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Abstract—We present an incremental search algorithm, called
Lifelong-GLS, which combines the vertex efficiency of Lifelong
Planning A* (LPA*) and the edge efficiency of Generalized Lazy
Search (GLS) for efficient replanning on dynamic graphs where
edge evaluation is expensive. We use a lazily evaluated LPA* to
repair the cost-to-come inconsistencies of the relevant region of
the current search tree based on the previous search results,
and then we restrict the expensive edge evaluations only to
the current shortest subpath as in the GLS framework. The
proposed algorithm is complete and correct in finding the optimal
solution in the current graph, if one exists. We also show that
the search returns a bounded suboptimal solution, if an inflated
heuristic edge weight is used and the tree repairing propagation
is truncated early for faster search. Finally, we show the efficiency
of the proposed algorithm compared to the standard LPA*
and the GLS algorithms over consecutive search episodes in a
dynamic environment. For each search, the proposed algorithm
reduces the edge evaluations by a significant amount compared
to the LPA*. Both the number of vertex expansions and the
number of edge evaluations are reduced substantially compared
to GLS, as the proposed algorithm utilizes previous search results
to facilitate the new search.

I. INTRODUCTION

Plans change in the real world. This is because obtaining
accurate models of the complex world is difficult, and the
models themselves become quickly out of date when the
world is uncertain or changing. Hence, replanning is an
essential problem for every decision-making agent with partial
knowledge operating in a dynamic environment. The need
for efficient replanning has been manifested in a wide range
of applications, typically in situations where the world is
abstracted via graph representations. Such abstractions allow
tractable search algorithms to find an optimal path in the given
graph, but when the underlying graph changes because either
the world or the model of the world changes, then the plan
needs to be updated accordingly.

Consider the following examples. A mobile robot traversing
through an unknown terrain needs to repair the path whenever
the path is found to be infeasible, or a better path becomes
available as the robot gains more information about the
terrain [11]. For sampling-based motion-planning problems,
where the search space is asymptotically approximated with
a series of graphs of increasing density, the choice of the
replanning strategy to improve the current search tree dictates

the convergence rate to an asymptotically optimal solution
[2, 7, 21, 22]. For distributed multi-agent problems with
cooperative communication [24, 19, 15], where a planning
entity possesses only local perception of the search space,
each agent must therefore resolve any inconsistencies revealed
online as the communication refines the local perception.
Replanning is necessary to refine each local plan to achieve
global consensus.

Incremental search methods [20, 12] store the previous
search tree in order to identify the inconsistent portion of
the tree when the graph changes in order to efficiently repair
the current tree. Any identified inconsistencies are propagated
onward to make the search tree consistent again with respect
to the current graph changes without having to solve the
problem from scratch. In particular, Lifelong Planning A*
(LPA*) [12] efficiently restricts repairs to only the optimal path
candidate guided by a consistent heuristic and a priority queue
similar to that of the A* algorithm [8]. This means that LPA*
heuristically delays the expansion of inconsistent vertices until
repairing becomes necessary in order to find the new optimal
solution with respect to the current graph. Given a modified
graph, LPA* is provably efficient in the sense that a vertex is
never expanded more than twice and any inconsistent vertices
outside the relevant region are never expanded [12]. Hence,
LPA* can find the new optimal solution significantly faster
than searching from scratch, especially when the change is
small and less relevant to the new optimal path. This efficiency
of LPA* has been the backbone to numerous applications in
which re-planning is crucial [11, 2, 7, 21, 22].

Unfortunately, the design of LPA* is tailored to reducing the
number of vertex expansions to find the new optimal solution,
and it is indifferent to the number of edge evaluations. This
property of LPA* often results in unnecessarily excessive edge
evaluations to find the new optimal solution, causing signif-
icant overhead in problem domains where edge evaluation
dominates computation time. For example, in motion planning
problems [10, 13, 14, 25], an edge evaluation consists of
multiple collision checks in the configuration space, solving
two-point boundary value problems, or propagating the system
dynamics with a closed-loop controller. In this paper, we seek
to remedy the excessive edge evaluations of LPA* by borrow-
ing ideas from the lazy search framework of [3, 4, 9, 6, 17, 18].
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Before we delve into these ideas, let us first characterize two
aspects of LPA* that attribute to excessive edge evaluations.

LPA* needs to update the edge values of all changed
edges compared to the previous graph, in order to identify
the inconsistent vertices so that repairing propagation can
begin in the current graph. LPA* evaluates all these changed
edges before repairing propagation commences, regardless of
whether these changes are relevant to the current problem or
not. Note that among the inconsistent vertices identified by
these edge evaluations, only the relevant inconsistent vertices
are eventually expanded by LPA* during repair propagation.
In other words, if an edge evaluation results in some incon-
sistency that is irrelevant to the current problem such that
LPA* never uses this new information to find the new optimal
solution, then this edge evaluation is not necessary. When the
graph changes significantly, evaluating those edges can be very
expensive.

LPA* also repairs the inconsistent part of the search tree in
the same way A* expands the frontier vertices with the lowest
cost estimates (the so called, f -value) as a best-first search.
This implies that LPA* requires exhaustive edge evaluations
upon expanding a vertex, as A* would evaluate all the incident
edges upon expanding a vertex. Specifically, LPA* needs to
evaluate all the incident edges when an inconsistent vertex is
expanded to find a new optimal parent vertex, which then leads
to the propagation of the inconsistency information to all of
its children vertices, and so on. This behavior is often referred
as a “zero-step lookahead” in the literature [17, 18], where
no heuristic estimate of the edge value is utilized to prioritize
the next best vertex to expand.1 Hence, expanding a vertex
incurs actual evaluations of all incident edges, regardless of
each edge’s potential to be a part of the shortest path.

The issue of excessive edge evaluations has been explicitly
addressed within the lazy search framework in order to reduce
the actual number of edge evaluations by delaying these
evaluations as much as possible [3, 4, 9, 7, 6, 17, 18]. The
main idea of the lazy search framework is to delay the actual
evaluation of the edges using a n-step lookahead (n > 0), by
prioritizing the expansion of the subpath constrained with an
n-number of heuristically evaluated edges. For example, when
a lazy search algorithm with the one-step lookahead expands
a vertex, it heuristically estimates the values of the incident
edges instead of actually evaluating them, unless the values
are already known. Then, the children vertices are inserted
in the priority queue with the total cost estimate of the path
constrained to this heuristically evaluated edge. The edge is
actually evaluated only when the child vertex (equivalently,
the subpath to the child vertex) is chosen to be expanded.
Various algorithms such as Lazy Weighted A* (LWA*) [4],
Batch Informed Trees* (BIT*) [7], and Class Ordered A*
(COA*) [16] use this one-step lookahead strategy to mitigate
excessive edge evaluations.

In [17] it was shown that the number of edge evaluations
decreases as the lookahead steps increase. In fact, using

1This terminology is different from the one-step lookahead used in
LPA* [12], which refers to the rhs-value of an inconsistent vertex being
one-step better informed than its g-value.

an infinite lookahead step (LazyPRM [3], LazySP [6]), i.e.,
restricting the edge evaluations to the shortest path to the
goal (instead of subpaths), is proven to be edge optimal, that
is, the number of edge evaluations is minimized. In essence,
infinite-lookahead algorithms heuristically grow a search tree
until the path to the goal is found, and only then the edges
along the heuristically shortest path are evaluated to disprove
its feasibility. The underlying heuristic search tree is repaired
with the true edge values upon the actual evaluation, so that
any infeasible shortest path is eliminated. This is iterated until
all edges are feasible along the current shortest path, otherwise
no solution exists.

It is worth noting that the edge optimality of LazySP comes
at the expense of many vertex expansions. This is because
the heuristic tree is grown beyond a possibly infeasible edge,
and therefore, the subtree must be repaired when the edge is
revealed to be infeasible upon evaluation. On the other hand,
zero-step lookahead algorithms, such as the A* algorithm, do
not grow the subtree beyond any infeasible edge, therefore
minimizing the number of vertex expansions. In [17] the
relationship between the number of lookahead steps and the
total computation time to solve the problem has been studied
extensively to highlight the tradeoffs between vertex rewiring
and edge evaluation in different problem domains.

An n-step lookahead algorithm (e.g., LRA* [17]) strikes
a balance between edge evaluation and vertex expansions by
growing the heuristic tree with a number of unevaluated edges
before the evaluation reveals edge feasibility along the subpath
to the goal on the heuristic tree. Finally, Generalized Lazy
Search (GLS) encompasses various lookahead strategies with
a user-defined algorithmic toggle between vertex rewiring and
edge evaluation [18]. With a proper choice of the toggle from
the search and the evaluation, GLS hence reduces to LazySP,
LRA*, or LWA*.

In this paper, we extend GLS to incorporate lifelong plan-
ning behavior, by maintaining a lazy LPA* search tree with
non-overestimating heuristic edges. In other words, we restrict
the actual edge evaluations of LPA* to only those edges that
could possibly be part of the optimal path in the current graph.
We reduce the excessive edge evaluations of LPA* in terms
of the two aspects discussed above: any irrelevant edges will
never be evaluated upon graph changes before the search, and
only the edges that could possibly be on the optimal path
of the current graph will be evaluated during the search. We
leave the choice of the lookahead strategy to be quite general,
as in the GLS framework, to allow for a tradeoff between the
search and the evaluation steps to adapt to different problem
domains. Hence, we attain a version of Lifelong-LazySP on
one end, and a version of Lifelong-LWA* on the other end,
by adopting an infinite or an one-step lookahead, respectively.

The proposed algorithm, Lifelong-GLS (L-GLS) is com-
plete and finds the optimal solution in the current graph.
Compared to GLS, the proposed algorithm can possibly find
the optimal solution faster by reusing previous search results.
Compared to LPA*, our algorithm reduces significantly the
number of edge evaluations. Moreover, when the heuristic
edge values are inflated and the inconsistency repairing step



is truncated for faster search, then the solution returned by
L-GLS is bounded suboptimal.

II. PROBLEM FORMULATION

We first introduce the variables and relevant notation that
will be used throughout the rest of the paper.

A. Lazy Weight Function
Let G = (V,E) be a graph with vertex set V and edge set

E. For a vertex v ∈ V , we denote the predecessor vertices of
v with pred(v) and its successor vertices with succ(v). For
each edge e ∈ E, a weight function w : E → (0,∞] assigns a
positive real number, including infinity, to this edge, e.g., the
distance to traverse this edge, and infinity if traversing the edge
is infeasible. Also, we denote an admissible heuristic weight
function with ŵ : E → (0,∞), which assigns to an edge
a non-overestimating positive real number such that ŵ(e) ≤
w(e) for all e ∈ E. We assume that evaluating the true weight
w is computationally expensive, but the heuristic edge ŵ-value
is easy to compute. Let Eeval ⊆ E be the set of all evaluated
edges, that is, all edges whose w-values have been computed.
We introduce a lazy weight function w : E → (0,∞] which
assigns to an edge its admissible heuristic weight w before the
evaluation and its true weight w after the evaluation, i.e.,

w(e) ··=

{
w(e), if e ∈ Eeval,

ŵ(e), otherwise.
(1)

B. Optimal Path
Define a path π = (v1, v2, . . . , vm) on the graph G =

(V,E) as an ordered set of distinct vertices vi ∈ V , i =
1, . . . ,m such that, for any two consecutive vertices vi, vi+1,
there exists an edge e = (vi, vi+1) ∈ E. Throughout this
paper, we will interchangeably denote a path as the sequence
of such edges. With some abuse of notation, we denote the
cost of a path as w(π) ··=

∑
e∈π w(e). Likewise, we denote

w(π) ··=
∑
e∈π w(e) for the lazy cost estimate of the path π.

Let vs, vg ∈ V be the start and goal vertices, respectively. Let
Π be the set of all paths from vs to vg in G. Then, the shortest
path planning problem seeks to find

π∗ ··= argmin
π∈Π

w(π). (2)

C. Lazy LPA* Search Tree
We maintain a lazy LPA* search tree to update the in-

consistencies that arise from both graph changes and edge
value discrepancies between the heuristic weight and the actual
weight. The lazy LPA* search tree is identical to the standard
LPA* search tree [12], except that lazy LPA* uses the lazy
weight function w instead of the actual weight function w.
For completeness of discussion, next we define the variables
of the lazy LPA*.

For each vertex, we store the two cost-to-come values,
namely, the g-value and rhs-value to identify the inconsistent
vertices, similarly to LPA*. A vertex v whose g(v) = rhs(v)
is called consistent, otherwise it is called inconsistent. An
inconsistent vertex is locally overconsistent if g(v) > rhs(v)
and locally underconsistent if g(v) < rhs(v). The g-value

is the accumulated cost-to-come by traversing the previous
search tree, whereas the rhs-value is the cost-to-come based
on the g-value of the predecessor and the current w-value of
the current edge. Hence, the rhs-value is potentially better
informed than the g-value, and it is defined as follows:

rhs(v) ··=

{
0, if v = vs,

minu∈pred(v)(g(u) + w(u, v)), otherwise.
(3)

Additionally, the rhs-value minimizing the predecessor of v
is stored as a backpointer, denoted with

bp(v) ··= argmin
u∈pred(v)

(g(u) + w(u, v)). (4)

Hence, the subpath from vs to v is retrieved by following the
backpointers from v to vs.

The queue Q prioritizes the inconsistent vertices using the
key

k(v) = [min(g(v), rhs(v)) + h(v) ; min(g(v), rhs(v))], (5)

with lexicographic ordering, where h(v) is a consistent heuris-
tic cost-to-go from v to vg.

III. LIFELONG-GLS ALGORITHM

The proposed algorithm, Lifelong-GLS (L-GLS), consists of
two loops: the inner loop and the outer loop. The inner loop is
the main search loop which guarantees to return the shortest
path in the current graph upon termination. The outer loop
updates the current graph heuristically to reflect any external
graph changes. The edge evaluations in the inner loop may
induce internal changes to the graph. Both external and internal
changes are efficiently repaired by a lazy LPA* search tree.

In the inner loop, the lazy LPA* search tree updates the new
shortest path from vs toward vg in the current graph G based
on the previous search results. The lazily evaluated LPA*
search tree uses the lazy estimates of the edge values when it
propagates the inconsistencies to find the shortest subpath to
the goal in the current graph. The first unevaluated edge on the
shortest subpath returned by the lazy LPA* is then evaluated.
If the evaluation results in inconsistency, then the lazy LPA*
search tree is updated and returns the next best subpath for
evaluation. If all the edges on the current shortest path to the
goal returned by the lazy LPA* are already evaluated, then L-
GLS has found the optimal solution and exits the inner loop.

In the outer loop, L-GLS waits for graph changes. When
the edges of G change, L-GLS assigns admissible heuristic
values to the corresponding edges instead of evaluating them,
to make sure that the lazy estimate of the path cost does not
overestimate the optimal path cost. Then, the inner loop begins
again to search for the new optimal path. Hence, only a subset
of the changed edges that could be on the shortest path in the
current graph are actually evaluated.

A. Details of the Algorithm and Main Procedures

Next, we describe the step-by-step procedure of L-GLS
in greater detail. Before the first search begins, all g-values
of the vertices are initialized with ∞ similar to the regular



Algorithm 1 Lifelong-GLS(G, vs, vg)

1: procedure CALCULATEKEY(v) return
2: [min(g(v), rhs(v)) + h(v) ; min(g(v), rhs(v))];
3: procedure UPDATEVERTEX(v)
4: if v 6= vs then
5: bp(v) = argminu∈pred(v)(g(u) + w(u, v));
6: rhs(v) = g(bp(v)) + w(bp(v), v);
7: if v ∈ Q then Q.REMOVE(v);
8: if g(v) 6= rhs(v) then
9: Q.INSERT((v,CALCULATEKEY(v)));

10: procedure COMPUTESHORTESTPATH(EVENT)
11: while Q.TOPKEY ≺ CALCULATEKEY(vg) or
12: g(vg) 6= rhs(vg) do
13: u = Q.POP();
14: if g(u) > rhs(u) then
15: g(u) = rhs(u);
16: if EVENT(u) is triggered then
17: return path from vs to u;
18: for all v ∈ succ(u) do UPDATEVERTEX(v);
19: else
20: g(u) =∞;
21: for all v ∈ succ(u) ∪ {u} do
22: UPDATEVERTEX(v);
23: procedure EVALUATEEDGES(π)
24: for each e ∈ π do
25: if e /∈ Eeval then
26: w(e)← w(e);
27: Eeval ← Eeval ∪ {e};
28: if w(e) 6= ŵ(e) then return e;
29: procedure MAIN()
30: for all e ∈ E do w(e)← ŵ(e);
31: Eeval ← ∅
32: rhs(vs) = 0;
33: UPDATEVERTEX(vs);
34: while true do
35: repeat
36: π ← COMPUTESHORTESTPATH(EVENT);
37: (u, v)← EVALUATEEDGES(π);
38: UPDATEVERTEX(v);
39: until vg ∈ π and π ⊆ Eeval

40: Wait for changes in E;
41: L←the set of edges that changed;
42: for all e = (u, v) ∈ L do
43: w(e)← ŵ(e);
44: Eeval ← Eeval\{e};
45: UPDATEVERTEX(v);

Algorithm 2 Candidate EVENT Definitions [18]

1: procedure SHORTESTPATH(v)
2: if v = vg then return true;
3: procedure CONSTANTDEPTH(v, depth α)
4: π ← path from vs to v;
5: αv ← number of unevaluated edges in π;
6: if αv = α or v = vg then return true;

LPA*, and all lazy estimates of edge values are assigned with
admissible heuristic values. The first search begins by setting
rhs(vs) = 0 and inserting vs in the priority queue Q. In the
main search loop (Line 35-39 of Algorithm 1) the lazy LPA*
search tree is grown with COMPUTESHORTESTPATH(EVENT)
until an EVENT is triggered by the expansion of a leaf
vertex which just became consistent upon this expansion
(Line 16 of Algorithm 1). Then, the subpath to this leaf
vertex which triggered the EVENT is returned for evaluation
(Line 37 of Algorithm 1). Then, EVALUATEEDGES evaluates
the unevaluated edges along the subpath and updates the lazy
estimates with their true weights. If the evaluation of an edge
results in a different value than the previous lazy estimate,
then EVALUATEEDGES returns the edge for the lazy LPA*
to update this change accordingly by UPDATEVERTEX. The
inconsistency is propagated by the lazy LPA* again until the
next time the EVENT is triggered. If the path to the goal is
found, and all the edges along this path are evaluated in the
current graph, then the path is indeed the optimal path in the
current graph. This procedure repeats again when the graph
changes.

The procedure UPDATEVERTEX is identical to that of
the regular LPA*. The only difference is that when
UPDATEVERTEX(v) is called, the rhs-value of the vertex
v is updated based on the lazy estimate of the incident
edge values. This is done to avoid edge evaluations of the
irrelevant incident edges of v. When a minimizing predecessor
is found lazily, then the vertex assigns its backpointer to this
predecessor. Finally, the key of this vertex is updated with
CALCULATEKEY to be prioritized in the queue Q.

The choice of an EVENT function determines the balance
between the vertex expansion (Line 13 of Algorithm 1) and the
edge evaluation (Line 37 of Algorithm 1), as in the GLS frame-
work. For example, if one chooses the SHORTESTPATH as the
EVENT, then the algorithm becomes a version of Lifelong-
LazySP [6]. That is, the lazy LPA* repairs its inconsistent part
of the tree all the way up to the goal, then returns the shortest
path to the goal for evaluation. This minimizes the number of
edge evaluations of the inner loop. On the other hand, if one
chooses the CONSTANTDEPTH of GLS as the EVENT, then
the algorithm becomes a version of Lifelong-LRA* [17]. The
tree repairing (vertex expansion) of the lazy LPA* is reduced,
since the inconsistency propagation is restricted not to exceed
a certain depth before evaluating the edges. This comes at the
expense of possibly more edge evaluations. Some candidate
EVENT definitions of GLS [18] are reproduced in Algorithm 2.

Note that the lazy LPA* algorithm maintained under the



L-GLS algorithm is almost identical to the regular LPA*
algorithm except at three points. First, the procedure UP-
DATEVERTEX of L-GLS updates an inconsistent vertex with
respect to the lazy estimate of the incident edges instead
of the actual value. Second, COMPUTESHORTESTPATH is
identical to that of LPA* in the way it expands the inconsistent
vertices of the lowest key first, that is, when it expands
an inconsistent vertex, it makes an underconsistent vertex
overconsistent and an overconsistent vertex consistent. The
only difference is that when the overconsistent vertices are
expanded, the EVENT checks whether to continue or stop
propagating the inconsistency information to the successors.
Finally, when the graph changes, L-GLS updates the changed
edge values with admissible heuristic values lazily instead of
evaluating them to find the exact values. Hence, the lazy LPA*
inherits all the theoretical properties of the regular LPA*, albeit
with respect to a different weight, namely w rather than w.
This becomes useful in our analysis that proves the correctness
of the algorithm.

The L-GLS algorithm is different from the GLS algorithm
in the following points. First, L-GLS stores the previous search
results to propagate any inconsistencies efficiently in dynamic
graphs, whereas GLS is explicitly designed for a shortest
path planning problem in a static graph.2 L-GLS can possibly
evaluate a much fewer number of edges compared to the
GLS from scratch, since the search tree of L-GLS is better
informed than that of GLS. Second, the exact values for all
feasible edges are known a priori in the GLS framework, that
is, the heuristic estimates of all feasible edges are accurate.
The edge evaluation only reveals a binary trait of the edge,
that is, whether the edge is feasible or not, rather than its
exact cost. This is relaxed in L-GLS, such that the edge costs
can vary upon the evaluation. This relaxation is important in
problem domains where obtaining an accurate heuristic edge
cost may be difficult. As long as the heuristic edge cost does
not overestimate the actual edge cost, L-GLS finds the optimal
solution in the current graph.

IV. ANALYSIS

We now present some of the properties of L-GLS to provide
insights how it works. We also prove the completeness and
correctness of the algorithm, based on the inherited properties
from both the LPA* and the GLS algorithms. First, let us state
two facts that are invariant during the main search loop.

Invariant 1. The lazy estimate of an edge never overestimates
the true edge value, that is, w ≤ w.

Proof: Since w(e) = w(e) for all e ∈ Eeval, and w(e) =
ŵ(e) ≤ w(e) for all e /∈ Eeval, it follows that w(e) ≤ w(e)
for all e ∈ E.

The next invariant shows that when the lazy LPA* returns
the shortest subpath to the goal, then this subpath is optimal.

2Although GLS may use an LPA* search tree in a similar way, the purpose
of the LPA* search tree is to repair the search tree from the interior changes
that come from revealing obstacles by the edge evaluations, rather than the
exterior changes resulting from the environmental changes.

This follows from the theoretical properties of LPA*, which
is similar to A*.

Invariant 2. The output subpath π from vs to v of COM-
PUTESHORTESTPATH(EVENT) is optimal with respect to w,
that is, π = argminπ∈Πv

w(π), where Πv is the set of paths
from vs to v.

Proof: COMPUTESHORTESTPATH with an EVENT re-
turns the path π from vs to v, when the triggering vertex
v is expanded. Right before the expansion, v was locally
overconsistent. Theorem 6 of LPA* [12] states that whenever
COMPUTESHORTESTPATH selects a locally overconsistent
vertex for expansion, then the g-value of v is optimal with
respect to w.

Now we show the completeness and correctness of the inner
loop of L-GLS. The first theorem is due to the completeness
of GLS [18], which we restate here.

Theorem 3. Let EVENT be a function that on halting ensures
there is at least one unevaluated edge on the current shortest
path or that the goal is reached. Then, the inner loop (Line 35-
39) of L-GLS implemented with EVENT on a finite graph
terminates.

Proof: Suppose the path to the goal has not been evalu-
ated, such that COMPUTESHORTESTPATH(EVENT) returns at
least one unevaluated edge to evaluate. Since there is a finite
number of edges, the inner loop will eventually terminate.

Theorem 4. L-GLS finds the shortest path with respect to the
current graph when the inner loop (Line 35-39) terminates.

Proof: Let π∗ be the optimal path with respect to w in the
current graph, that is, w(π∗) = minπ∈Π w(π), where Π is the
set of all paths from vs to vg. L-GLS terminates its inner-loop
when vg ∈ π and π ⊆ Eeval, where π is the output subpath
of COMPUTESHORTESTPATH(EVENT). Then, we have

w(π) =
∑
e∈π

w(e) ≤
∑
e′∈π∗

w(e′) ≤
∑
e′∈π∗

w(e′) = w(π∗), (6)

where the first inequality holds by Invariant 2, and the second
inequality follows by Invariant 1. Hence, w(π) ≤ w(π∗), and
since π ⊆ Eeval, we have w(π) = w(π) ≤ w(π∗). But
w(π∗) ≤ w(π), since π∗ is the optimal path. Therefore, π
must be the optimal path with respect to w.

Note that the results of Theorem 4 can be extended to find a
bounded suboptimal path if an inflated heuristic weight func-
tion is used instead of an admissible heuristic weight function.
In addition, if the output subpath of COMPUTESHORTEST-
PATH is no longer than the optimal subpath by some factor,
then the solution obtained by L-GLS is no longer than the
optimal solution by the same factor. This is formalized in
Theorem 5 below.

Theorem 5. Assume ŵ ≤ ε1w, and assume that the output
subpath π of COMPUTESHORTESTPATH from vs to v satisfies
w(π) ≤ ε2 minπ∈Πv

w(π), where ε1, ε2 ≥ 1. Then, when the
inner loop (Line 35-39) terminates, L-GLS finds a bounded
suboptimal path π from vs to vg such that w(π) ≤ ε1ε2w(π∗),
where π∗ is the optimal path in the current graph.



Proof: Since ŵ ≤ ε1w, we have w(e) ≤ ε1w(e) for
all e ∈ E. Recall that L-GLS terminates its inner-loop when
vg ∈ π ⊆ Eeval. Then, we have

w(π) =
∑
e∈π

w(e) ≤ ε2

∑
e′∈π∗

w(e′)

≤ ε2

∑
e′∈π∗

ε1w(e′) = ε1ε2w(π∗).
(7)

Hence, w(π) ≤ ε1ε2w(π∗) and since π ⊆ Eeval, we have
w(π) = w(π) ≤ ε1ε2w(π∗). Therefore, the path length of π
must not be greater than the optimal path by a factor ε1ε2.

The inflated heuristic weight function biases the search
greedily, and often a high inflation factor ε1 helps finding
a solution faster. The truncation factor ε2 determines how
early the inconsistent propagation of LPA* can be terminated,
such that an existing path without further rewiring is already
guaranteed not to exceed the optimal path by the factor ε2 in
length [1]. The two factors can be completely decoupled, but
they have the same goal. They make the lazy search tree find a
good enough solution fast for evaluation, instead of spending
time to find the lazily evaluated optimal path, which is likely
to be repaired anyways.

V. NUMERICAL RESULTS

In this section, we present numerical results comparing L-
GLS to LPA* and GLS to demonstrate the efficiency of L-
GLS in scenarios where the shortest path planning problem is
solved consecutively in a dynamic environment. The search is
performed on the same graph with evenly distributed vertices,
in which two vertices are adjacent if they are within a prede-
fined radius. The graph topology does not change throughout
the experiment, and only the edge values change due to
underlying environment changes. We present search results of
path planning problems in R2 for the sake of visualization, and
then we present search results of piano movers’ problems in
R3 and of manipulation problems in R7 using PR2, a mobile
robot with 7D arms.

During the 2D experiments, the environment changed three
times after the shortest path was found in each of the changed
environments (see Figure 1). We recorded the number of vertex
expansions and the number of edge evaluations in each search
episode for the three algorithms: LPA*, L-GLS, and GLS for
each search (see Figure 2). We chose SHORTESTPATH for the
EVENT function for both L-GLS and GLS. Hence, L-GLS
and GLS were equivalent to Lifelong-LazySP and LazySP,
respectively.

In the first search, LPA* is equivalent to A*, and L-GLS
is equivalent to GLS (See Figure 1.a). LPA* evaluated 390
edges and expanded 45 vertices, whereas L-GLS and GLS
both evaluated 61 edges and expanded 314 vertices.

After the first search, only a small part of the environment
changed (see Figure 1.b), opening a shorter passage to the
goal. LPA* evaluated 18 edges corresponding to the change,
then expanded 4 inconsistent vertices to find the shortest path
in the current graph. L-GLS evaluated 4 edges that belong
to the new shortest path to the goal, and expanded 4 incon-

sistent vertices. The GLS evaluated 7 edges and expanded 6
inconsistent vertices.

When the environment changed in the irrelevant region (see
Figure 1.c), LPA* evaluated 153 edges corresponding to the
environment change, but did not expand any vertices, as they
were irrelevant to the current search. L-GLS did not do any
additional operations to find the shortest path, since the path
was already optimal. GLS was identical to the previous search
with 7 edge evaluations and 6 vertex expansions.

Finally, the environment changed back to the first search
episode with the addition to a new obstacle in the irrelevant
region. The GLS search was identical to the first search
episode with 61 edge evaluations and 314 vertex expansions.
On the other hand, L-GLS evaluated only 11 edges and ex-
panded 83 vertices. This is because the majority of the relevant
edges were already evaluated during the previous searches, and
the majority of the relevant vertices were already consistent.
Similarly, LPA* expanded a fewer number of vertices and
evaluated a fewer number of edges compared to the first search
episode with 273 edge evaluations and 9 vertex expansions,
since it utilized the previous search results. These results are
illustrated in Figure 2.

We also implemented LPA* and L-GLS as an OMPL
Planner [23] with the MoveIt! interface [5] for the 3D piano
movers’ problem and for the 7D manipulator experiment.
All the algorithm implementations were in C++, and the
experiments were run on an 2.20 GHz Intel(R) Core(TM)
i7-8750H CPU Ubuntu 16.04 LTS machine with 15.5GB of
RAM.

We find the shortest paths for the piano from the Apartment
scenario in OMPL [23] from a start configruation to a goal
configuration without colliding with the moving obstacles
(see Figure 3). There were three consecutive searches in the
environment, where the first search was on scene 1 (Figure 3
(a)), the second search was on scene 2 (Figure 3 (b)), and the
third search was on scene 3 (Figure 3 (c)). The search was
performed on a prebuilt graph with 8,000 vertices and 34,327
edges. The vertices were sampled using a Halton sequence in
R3.

Similarly, we find the shortest paths for the right arm of PR2
robot from a start configuration to a goal configuration without
collision in a dynamic environment where the obstacle moves
(see Figure 4). There were three consecutive searches in the
environment, where the first search was on scene 1 (Figure 4
(a)), the second search was on scene 2 (Figure 4 (b)), and the
third search was on scene 1 again. The search was performed
on a prebuilt graph with 30,000 vertices and 168,795 edges.
The vertices were sampled using a Halton sequence in R7,
bounded by the PR2 arm’s joint-angle bounds. Two vertices
are adjacent in this graph if the Euclidean distance between
them is less than 0.9 rad.

We compared five different planners including LPA*, L-
GLS with infinite-lookahead, GLS with infinite-lookahead,
L-GLS with one-step lookahead, and GLS with one-step
lookahead. The number of edge evaluations and the number
of vertex expansions along with the approximated planning
time are recorded for each search episode and tabulated in



(a) (b) (c) (d)

Fig. 1: LPA*(top row) and Lifelong-LazySP(bottom row) search results to find the shortest path from start vertex( ) to goal
vertex( ) per environment change, from left to right: (a) first search, (b) second search, (c) third search, and (d) final search.
Lines( ) are the evaluated edges, and dots( ) are the expanded vertices during the current search. Bold lines( ) are the
edges belonging to the current search tree. Blue and red represents free and obstacle, respectively.
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Fig. 2: Number of edge evaluations and vertex expansions for LPA*, L-GLS, and GLS in the four consecutive environments
(a) for each search episode; (b) for accumulated results

Table I. The approximate planning time was computed as
the weighted sum of the number of edge evaluations and the
number of vertex expansions. For the Piano Movers’ problem,
an edge evaluation took 0.20 ms on average and a vertex
expansion took 0.86 ms on average. For the manipulation
problem, an edge evaluation took 0.57 ms on average and
a vertex expansion took 0.34 ms on average.

VI. CONCLUSION

We have presented a new replanning algorithm to find the
shortest path in a given graph efficiently using previous search
results. The proposed algorithm maintains a lazy LPA* tree to

efficiently repair the inconsistency of the existing search that
arises either from external environment changes or internal
discrepancies between the lazy estimate and the real weight of
an edge cost. Based on the efficiency of LPA*, the propagation
of vertex rewiring to repair any vertex inconsistencies is
restricted only to the shortest path candidate. Similar to the
GLS framework, only the edges in the current shortest path
candidate are evaluated. The proposed algorithm reduces by a
substantial amount the edge evaluations per search compared
to LPA*, and it can find a new shortest path significantly faster
than GLS, given a change in the graph. The completeness and



(a) Scene 1 (b) Scene 2 (c) Scene 3

Fig. 3: The shortest paths of the Piano Movers’ problems in dynamic environment.

(a) Scene 1 (b) Scene 2

Fig. 4: The shortest paths of the right arm of PR2 robot for the same query in dynamic environment.

correctness of the proposed algorithm are shown. We prove
that the Lifelong-GLS algorithm returns a solution that is
no longer than the optimal solution by the product of two
factors, namely the heuristic inflation factor and the truncation
factor. Numerical simulations demonstrate the efficiency of the
proposed algorithm compared to both LPA* and GLS in a
dynamically changing environment.
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