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Abstract

Self-supervised learning on point clouds has gained a lot
of attention recently, since it addresses the label-efficiency
and domain-gap problems on point cloud tasks. In this pa-
per, we propose a novel self-supervised framework to learn
informative representations from partial point clouds. We
leverage partial point clouds scanned by LiDAR that contain
both content and pose attributes, and we show that disentan-
gling such two factors from partial point clouds enhances
feature representation learning. To this end, our framework
consists of three main parts: 1) a completion network to
capture holistic semantics of point clouds; 2) a pose regres-
sion network to understand the viewing angle where partial
data is scanned from; 3) a partial reconstruction network
to encourage the model to learn content and pose features.
To demonstrate the robustness of the learnt feature repre-
sentations, we conduct several downstream tasks including
classification, part segmentation, and registration, with com-
parisons against state-of-the-art methods. Our method not
only outperforms existing self-supervised methods, but also
shows a better generalizability across synthetic and real-
world datasets.

1. Introduction
Point clouds provide one of the most intuitive representa-

tions for 3D object models, and they are extensively adopted
as the data format for the recognition tasks in different appli-
cation scenarios, such as autonomous vehicles, robotics, and
architectonics. Recently, with the rapid development of deep
learning techniques, various network architectures are pro-
posed for learning effective features of the point cloud data,
e.g., PointNet [32], PointNet++ [33], and DGCNN [41].
However, the success of learning the recognition models
based on these feature backbones typically relies on the
large-scale supervised dataset, in which it could be quite
expensive to manually collect the ground truth labels and
the learnt feature representations of point cloud data are less
generalizable across different tasks.

∗ Both authors contributed equally to the paper

Pose Information Content Information

Disentangler

lamp
sofa

car

airplane

cabinet

chair
table

watercraft

Registration Classification Part Segmentation

Pretext feature learning

Downstream tasks

Figure 1. We propose to learn the feature representation of 3D point
cloud data in a self-supervised manner via point cloud completion.
Our model learns to disentangle the feature into the content and
pose parts, where the former is beneficial for the downstream tasks
of classification and part segmentation, while the latter helps to
improve the task of point cloud registration.

These potential issues motivate various research develop-
ment in learning effective feature representations from point
clouds via unsupervised or self-supervised manner, such as
solving jigsaw puzzles [2, 35], contrastive learning [34, 43],
and local structure modeling [18,19]. In this paper, we aim to
seek for a different solution that is also intuitive and suitable
for the point cloud data. Inspired by the success of feature
learning in the image [30] and the natural language [38]
domains, which have been developed for years, we adopt
an analogous strategy of image inpainting [30], but in a 3D
point cloud version via learning to complete the partial point
cloud of a 3D object. As such, similar benefits for feature
learning as shown in image inpainting [30] can be achieved
by point cloud completion, which not only needs the seman-
tic understanding of the point cloud data, but also learns
better holistic feature representations via reconstructing the
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plausible missing parts.
However, simply completing the partial point cloud, as

in the case of image domain, may not suffice the need for
learning effective feature representations, as the point cloud
data has different characteristics from images. That is, given
a 3D object point cloud, there could be multiple angles to
view this data, such that each angle produces a different
partial point cloud (in the top of Figure 1). Therefore, al-
though the final completed point cloud is the same for all
the partial point clouds obtained from the same object, the
completion network may require to learn a different feature
representation for each view-angle during the completion
process. To take view-angle into consideration, instead of
using existing point cloud completion frameworks [26, 48],
which only produce one feature representation that entan-
gles both the view-angle information and the content cue for
the point cloud data, we propose to disentangle these two
factors and learn more effective feature representations in a
self-supervised manner (see Figure 1).

Specifically, we utilize two encoders to extract the content
and pose (i.e., view-angle) features individually from each
partial point cloud input. Then, in addition to performing
completion using the content feature, the pose feature should
be able to predict the pose of the input data and guide the
reconstruction in specific view-angle. Thus, we introduce
another two modules: 1) a pose regression network to predict
the view-angle of the partial point cloud using the pose
feature; and 2) a partial reconstruction network to recover
a specific partial point cloud, through the combination of
a content feature from a view-angle i and a pose feature
from another view-angle j. As a result, no matter which
view-angle the content feature is extracted from, the partial
reconstruction should be mainly guided by the pose feature.
Therefore, our framework encourages the content and pose
features to be more compact on themselves while being more
disentangled to each other, which better facilitates the feature
representation learning process.

We conduct extensive experiments to show the effective-
ness of our self-supervised framework: 1) our learned con-
tent feature is able to provide favorable performance against
state-of-the-art methods on the downstream tasks of clas-
sification and part segmentation, and 2) our learned pose
features contribute to the pose-relevant downstream task of
point cloud registration. The main contributions of our work
are summarized as follows:

• We propose a self-supervised framework based on point
cloud completion for learning the feature representa-
tions from the partial point cloud data.

• We develop a pipeline to disentangle point cloud feature
representations into the content and pose factors, which
enables the model to learn effective features.

• We show that the learnt content and pose features im-
prove several downstream tasks (i.e., classification, part

segmentation, and registration), while showing the gen-
eralizability across synthetic and real-world datasets.

2. Related Work
Supervised Learning for Point Cloud Data. Due to the
popularity of 3D scanning technologies and the advancement
of deep learning techniques, learning to extract features from
the point cloud data for recognition tasks is one of the ac-
tive research topics. One early attempt via deep networks
is PointNet [32] which uses the max-pooling operation to
aggregate the point-wise features into the global one, thus
achieving the permutation invariant property. While Point-
Net neglects the local structure between neighboring points,
its successor, PointNet++ [33], adopts the hierarchical neural
network to progressively extract the features of a point cloud
from multiple resolutions. Furthermore, DGCNN [41] lever-
ages the graph neural network [23] to process the nearby
points and their edges via the k-nearest neighbor algorithm
in each of the intermediate feature spaces. Other methods
that also try to capture the relationships among the local
regions in point clouds are developed in [24, 27, 44].

However, all the aforementioned works are based on the
complete point cloud with supervised information, which is
costly to collect in terms of time and expense. Even when
we are able to use the synthetic dataset where the supervision
is easier to obtain, the feature learnt from the synthetic data
could be less generalizable to the real-world data due to the
domain gap [3]. In this work, we thereby focus on the self-
supervised learning scheme to learn effective representations
that can generalize better across datasets.

Unsupervised / Self-Supervised Feature Learning for
Point Cloud Data. Recently, various works have been
proposed to explore the unsupervised and self-supervised
schemes for learning feature representations of 3D point
clouds, where the training objectives or the labels are pro-
duced from the data itself. An intuitive objective is derived
via performing the self-reconstruction [1, 12], in which the
semantic and compact feature representations are learnt in
the bottleneck between the encoding and decoding processes.
For instance, the encoder of 3DCapsuleNet [49] is designed
to process 3D point clouds and aggregate the final latent
capsules based on the dynamic routing, followed by the
decoder to reconstruct the original point cloud composed
of multiple point patches. [45] proposes an autoencoder
architecture where the rich point-wise features in multiple
stages are progressively produced through the seed genera-
tion module. Eckart et al. [13] further extend the traditional
autoencoder paradigm to form the bottleneck layer being
modeled by a discrete generative model. In addition to
the self-reconstruction, MAP-VAE [18] proposes the multi-
angle analysis to introduce the local self-reconstruction, lead-
ing a better modeling on the local geometry of point clouds.
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Figure 2. Our proposed framework aims to learn two distinct features (cn, pn) via disentanglement that consists of three main branches: 1) a
completion branch containing a content encoder Econtent and a decoder Dcomplete that learns the content features cn, through completing
partial point clouds of the same 3D object. 2) a pose regression branch with a pose encoder Epose that learns the pose features pn, through
predicting view-angles where a partial point cloud is scanned from. 3) a partial reconstruction branch Dpartial, which leverages combined
content features with exchanged pose features to reconstruct the partial inputs. Note that “+” denotes the concatenation operation and
dashed lines in colors are the loss functions we employ for three branches.

Another effective technique is stemmed from contrastive
learning. For instance, PointContrast [43] proposes to use a
pretext task, where the mapping between two point clouds
taken by viewing from different perspectives should be con-
sistent even after performing the random geometric transfor-
mations on them. [20] relies on the similar consistency but
extends to include the spatial augmentations on the data, and
adopts the self-ensembling mechanism to drive the learning.
Other methods are inspired by the techniques originally ap-
plied on 2D images. For instance, Sauder et al. [35] adopts
the jigsaw puzzle idea on 3D point cloud, in which the point
cloud is decomposed into multiple parts followed by ran-
dom permutation, and then the network is trained by putting
these parts back to their original positions. Similarly, Al-
liegro et al. [2] further integrate multi-task learning into the
same framework as [35]. In addition, [9] destroys shape
parts and learns the feature representation via the process of
distinguishing the destroyed parts and restoring them.

Different from the above methods, our approach is in-
spired by the idea of 2D image inpainting [30] but in a 3D
version, in which we propose to self-learn the completion
process from partial point clouds as the pretext task. Fur-
thermore, beyond point cloud completion, we extend our
framework to consider the pose information, so that fea-
tures can be disentangled during the completion process to
learn effective feature representations. We note that, a recent
work [39] also adopts the idea of point cloud completion to
drive feature learning but does not fully leverage the pose
information, in which this work can be treated as an ablated
variant of our model. Later in experiments we provide the

ablation study to verify the benefit of our model design with
respect to this work.

Feature Disentanglement. Disentanglement aims to de-
compose the feature representation into multiple parts for bet-
ter explaining the factors behind data variation. Numerous
methods are developed in 2D images, such as the conditional
GAN [28], auxiliary classifier GAN [29], InfoGAN [8] and
conditional VAE [36], all of which are used to disentangle
the latent space of GAN [17] and VAE [22]. Moreover, intro-
ducing disentanglement into representation learning benefits
various computer vision applications. For instance, [25, 51]
disentangle the pose information from person images to
obtain the purified feature of person, which improves the
performance in the task of person re-identification. Zhou
et al. [50] factors out the shape and pose features from the
3D mesh data to boost the performance in the tasks of pose
transfer and shape retrieval. In our proposed framework,
we disentangle the content and pose information of the 3D
point cloud representation, in which the content feature is
beneficial for the downstream tasks of classification and part
segmentation, while the pose feature boosts the task of point
cloud registration.

3. Proposed Method
As motivated in the introduction, the objective of our

proposed framework is to perform self-supervised learning
via partial point cloud completion and learn the 3D point
cloud feature representations, which is decomposed into
the content and pose parts. The overall architecture of our



proposed framework is illustrated in Figure 2, where there
are three main branches: completion branch, pose regression
branch, and partial reconstruction branch. We now detail our
proposed framework in the following subsections.

3.1. Completion Branch

The purpose of this branch is to perform 3D partial
point cloud completion, which is proposed in this paper
as an analogous strategy to 2D image inpainting [30] for
self-learning feature representations. To this end, given a
dataset composed of N complete point clouds of 3D objects
P = {Pn}Nn=1, for each of the complete point cloud Pn,
we are able to generate many of its corresponding partial
point clouds {P̂v(k)n }Kk=1 as being scanned from K different
pre-defined viewpoints {v(k)}Kk=1. Then, for an input par-
tial point cloud P̂v(k)n , we use the content encoder Econtent
to extract its content feature cv(k)n = Econtent(P̂v(k)n ), fol-
lowed by the completion decoder Dcomplete to reconstruct
the corresponding complete point cloud Pn from c

v(k)
n .

Here, we adopt the standard point cloud feature extractor
(e.g., PointNet [32] or DGCNN [41]) as the content encoder
Econtent. For the completion decoder Dcomplete, we uti-
lize a morphing-based decoder in MSN [26] to predict Pn.
To measure the completion quality, we use Earth Mover’s
Distance (EMD) [14] loss (which is typically approximated
via the auction algorithm [6] in practical implementation).
Therefore, given two point clouds Pi,Pj ∈ R3 with an equal
size |Pi| = |Pj |, the EMD loss function is:

dEMD(Pi,Pj) = min
φ(Pi)→Pj

∑
x∈Pi

‖x− φ(x))‖2 , (1)

where φ is an optimal bijection function that allows each
point in Pi to find a nearest corresponding point in Pj .

Moreover, in addition to the EMD loss that aims at guid-
ing the entire generated point cloud to maximally cover the
ground truth one, we also adopt the expansion loss proposed
in [26] to better handle local regions in the point cloud. We
provide details of this expansion loss in the supplementary
material. As a result, our loss function in the completion
branch for a point cloud Pn in a view-angle v(k) can be
written as:

Lcomplete = dEMD(Pn, Dcomplete(c
v(k)
n ))

+ λex ∗ Lexpan(Dcomplete(c
v(k)
n )).

(2)

where we follow [26] to set λex = 0.1.

3.2. Pose Regression Branch

Although the self-supervised objective in Section 3.1 en-
ables our completion model to learn feature representations
as an initial step, it is still insufficient to fully exploit the rich
information contained in partial point cloud captured under

various view-angles. Thus, in the pose regression branch,
we aim to learn the pose feature that can predict the pose
of the partial data and assist in the feature learning process.
We first use the standard point cloud feature extractor (e.g.,
PointNet [32] or DGCNN [41]) as the pose encoder Epose
to extract the pose feature pv(k)n = Epose(P̂v(k)n ), which rep-
resents the feature for the view-angle v(k) of the point cloud
Pn. Then, three fully-connected layers are constructed as
the pose regressor for predicting the view-angle.

Specifically, our pose regression branch is learnt to predict
the camera position where the partial data is scanned from.
We define our camera position in the spherical coordinate
system (γ, θ, φ), where we only rotate the data along the
polar angle θ and the azimuthal angle φ. Note that we fix the
radial distance γ to have a consistent point cloud density and
use the degree as unit of θ and φ. Although we pre-define
the poses and can consider pose prediction as a classification
problem, we find that retaining it as the regression task serves
better for feature learning (please refer to our supplementary
material). To optimize the pose regression branch, we use
the mean square error (MSE). Given a partial point cloud
P̂v(k)n , our pose regression branch should predict the camera
position v̂(k). The loss function thus can be written as:

Lpose = ‖v(k)− v̂(k)‖2. (3)

3.3. Partial Reconstruction Branch

Based on Section 3.1 and 3.2, we have constructed two
self-supervised objectives, individually for the point cloud
completion and the pose regression tasks. However, there is
still a lack of how to make connections between content and
pose features, such that the learnt feature representation in
each branch is more compact and meaningful. To achieve it,
we propose to disentangle these two factors via the partial
reconstruction branch.

Given two partial point clouds P̂v(i)n and P̂v(j)n derived
from the same complete point cloud Pn but with different
viewpoints (i.e., i 6= j), we hypothesize that the content
features from two views should be similar to each other (i.e.,
c
v(i)
n ∼ c

v(j)
n ), as they are from the same 3D object and

are used to obtain the same completion output. As such,
if we combine one of the content features with a specific
pose feature, this combined feature should follow the pose
information to reconstruct the partial point cloud, regardless
of which content feature is selected.

To realize this objective, we use a partial decoder
Dpartial, which takes the concatenated content and pose
features as the input, but with different viewpoints, e.g., con-
catenation of cv(i)n and pv(j)n , to reconstruct a partial point
cloud P̂v(j)n . The loss of this partial point cloud reconstruc-



tion is based on the EMD loss (1):

Lpartial = dEMD(P̂v(i)n , Dpartial(c
v(j)
n , pv(i)n ))

+dEMD(P̂v(j)n , Dpartial(c
v(i)
n , pv(j)n )),

(4)

where we consider two terms by exchanging the content and
pose features in two viewpoints.

3.4. Model Pre-training as Pretext

Overall Objective. Without the use of any annotations,
we combine all the aforementioned loss functions from the
three branches as our final self-supervised objectives:

Lall = λcLcomplete + λpaLpartial + λpoLpose, (5)

where the hyperparameters λ control the balance between
loss functions, for all the experiments shown later, we set
λc = λpa = 0.5 to equally balance two reconstruction-based
objectives and set λpo = 0.01.

Dataset, Data Generation, and Implementation Details.
We follow the standard self-supervised setting in [15, 35]
and use the ShapeNetCore.v1 dataset [7] for the pretext
task in model pre-training, where our learnt content and
pose encoders (i.e., Econtent and Epose) will be used to
extract the content and pose features from the point cloud
data respectively to perform various downstream tasks. In
the pretext task, we follow the similar experimental settings
as in MSN [26] for point cloud completion, where we choose
a total of 35, 827 3D models of 8 classes (i.e., table, chair,
car, airplane, sofa, lamp, watercraft, and cabinet) from the
ShapeNet. We use Blender software [10] to render the partial
point clouds for each of the 3D models as being scanned from
26 pre-defined viewpoints (details are in the supplementary
material). The 3D point coordinates in the point cloud are
normalized into a unit sphere (i.e., within [−1, 1]). For each
point cloud, we uniformly sample 1024 points. The pre-
training of our proposed model on the ShapeNet runs for
50 epochs with the Adam optimizer. The learning rate is
initialized to 0.001 and decreased by 90% every 20 epochs,
and the batch size is set to 32.

Model Architecture. In our experiments, we use the stan-
dard point cloud feature extractors (e.g., PointNet [32] or
DGCNN [41]) as our encoders, and adopt the morphing-
based decoder proposed by MSN [26] for our decoders. In
particular, as the decoder generates the point cloud via com-
posing multiple local patches, we utilize 16 local patches for
the completion decoder Dcomplete, while the partial decoder
Dpartial only uses a single local patch for partial point cloud
reconstruction. For both the content encoder Econtent and
pose encoder Epose, their architectures are identical to each
other but without sharing weights. For the pose regressor, we
use three fully-connected layers with BatchNorm and ReLU
operations between every adjacent layer. More details of

the architecture are provided in the supplementary materials.
Source code and models will be released to the public.

4. Experimental Results and Analysis

Following the setting in self-supervised point cloud meth-
ods [15, 35], we conduct extensive experiments to show the
effectiveness and robustness of the point cloud features learnt
by our proposed pretext task pre-trained on ShapeNet [7].
Specifically, during training the classifiers of downstream
tasks, the pretrained content and pose encoders via our pre-
text task remain fixed, in which we use the content features
for point cloud classification and part segmentation, and
the pose features for the registration. In the following, we
first present the analysis of our pretext task via point cloud
completion then provide results of each downstream task.

4.1. Pretext Analysis

Features Distribution. We assess the quality of our learnt
content and pose features by visualizing the feature embed-
ding using t-SNE in Figure 3. We extract both content and
pose features from the fixedEcontent andEpose respectively,
which is pre-trained on ShapeNet using the DGCNN back-
bone at 50 epoch. In Figure 3.a and 3.c, we plot feature
distributions with respect to the class label in different colors
(note that class labels are not used in training). It shows that
data with the same class is grouped together for the content
feature, while the pose feature is more invariant to the class
label. Similar observations are also found with respect to the
pose label in Figure 3.b and 3.d, where the content feature is
more invariant to the pose label. This evidence verifies our
proposed feature disentanglement process for learning the
distinct characteristics of the content and pose features.

Relevance b/w Pretext Loss and Downstream Accuracy.
We plot the training loss with respect to downstream classi-
fication accuracy in Figure 4 to verify the effectiveness of
our objective function. Both Figure 4.a and Figure 4.b show
the gradual accuracy gain on the downstream tasks as the
training loss decreases, which indicates that the optimization
of our model is effective in feature learning.

4.2. Downstream Task 1: Classification

Dataset. ModelNet40 [42] and ScanObjectNN [3] bench-
marks are adopted for the downstream task of classification,
and make comparisons against several state-of-the-art super-
vised and unsupervised methods. ModelNet40 is composed
of 12,311 CAD models from 40 categories, in which it is split
into 9,843 and 2,468 models for training and testing respec-
tively. For the ScanObjectNN dataset, which is a real-world
point cloud dataset based on scanned indoor scene data, we
use its two variants, “OBJ ONLY” and “PB T50 RS”, that
are widely adopted for evaluating pre-trained features in the
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Figure 3. t-SNE visualization of content and pose features labeled
with class and pose labels respectively on the ShapeNet dataset.
The class label indicates the 8 categories data that we used for
pre-training, while the pose label indicates the 26 viewpoints that
we use for rendering partial data. Note that the pose labels with
closer value denote they have similar viewpoints.

(a) ModelNet40 classification task (b) ScanObjectNN classification task

Figure 4. Pretext training loss versus downstream classification
accuracy. Note that our pretext model is trained on the ShapeNet
dataset, while two classification tasks are conducted on the Model-
Net40 (a) and ScanObjectNN (b) benchmarks respectively.

classification downstream tasks [2, 34]. “OBJ ONLY” con-
tains 2,890 models with 15 categories, and “PB T50 RS”
is stemmed from “OBJ ONLY” but being augmented with
various perturbations (e.g., translation, rotation, scaling, and
cropping with background, resulting in total 14,298 mod-
els), and hence is considered to be the hardest case in the
ScanObjectNN. We follow the default setting to the train/test
split for “OBJ ONLY” and “PB T50 RS” by 2,309/581 and
11,416/2,882 respectively.

Experimental Setting. We follow the standard experi-
mental procedure as in [18, 35], where a linear Support Vec-
tor Machine (SVM) [11] is trained on the 3D point cloud
features extracted from each of the methods, to evaluate the
effectiveness of the feature representations in classification
(note that our model uses the content feature here).

Our proposed model is pre-trained on ShapeNet, which
uses the same pre-trained dataset as the unsupervised learn-
ing methods [15, 19, 21, 35, 46, 49] presented in our exper-
iments. Please note that for both our proposed model and
the unsupervised learning methods, the training set of Mod-

Table 1. Classification accuracy (%) on the ModelNet40
dataset. We compare our proposed model with various state-of-
the-art self-supervised methods (denoted as “SSL”). In the bottom
two groups, we compares methods either using the PointNet-based
or DGCNN-based backbone. The first two supervised methods
are served as references as they fully train the entire network. (†:
reproduced by training the pretext model on the ShapeNet dataset.)

Methods SSL Accuracy

PointNet [32] 7 89.2
DGCNN [41] 7 92.9

GraphTER† [16] 3 87.8
FoldingNet [46] 3 88.4
PointCapsNet [49] 3 88.9
Multi-Tasks [19] 3 89.1
Yang et al. [45] 3 90.9
PointGLR† [34] 3 91.7

Sauder et al. [35] 3 87.3
ACD [15] (PointNet++) 3 89.8
Chen et al. [9] 3 89.9
PN ours 3 90.1

Jing et al. [21] 3 89.8
Sauder et al. [35] 3 90.6
STRL [20] 3 90.9
ParAE [13] 3 91.6
DGCNN ours 3 92.0

Table 2. Classification accuracy (%) on the ScanObjectNN
dataset. We compare our proposed model with state-of-the-art
self-supervised methods (denoted as “SSL”), where supervised
methods are served as references as they fully train the entire net-
work. (†: reproduced by training the pretext model on ShapeNet.)

Methods SSL OBJ ONLY PB T50 RS

Pointnet [32] 7 79.2 68.2
DGCNN [41] 7 86.2 78.1

GraphTER† [16] 3 72.8 60.3
PointGLR† [34] 3 85.2 73.4
PN ours 3 84.0 70.6
DGCNN ours 3 87.3 74.8

elNet40 (or ScanObjectNN) is only used to train the linear
SVM classifier. For fair comparisons with GraphTER [16]
and PointGLR [34], we reproduce their performance by train-
ing their pretext model on ShapeNet, where the same repro-
duction of [16, 34] is also applied later on other downstream
tasks of part segmentation and point cloud registration.

Results. Table 1 and Table 2 show the results on the Mod-
elNet40 and ScanObjectNN datasets respectively. Please
note that, for all tables in this paper, we denote our full
model of using PointNet [32] and DGCNN [41] as the back-
bone of encoders as “PN ours” and “DGCNN ours”.

In Table 1, we show that our proposed model performs
favorably against other unsupervised methods, thus verifying
the robustness of our self-supervised model in learning more
holistic and effective feature representations. Furthermore,



Table 3. Part segmentation results on the ShapeNet-Part dataset. We compare our proposed model with state-of-the-art self-supervised
methods (denoted as “SSL”), where supervised methods are served as references as they fully train the entire network. (ψ: pretext model is
trained on ModelNet40; ∗: reported by MAP [18]; †: reproduced by training the pretext model on the ShapeNet dataset.)

Methods SSL mIoU Aero Bag Cap Car Chair Ear ph. Guitar Knife Lamp Laptop Motor Mug Pistol Rocket Skate Table

PointNet [32] 7 83.7 83.4 78.7 82.5 74.9 89.6 73.0 91.5 85.9 80.8 95.3 65.2 93.0 81.2 57.9 72.8 80.6
DGCNN [41] 7 85.2 84.0 83.4 86.7 77.8 90.6 74.7 91.2 87.5 82.8 95.7 66.3 94.9 81.1 63.5 74.5 82.6

Latent-GAN∗ [1] 3 57.0 54.1 48.7 62.6 43.2 68.4 58.3 74.3 68.4 53.4 82.6 18.6 75.1 54.7 37.2 46.7 66.4
MAPψ [18] 3 68.0 62.7 67.1 73.0 58.5 77.1 67.3 84.8 77.1 60.9 90.8 35.8 87.7 64.2 45.0 60.4 74.8
GraphTER† [16] 3 82.3 81.7 76.0 83.2 74.9 84.8 64.6 90.9 87.1 82.5 95.6 56.3 93.2 81.6 56.2 71.0 67.8
PointGLR† [34] 3 84.6 81.5 84.7 81.7 75.4 89.8 76.1 89.8 84.9 83.3 95.2 65.4 92.8 79.9 55.7 73.7 83.5
PN ours 3 83.8 81.6 73.2 83.5 74.2 89.0 70.9 89.9 85.5 80.6 95.0 66.4 92.6 82.0 53.7 72.7 82.9
DGCNN ours 3 85.1 82.3 83.5 84.5 77.3 89.8 76.3 91.0 87.3 84.2 95.5 67.8 92.5 82.8 52.1 73.9 83.5

the competitive performance (or with a small gap) of our
proposed model compared to the supervised baselines shows
the practical potential of our 3D point cloud feature represen-
tations. In Table 2, we show that our proposed model even
outperforms all the supervised and self-supervised learning
baselines in “OBJ ONLY”, while providing comparable per-
formance in “PB T50 RS” with respect to the supervised
methods. In particular, such results verify the generaliz-
ability of the feature representation learnt by our proposed
method across synthetic and real-world datasets.

4.3. Downstream Task 2: Part Segmentation

Dataset. In addition to having the downstream task of
classification for showcasing the capacity of our content
features in modeling the holistic point cloud, here we experi-
ment on another task, part segmentation, to investigate how
the fine-grained information of local 3D points is maintained
in our learnt content features. We adopt the ShapeNet-Part
dataset [47] for performing this evaluation, which is com-
monly used on the part segmentation task. ShapeNet-Part
dataset consists of 16,872 models with 16 categories, with
being split into 13,998 and 2,874 for training and testing
respectively. Depending on the object category, 3D points
are annotated by 2 to 6 part labels, where there are in total
50 distinct labels for the whole dataset.

Experimental Setting. We follow the same architecture
for the part classifier designed for part segmentation task in
the PointNet [32] framework. Similar to the classification
task, our proposed self-supervised model is first pre-trained
on ShapeNet, and the model is fixed as a feature extractor
while training a part segmentation classifier. Following [32],
we extract point-wise features of the final convolutional layer
(before max-pooling) in the content encoder Econtent as
local features, while using the content features as global
features for learning the segmentation part classifier. The
evaluation metric is based on the average of intersection-
over-union (i.e., mIoU).

Results. Table 3 summarizes the evaluation results and
the comparison of our proposed model against several meth-

ods on the ShapeNet-Part dataset. Overall, our model pro-
vides better performance than the self-supervised methods,
in which it demonstrates that the content features learnt
via disentangling from partial point clouds with different
viewpoints are able to benefit the extraction of more discrim-
inative point-wise features. Moreover, our proposed model
is competitive in comparison to the supervised methods that
train the entire network on ShapeNet-Part, which shows the
robustness of our learnt 3D point cloud features that are used
to only train the part classifier.

4.4. Downstream Task 3: Point Cloud Registration

Dataset. Other than studying the content features in classi-
fication and part segmentation, here we adopt a pose-relevant
downstream task, i.e., registration, to evaluate the pose fea-
tures learnt by our proposed model. We conduct experiments
for point cloud registration based on ModelNet40. We fol-
low the same procedure of data preparation as in DCP [40],
in which the whole ModelNet40 dataset is randomly split
into training and testing sets regardless of object categories.
For each point cloud P , a randomly-drawn rigid transfor-
mation T is applied on P to obtain the transformed point
cloud T (P), where {P, T (P)} together with T becomes an
input-output pair for learning the registration model.

Experimental Setting. We adopt the same architecture
for the registration model and follow the training procedure
proposed by DCP [40] which uses DGCNN [41] as their
feature extractor. Our proposed model is first pre-trained
on ShapeNet, and then we replace the feature extractor in
DCP with our pre-trained pose encoder Epose to train the
registration task. Note that Epose is fixed during the training
process to verify the effectiveness of our learnt features. For
evaluation, we focus on estimating the orientation/rotation
between point clouds in this experiments and adopt the root
mean squared error (RMSE) as the evaluation metric.

Results. As shown in Table 4, the pose features learnt
from our model pre-trained on the ShapeNet dataset outper-
form other self-supervised methods on RMSE(R). Moreover,
our proposed model is competitive against the state-of-the-



Table 4. Registration results on the ModelNet40 dataset. We
compare our proposed model with supervised methods reported
by DCP [40] and self-supervised methods reproduced by using the
official implementations. ( †: reproduced by training the pretext
model on the ShapeNet dataset.)

Methods SSL RMSE(R) ↓

PointNetLK [4] 7 15.095
FGR [5] 7 9.363
DCP-v2 [40] (PN) 7 7.061
DCP-v2 [40] (DGCNN) 7 1.143

PointGLR† [34] 3 3.900
GraphTER† [16] 3 2.927
PN ours 3 6.719
DGCNN ours 3 1.557

art supervised methods that fully train the entire network
on ModelNet40, which verifies the robustness of our pose
features on the point cloud registration task.

4.5. Ablation Study

Comparisons between Content and Pose Features. In
the previous experimental results, we adopt the content fea-
ture for the tasks of classification and part segmentation,
while the pose feature is utilized for the registration. Here
we provide results of using different features for these down-
stream tasks. Table 5 provides the results of applying either
the content or pose feature on all the downstream tasks.

We observe that, in comparison to the pose feature, the
content feature works best for the classification and part
segmentation tasks, where the former needs more seman-
tic and holistic understanding of the point clouds while the
latter needs fine-grained modeling on the local geometric
structures. This verifies that the content feature learnt by
our proposed method is able to compactly model both the
global and local structural information of the input point
cloud. When it comes to the downstream task of registration,
the pose feature instead contributes better than the content
feature. Such results are also aligned with the findings from
several prior works [4,31,37], where the camera pose estima-
tion task could provide benefits for the registration problem.

Table 5. Content v.s. pose features. Comparisons between content
and pose features in the classification, part segmentation and reg-
istration tasks. (MN40: ModelNet40; SON: we use “OBJ ONLY”
on ScanObjectNN; Regis.: we use RMSE(R) as evaluation metric.)

Backbone Feature
Classification

Part Seg. Regis.
MN40 SON

PN
content 90.11 83.99 83.83 6.875
pose 88.98 78.49 83.54 6.719

DGCNN
content 91.98 87.26 85.05 2.920
pose 90.36 82.79 84.46 1.557

Comparisons among Different Model Designs. We
study different model designs here. In addition to our full
model, we experiment other designs: 1) the framework of
only using the completion branch as proposed by the work
of [39] (denoted as “Comp-only”); 2) the framework of only
using the pose regression branch (denoted as “PR-only”); 3)
the joint learning framework (denoted as “JL”), where the
completion and pose regression branches share one encoder
trained in a multi-tasking manner. More architecture details
of these model variants are provided in the supplementary
material. The quantitative comparison among these designs
is provided in Table 6.

As we expected, Comp-only can learn more semantic
information and obtain better results than PR-only in the
classification and part segmentation tasks, while PR-only
learns more camera related information and obtains better
results than Comp-only in the registration task. Furthermore,
our full model can extract more robust and effective features
than the other designs, especially in the real-world data clas-
sification task. Interestingly, JL obtains worse results than
PR-only in the classification task. We hypothesize that, as
completion and pose regression have quite different char-
acteristics, having one encoder to jointly learn both tasks
may result in worse feature learning, thus verifying again
the contribution of our proposed disentanglement method.

Table 6. Comparisons with different model designs. Note that
“Comp-only” only uses the completion branch, “PR-only” only
adopts the pose regression branch, and “JL” indicates the joint
learning manner with the shared encoder. (MN40: ModelNet40;
SON: we use “OBJ ONLY” on ScanObjectNN.)

Backbone Methods
Classification

Part Seg. Regis.
MN40 SON

PN

Comp-only 89.71 83.13 83.72 7.858
PR-only 89.42 79.00 83.60 6.865
JL 89.34 78.49 83.77 6.843
Ours full 90.11 83.99 83.83 6.719

DGCNN

Comp-only 91.37 86.06 84.93 3.231
PR-only 90.64 82.62 84.47 1.644
JL 90.52 81.93 84.49 1.741
Ours full 91.98 87.26 85.05 1.557

5. Conclusions
In this paper, we propose a self-supervised framework for

learning feature representations of 3D point clouds. Based
on the objectives composed of completion, reconstruction,
and pose regression for the partial point cloud data, our
model learns to disentangle the content and pose factors. Our
learnt content and pose feature representations of 3D point
clouds experimentally demonstrate the superior performance
in comparison to other self-supervised methods in various
downstream tasks such as classification, part segmentation,
and registration.
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