
query point θ ∈ Θ at which to evaluate g at each optimization
step. Such a selection process is carried out by optimizing an
acquisition function, which resolves the explore-exploit trade-
off. Several forms of acquisition function exist in the literature,
and we use probability of improvement (PI) in this work [17].
PI is a greedy search algorithm that selects the most likely
point to offer an improvement.

D. Learning from Demonstration (LfD)

LfD may be seen as a robot programming strategy that
uses human demonstrations to build a learning model that
encapsulates the main motion patterns of a skill or task.
As our interest is on learning object-centric manipulation
skills, we leverage Task-Parameterized Hidden Semi-Markov
Models (TP-HSMM) [18] which have been successfully used
in elaborated industrial tasks [19]. TP-HSMM is an object-
centric model that can be easily used to sequence several skills
to accomplish complex assembly tasks [19]. This parametric
model encapsulates skill-specific spatial and temporal patterns
from human demonstrations. Such encoding features are par-
ticularly useful in our setting due to their close relationship to
the spatial and temporal requirements specified via STL.

Specifically, a TP-HSMM model learns a joint probability
density function of the demonstrations using an object-centric
formulation of hidden semi-Markov models (HSMM) [20].
The underlying process of an HSMM is a Markov chain with
one extension: Each model state has variable duration, affect-
ing how the system transits between states. The TP-HSMM
parameters are estimated by following a modified version of
the Expectation-Maximization algorithm [18]. Then, a linear
quadratic tracker is used to synthesize a smooth trajectory
following the main spatial and temporal patterns, encapsulated
in the TP-HSMM model, as proposed in [18], [19]. Note that
the task-parameterized formulation allows the robot to adapt
its motion to the pose changes in the manipulated objects.

Here we provide a short description of the TP-HSMM
parameters relevant to the subsequent STL-based optimization
process. A set of K states characterizes a TP-HSMM. They are
usually represented by normal distributions N (µk,Σk) with
k = 1 . . .K, which model the observation probabilities of
the demonstrations on a set of coordinate systems (a.k.a. task
parameters)3. The transition probability matrix A ∈ RK×K
with Ai,j , P (zt = j|zt−1 = i), defines the probability of
transiting from state i to state j and encapsulates sequential
information of the skill. Finally, the duration probability is
represented by a normal distribution N (s|µSj ,ΣSj ), and indi-
cates how long the robot stays in the model state j, therefore
encapsulating temporal information of the skill. The spatial
and temporal patterns of skill are then fully described by the
duration probability, the transition matrix, and the observation
probabilities, as detailed in [20].

III. METHODOLOGY

The core idea of our approach is to integrate LfD models,
BO, and STL, to handle new spatial or temporal task require-
ments for fast skill adaptation. One of the first challenges in
this context is to define the objective function and parameter
space of interest. On the one hand, the objective function
(reward function) is designed from the robustness degree
r(ϕ, x, t) computed via the STL specification ϕ, introduced
in Sec. II-A. On the other hand, the parameter space can be
defined as a (sub)set of the skill model parameters. Impor-
tantly, we can exploit the variance information encoded by
the TP-HSMM model to design the corresponding bounds for
the set of parameters as in [21]. We therefore assume that the
optimal solution is safe as long as the variance-based bounds
are not violated. This section covers both challenges in detail
and illustrates them through several examples.

Algorithm 1 shows the STL-based Bayesian optimization
procedure. The goal is to refine the model parameters δ such
that the new task requirements, defined via STL specifications,
are satisfied. To begin with, we set the optimization parameters
δi at random for the first M iterations. Using these initial
parameters set, we evaluate the objective function during
the corresponding runs on the real system. Following M

3For the sake of simplicity, we assume that the demonstrations correspond
to a single task-parameter setting.



Algorithm 1 STL-based Bayesian optimization of LfD skills
Input: Optimization iterations N , number of evaluations M

to build initial observations set, STL specification ϕ, and
TP-HSMM parameters δ0 ∈ RP , where P is the total
number of considered parameters.

Output: Updated model parameters δ∗ ∈ RP
1: for i = 1, 2, · · ·N do
2: if (i ≤M ) then
3: Randomly set δi under respective upper and lower

bounds B1:P ∈ R2P

4: else
5: Find δi under bounds B1:P by optimizing the

PI acquisition function using the GP information:
δi = argmaxδ u(δ|D1:i−1)

6: end if
7: Skill retrieval using new model parameters δi and linear

quadratic tracking as in [19].
8: Execute the skill and record signals of interest.
9: Calculate the robustness r(ϕ, x, t) to quantify the STL

specification ϕ for signal x.
10: Augment the data D1:i = {D1:i−1, (δi, r(ϕ, x, t))} and

update the GP model.
11: end for
12: return The model parameters with maximum reward

r(ϕ, x, t) from the data D1:N

evaluations, as indicated in line 5, we find the next set of
parameters by maximizing the acquisition function u (in this
case, PI), which directs the search toward the optimum.

At each evaluation step i in line 7, we obtain a new skill
trajectory for the respective parameter set δi using the retrieval
technique discussed in Sec. II-D. We run this trajectory
and record the relevant multi-dimensional signal x(t) as a
discretized time sequence corresponding to the specifications’
propositions. Further, line 9 uses the STL specification ϕ and
the logged signal to compute the robustness degree r(ϕ, x, t)
that acts as the objective function. The recorded observations
and the Gaussian Process (GP) are updated accordingly before
the next iteration. We run the optimization process for N
iterations to produce an optimal trajectory that maximizes
the objective function. The following subsection describes a
thorough approach for calculating the robustness degree.

A. Objective Function

We tackle the robustness degree computation here, partic-
ularly the technique New Robustness [22]. We outline the
definition of operators of New Robustness and refer to the
original work in [22] for further details. This computation
relies on the multi-dimensional signal x(t) logged at each
iteration of Algorithm 1, see line 8. The signal captures
relevant measures for the stated specification, such as the
robot position in task space, joint torques, joint velocities, or
contact forces. The STL specification can then contain several
predicates µ that evaluate this signal. To recap Sec. II-A, each

predicate µ is of the form f(xp(t)) where f maps each point
in the signal to a real value.

The robustness degree, New Robustness [22], was experi-
mentally compared against alternative robustness formulations
in our previous work [23]. We choose New Robustness here
because it performed best in finding optimal solutions with
a faster convergence rate for the manipulation tasks studied
in [23]. The computation of New Robustness is based on the
elementary definitions of the negation ¬ and conjunction ∧
operators. The paper [22] introduced a structured definition of
robustness degree with which it is possible to derive all the
boolean and temporal operators of STL using just the ¬ and
∧ operators. Additionally, the ¬ operator can also be excluded
from the definition by setting it to a negative value of ∧.
Therefore, the computation of any STL operator boils down
to the definition of the conjunction operator, which is

(ϕ1 ∧ · · · ∧ ϕm) :=



∑
i ρmine

ρ̃ieνρ̃i∑
i e
νρ̃i

if ρmin < 0,∑
i ρie

−νρ̃i∑
i e
−νρ̃i

if ρmin > 0,

0 if ρmin = 0,

(5)

with,

ρi=r(ϕi, x, t), ρmin= min(ρ1 · · · ρm), ρ̃i=
ρi−ρmin

ρmin
, (6)

where ρmin is the quantified conjunction operator using tra-
ditional space robustness. The parameter ν > 0 tends to
traditional conjunction as ν →∞.

This robustness formalism is suitable in the robot task
definition for the following reasons: It satisfies the soundness
property; as for any specification, the robustness degree returns
a positive value if and only if the signal satisfies ϕ at time t.
It is achieved by preserving the sign in the definition of ρmin

(see [24] for the proof). Thus, the output of (5) quantifies
how much a task is satisfied or violated, which is beneficial in
manipulation tasks where complete satisfaction is crucial. This
robustness degree also captures partial progress towards the
goals and is beneficial in faster guiding towards task optimum.
These properties are beneficial for reward shaping [25] to
obtain indicative samples during the optimization procedure
and for fitting the GP, although the relation between a signal x
and the skill model parameters δ remains a black-box function.

We turn the attention to two examples with different STL
specifications for illustrating the approach: Consider a simple
skill in which the robot end-effector visits three regions L1:3

in Cartesian space. We first learn a TP-HSMM model with
K components from human demonstrations. The new task
requirements that must be satisfied using our approach are

1) While satisfying the main task of visiting three regions
L1:3, the end-effector must pass through another region
L4 in the time interval (8, 12) seconds and stay inside
the region L2 during (12, 15) seconds. The STL speci-
fication for these new task requirements is given as

ϕ1 = FϕL1 ∧ G[12,17]ϕL2 ∧ FϕL3 ∧ F[8,12]ϕL4 . (7)



2) The robot end-effector must visit regions {L1, L3} at
any time, avoid region L2 during (12, 17) seconds and
visit a new region L4 during the time interval (8, 12)
seconds. The STL specification for these new task
conditions is

ϕ2 = FϕL1∧ G[12,17]¬ϕL2∧ FϕL3∧ F[8,12]ϕL4 . (8)

The regions Li with i ∈ {1, 2, 3, 4} are specified using
Cartesian bounds as follows

ϕLi =xi,lb<x<xi,ub ∧ yi,lb<y<yi,ub ∧
zi,lb<z<zi,ub.

(9)

Note that the required signals in (9) correspond to the Carte-
sian coordinates x, y, z of the robot end-effector.

Let us assume that we ran a trial of the experiment and
recorded the aforementioned signals. We discretize them and,
for simplicity, define the signals of x, y, z coordinates as
x(t), y(t), z(t), respectively. Each region has three proposi-
tions, one for each Cartesian bound. For instance, the propo-
sition of the x-coordinate (similarly for y and z) for the regions
Li is written as follows,

fLi,x(x(t)) :=
xi,ub − xi,lb

2
−
∣∣∣∣x(t)− xi,ub + xi,lb

2

∣∣∣∣ . (10)

At the end of these steps, we have several propositions
separated by operators. We now use (5) to compute a real-
value that describes how well a skill satisfied the task. Using
this, the GP is updated, and we get new model parameters for
the next iteration. The loop is continued until termination.

B. Parameter Space

The parameter space is defined as δ = {µ1:K ,µ
S
1:K ,A},

where µ1:K are the Gaussian components positions, µS1:K are
the duration probabilities, and A is the transition matrix. Next,
we discuss the role of each of these parameters in detail.

1) Component positions: As described in Sec. II-D, each
TP-HSMM state is represented by a Gaussian distribution
N (µ,Σ). Once a skill model is learned, these Gaussian
components are used to retrieve a trajectory to be reproduced
by the robot. Therefore, we can modify the TP-HSMM states
to reshape the robot trajectory. For instance, modifying the
mean µ ∈ R3 will translate the Gaussian in Cartesian space.
Therefore, we adapt µ at each iteration under certain bounds
Bµ for each component. Bounds define how far the com-
ponents may move in any direction. The maximum number
of parameters considered for optimization is K × 3 as each
component µ has three parameters to represent its position
in 3D space. Shifting the components is essential to address
the spatial constraints of a task. For instance, refining µ is
beneficial in the STL specification ϕ1 where a new region L4

has to be visited at a particular time interval.
2) Duration probabilities: Each TP-HSMM state is also

assigned a duration probability represented by a normal dis-
tribution N (s|µS ,ΣS), which defines how long to stay in
that model state. Raising or lowering the value of the mean
µS ∈ R increases or decreases the time spent in the respective

component, thus affecting the task timing. We adapt µS under
the bounds BµS = [−σS , σS ], where σS is the corresponding
standard deviation of the duration probability. The maximum
number of parameters is K when considering to optimize
duration probabilities of all components. Modifying duration
probabilities allows us to optimize the temporal constraints of
a task. For instance, adapting µS is beneficial in ϕ1, where
the condition to globally stay in the region L2 for the time
interval (12, 17) is possible by reducing the duration of all
the components except the one associated with L2.

3) Transition matrix: The matrix A defines the probability
of transiting to the different model states. Modifying the
transition probabilities is carried out by updating the elements
of the matrix A ∈ RK×K . The bounds of the element Aij are
naturally BAij = [0, 1] as A encodes probability measures. We
may skip a component j if the adjacent element Ai,j+1 in the
row Ai has a higher value when compared to the element Aij .
Therefore, the algorithm modifies the transition matrix during
optimization to get an optimal states sequence for the new task
requirements. To keep the sum of each row Ai,: equal to 1, we
normalize the matrix before using it in the retrieval phase. The
maximum number of parameters considered for optimization
is K(K − 1)/2. Each model state covers a specific region in
space, and therefore changing the transition matrix may skip
a region that was part of the demonstrated trajectories, which
can be helpful to satisfy the specification ϕ2.

IV. EXPERIMENTS AND RESULTS

We here show several experiments to test our approach on
a variety of robot skills and using several STL specifications.
We evaluate our approach in simulation and on a real-robot
task. In the former, we show how our approach can adjust the
skill to changing task needs over time and space. In the latter,
we test our approach on industrial assembly tasks to generate
a robust trajectory that fulfils the task requirements. In both
settings, we use the Franka-Emika Panda 7-DOF robotic arm.

A. Simulation experiments

Our goal is to show that our approach handles spatial and
temporal task constraints like staying or avoiding a region
during specific time intervals. We also show that it is possible
to modify a skill by either adding new unseen goals or
removing a part of the skill. The number of iterations N for
these experiments is set to 32. Each iteration required around
a minute to execute the skill on the simulator and less than
a second to compute the rewards and obtain new parameters.
We recorded a couple of demonstrations as in Fig. 3 on a real
robot by moving the end-effector to three regions L1:3 in task
space in the same order. For simplicity, we kept the initial
and final positions of the end-effector unchanged in all the
provided demonstrations. Therefore, the problem is no more
task parameterized as we do not observe the demonstrations
from different perspectives, and hence the TP-HSMM model
boils down to a simple HSMM model. We train this model by
setting K = 6 experimentally.
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Fig. 3. End-effector trajectories on (x, y)-plane (blue solid lines) at each
BO iteration for ϕ1 (top) and ϕ2 (bottom). The color intensity depicts
the optimization evolution and the red line represents the highest reward
execution. The lines have colored patches representing the time interval when
the end-effector has to reach the respective regions.

For the STL specification ϕ1 defined in (7), to accommodate
the task of visiting a new region and staying inside L2 for sev-
eral seconds, we adjusted the Gaussian component positions
µ1:6 and the duration probabilities µS1:6, respectively. Since
this yields a total of 24 parameters, which is a challenging
dimensionality for BO, we further reduced the parameter
domain by considering only the most relevant component
positions for this task. Specifically, we only optimized µ1:2

as we observed that the addition of L4 was required during
the first few seconds of the trajectory. Further, we used all the
duration probabilities µS1:6 as they all influence on obtaining
the trajectory. Finally, the reduced number of parameters is 12.
Thus, the resulting parameter space is δϕ1

= {µ1:2,µ
S
1:6}.

The trajectory of the end-effector in Fig. 3-top shows that
the additional time constraint on L2 to stay inside the region
for the entire 5 seconds, depicted by the yellow trajectory seg-
ment, is satisfied. Moreover, the trace also shows the inclusion
of L4 into the trajectory. We can observe in Fig. 4-top that all
the regions were visited under the respective time bounds after
several iterations. Figure 5 shows the low-dimensional BO
surrogate model representation, i.e. the Gaussian Process of the
third component position along (x, y) axes, after evaluating 32
iterations. We can see that by translating the third component
around (0.025, 0.5) in Fig. 5, the cost is minimized (i.e. task
satisfaction is maximized).

For the second task specification ϕ2 , along with µ1:2

and µS1:6, we also considered the transition matrix A. This
allows us to remove regions visited in initial demonstrations
by pruning transitions to irrelevant Gaussian components. For
this task, we reduce the number of parameters by restricting
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the region’s boundary in space. The positive and negative values denote the
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Fig. 5. BO surrogate Gaussian Process model projected on the (x, y) positions
of component 3 of the skill. The cost denotes negative STL Robustness. The
coloured surface shows the mean of the model. The grey surface is the ±
variance, and the green point is the location of the minimum underlying cost.

the transition matrix to the entries

Ared =


0 A01 A02 0 0 0
0 0 A12 A13 0 0
0 0 0 A23 A24 0
0 0 0 0 A34 A35

0 0 0 0 0 A45

0 0 0 0 0 0

 , (11)

effectively preventing to skip multiple components in imme-
diate sequence to limit severe deviations from the original
model. Therefore, the number of parameters reduces to 21
from the initial 27 and the final parameter space is given by
δϕ2 = {µ1:2,µ

S
1:6,Ared}.

After optimizing the reduced parameter set, Fig. 3-bottom
depicts the trace of the end-effector at each iteration. As shown
in Fig. 4-bottom, the region L2 is avoided and the region L4

is added as specified in the STL constraint. Figure 6 shows the
GP for duration probability factors after 32 iterations. It shows
that to minimize the cost, the duration probability µS1 has to
be moved to the right, therefore increasing the time to stay in



−1 −0.5 0 0.5 1

−0.2

−0.1

0

0.1

0.2

X axis (m)

C
os

t
Fu

nc
tio

n

−1 −0.5 0 0.5 1

X axis (m)

Fig. 6. Gaussian Process of the duration probabilities for component 1 (left)
and component 3 (right) at the end of experiment for the test ϕ2. The solid
blue line represents the predictions, and the red dots depict the observations.
The coloured area corresponds to the 95% confidence interval.

Fig. 7. Transition graph extracted from the transition matrix for the STL
specification ϕ2 before (left) and after (right) optimization. The black arrows
depict the final transition sequence. Note that the components shown here do
not associate to specific task requirements. The LfD model parameters are
exclusively capturing the spatial and temporal patterns of the demonstrations,
but later adapted according to new task requirements.

the Gaussian component 1. Similarly, µS3 has to be moved to
the left, thus reducing the time to stay in the corresponding
component. Investigating the skill model more closely, the
aforementioned results are reasonable as the component 3 is
located near L2, so reducing µS3 and increasing A24 transition
probability will skip that region as depicted in Fig. 7.

The foregoing results show that optimizing LfD parameters
using STL specifications can accommodate temporal con-
straints like staying in the region L2 for 5 seconds. Similarly,
satisfying spatial properties like visiting a new region L4 by
changing the trajectory can be achieved.

B. Robot Experiment

We designed a robot experiment to test our approach on an
industrial assembly task as shown in Fig. 8. The robot has to
pick up a shaft, re-orient it, and insert it into a specific location.
We show that our approach not only satisfies the task but
also attempts to find the most robust solution. We defined two
different skills: One to pick up the object at a fixed position,
and the other to re-orient and insert it into the desired location.
We trained two HSMM models (by setting K = 6) with one
demonstration for each skill. Finally, we created a behaviour
by sequentially combining the aforementioned skills with end-
effector grasp and release actions. The BO optimization was
carried out for 16 iterations.

Let us consider the task: Pick up the object within 20
seconds and reduce the contact forces to less than 2N. The

Fig. 8. Robot setup with a 7-DOF robot manipulator on an industrial assembly
setup. The table has an object (a shaft) and a holder to place it.

Fig. 9. Object insertion before (left) and after (right) optimization.

STL specification ϕ3 for this task is,

ϕ3 =F[0,20]ϕobj ∧ Fϕforce,

ϕobj=xobj,lb<x<xobj,ub ∧ yobj,lb<y<yobj,ub ∧
zobj,lb<z<zobj,ub,

ϕforce =|Fcontact| < 2.0.

(12)

The optimization parameters are the transition matrix Ared
and duration probabilities µS1:6 of the picking skill and the
component position µ6 of the insertion skill. We considered
the norm of the contact forces as another signal along with the
end-effector trajectory. We got access to contact forces using
a 6D force-torque sensor mounted at the robot end-effector.

Figure 9-left shows the initially learned LfD skill, which is
sub-optimal due to the shift in the end-effector position and
the holder. However, insertion after refinement, as shown in
Fig. 9-right overcomes such shift so that the object does not hit
the edges of the holder. This in turn reduces the contact forces
as shown in Fig. 10. Note that there is no time constraint for
ϕforce and in Fig. 10. The contact force is less than 2N at the
beginning, which means, the Eventually operator is already
positive. Albeit, the optimization finds a robust trajectory due
to the property of robustness degree to guide towards task
satisfaction. Note that to achieve similar results without our
approach, we may need a force-sensitive LfD framework to
specifically consider the required force patterns during the
demonstration phase of the insertion task.

Figure 11 depicts the change in duration probabilities
at each iteration. It can be observed that the number of
components approaches K = 3 instead of K = 6 during
optimization, which means several components have been
skipped due to the modifications of the transition matrix A.
This can be interpreted as the skill being simple enough to be
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Fig. 11. Stacked bar char depicting the duration mean at each iteration. Each
color represents a component of the insertion skill. The y-axis shows the
duration of each component’s trajectory, and the white stack represents the
reduced time.

defined with fewer components. Note that the approach does
not modify the total duration of the skill but instead changes
the duration to stay in each component. Accordingly, the white
bars in Fig. 11 represent the time at the end during which
the end-effector does not move anymore, and we can remove
that time from the trajectory if needed. Overall, this shows
the capability of our optimization approach to ensure more
reliable and faster satisfaction of the stated STL specification.

V. CONCLUSION

We presented an algorithm to include formal task require-
ments in an LfD model which are hard to specify implicitly by
demonstration. Instead, they are defined formally as an STL
specification and then, the model parameters are optimized to
accommodate the additional requirements. Robot Experiments
indicated that our approach of combining STL and BO could
capture spatial and temporal constraints and find optimum
trajectories for the task. Some benefits of our approach are due
to BO: we do not need to explicitly model the environment
nor differentiable objectives to adapt the skill. Regarding STL,
it allows us to define a broad variety of spatial and temporal
task requirements in a user-friendly manner. Future work will
leverage nested STL operators and address two well-known
problems in BO: the curse of dimensionality [16] and the
geometry of the parameter space, the latter naturally arising
in several robotic applications [26].
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