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Abstract— Communication between robots and the server is
a major problem for cloud robotic systems. In this paper,
we address the problem caused by data loss during such
communications, and propose an efficient buffering algorithm,
called AFR, to solve the problem. We model the problem into
an optimization problem to maximize the received Quantity
of Information (QoI). Our AFR algorithm is formally proved
to achieve near-optimal Qol, which has a lower bound that
is a constant multiple of the unrealizable optimal Qol. We
implement our AFR algorithm in ROS without changing the
API for the applications. Our experiments on two cloud robot
applications show that our AFR algorithm can efficiently and
effectively reduce the impact of data loss. For the remote
mapping application, the RMSE caused by data loss can be
reduced by about 20%. For the remote tracking application,
the probability of tracking failure caused by data loss can
be reduced from about 40%-60% to under 10%. Meanwhile,
our AFR algorithm introduces time overhead of under 10
microseconds.

I. INTRODUCTION

Modern robotic systems have become a substitute for
humans when it is necessary to perform risky or exhausting
tasks such as military operations, exploration, rescue opera-
tions, surveillance, or large-scale cleaning operations. In such
applications, robots need long-term autonomy. Considering
the cost and energy consumption, off-loading some tasks to
a powerful server is a reasonable solution. In addition, by
gathering information from multiple robots, the server can
make global decisions that a single robot cannot make. Such
an architecture is a cloud robotic system [1]. Under such an
architecture, communication between robots and the server
is a major problem.

Due to the nature of autonomous robots, they usually
communicate with the server over a wireless network (e.g.,
over WiFi or 5G). However, wireless network connections
are not always stable [2]. The network could suffer tempo-
rary bandwidth reduction or even an interruption when the
robot moves out of range of the wireless network, switches
between network access points, or is obscured by obstacles
(e.g., driving into a tunnel). In this case, buffering some
messages at the sender is a commonly used solution. When
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Fig. 1: (a) The reference reconstructed 3D model. A person
is sitting at a table with three screens on it. (b) Resulting 3D
model when using the Drop Oldest algorithm. (c) Resulting
3D model when using the Random Drop algorithm. (d)
Resulting 3D model when using our AFR algorithm. (b-d)
are the results for the queue size L=15. They are generated
by CloudCompare, where red points represent points with
large error and blue points represent points with small error.

network connections are temporarily broken, new messages
are put into a buffer to wait for future transmission. However,
due to the limited memory of low-cost robots, the size of
the buffer is limited. Commonly used robotic middleware,
such as Robot Operating System (ROS) [3], employ a policy
called the Drop Oldest policy [4]. When the buffer is full,
this policy discards the oldest message to make room for
the new message. This solution is reasonable when newer
messages are considered more valuable than older ones.

However, we find that this assumption does not hold
for many robotic applications. Taking the remote tracking
application as an example, the robot sends large sensor data
to the server, and the server replies with the robot’s global
location [5]. Discarding the oldest message would cause
more differences between adjacent messages and may cause
tracking failure. Prior work [6] has considered the problem
and provided a specialized solution for the tracking appli-
cation by computing similarities between adjacent images.
Such similarity computations introduce time overhead. We
need a more efficient solution that can be generalized to other
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applications. Taking the remote mapping application as an
example, the robot sends large sensor data to the server, and
the server integrates them into a dense 3D model map [7].
Discarding the oldest message would lose information that
no other messages can provide, but comparing similarities
between adjacent images is not reasonable for this applica-
tion.

Main Results: In this paper, we design a novel network
buffering algorithm, called AFR, to reduce the impact of
data loss. We model the Quantity of Information (Qol) of
the data received at the server, and our AFR algorithm will
discard the message that has minimal impact on the received
Qol. By combining two frame rates and adaptively adjusting
them, our AFR algorithm can near-optimally maximize the
received Qol without estimating the network bandwidth or
any feedback from the server, relying only on the status of the
buffer. The main contributions of this paper are summarized
as follows.

¢ We model the Qol of the data received at the server
under the cloud robotic system architecture. Based on
this model, we formalize the problem of a limited buffer
to maximize the received Qol.

o We design a novel buffering algorithm, called AFR. We
formally prove that our AFR algorithm is better than
the Drop Oldest and the Random Drop algorithms, and
that it is near-optimal with a bounded difference with
the optimal, but unrealizable, Oracle algorithm.

o We implement our AFR algorithm based on ROS [3],
which is the de facto robotic middleware. Evaluations
through practical applications confirm the superiority of
our AFR algorithm compared to prior algorithms.

II. RELATED WORK

A. Communication Issues in Robotic Systems

Communications between robots and the server have been
a major issue in multiple-robot systems. Saeedi et al. review
multiple-robot systems [8], concluding that communication
is one of ten major problems. Reducing the frame rate, rather
than decreasing the resolution, is the most used solution to
relieve limited network bandwidth. Golodetz et al. [7] aim to
reconstruct dense 3D models with collaborative robots. They
explicitly point out the communication problem between
robots and the control center. Based on some experiments
and evaluation, they compress the sensor images and sample
the image frames to about 10 fps (frames per second).
Dong et al. [9] perform collaborative scanning for dense 3D
reconstruction with multiple robots. New sensor data are only
collected when the robot moves more than a given distance
or rotates more than a given angle. The given distance and
angle are decided by the speed of their robots. In practice,
manually deciding the resolution and frame rate requires
considerable experimentation and parameter tweaking and
cannot be easily adapted to dynamic environments with
varying network bandwidths.

B. Adaptive Video Analytics

Video analytics is also an important application of robotic
systems. Chameleon [11] periodically searches for the op-
timal configuration for a video query, balancing accuracy
and computation resources. It ignores the varying network
bandwidth but focuses on the differences between video
content at different times. AWStream [12] evaluates the
performance of different configurations in an offline way
to establish a relationship between bandwidth and accuracy.
Based on the profiles of configurations, AWStream chooses
the configuration with the best accuracy from those satisfying
the estimated bandwidth status. JCAB [13] aims to jointly
optimize configuration adaption while balancing accuracy,
latency, and energy consumption. Runespoor [14] addresses
the problem of tail accuracy. They all rely on feedback
from the server to guide the configurations of clients. When
a network interruption occurs, congestion signals from the
server are blocked. Even if the client decides to switch
configurations without the guide of the server, it can only
be triggered when queued items exceed a threshold. At this
time, switching configurations for future messages cannot
avoid the necessity of dropping some newer messages. Our
AFR algorithm would be a complement to these frameworks.

C. Quality of Service

Quality of Service (QoS) policies are designed to meet the
needs of different scenarios, such as real-time requirements.
However, existing QoS policies are not suitable for our prob-
lem of cloud robotic systems. ROS2 provides QoS policies
by integrating with Data Distribution System (DDS) [15].
According to the specifications [16] and evaluations [17],
the LatencyBudget configuration is the most related policy
because it implies the maximal frequency. However, deciding
the maximal frequency needs more experiments [7] and is
vulnerable to temporary network interruption.

D. Buffering Algorithms

Buffering algorithms have been researched for the last
decade. Practice networks are modeled as Delay Tolerant
Networks (DTN) [18] or Opportunistic Networks [19]. A
sequence of simple drop schemes such as Drop Oldest,
Drop Youngest, Drop Front, and Drop Last [4] has been
proposed when the buffer is full. Enhanced policies introduce
the concept of profit and assume that each message has a
different profit. The goal is to maximize the total profit of
the remaining messages [20]. According to the application
scenarios, different types of messages may have different
profits [21], [22], [23].

However, we find that in many robotic applications, the
profit of a message is not decided by itself. To address this
aspect, we have proposed ORBBuf [6]. By defining similarity
between messages, ORBBuf discards the message that has
minimal impact on the continuity between images, which
is crucial to the success of SLAM algorithms. However,
ORBBUuf is specially designed for SLAM algorithms, and
introduces time overhead to compute the similarity. In this
paper, we propose a novel buffering algorithm for more
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Fig. 2: The architecture of cloud robotic systems.

general applications by modeling the Qol. To the best of
our knowledge, ours is the first work that models the Qol
based on robot movement.

III. MODELLING CLOUD ROBOTIC SYSTEMS

Figure 2 shows the general workflow of cloud robotic
systems. At the robot side, the Sender module gathers raw
data (e.g., color images, depth images, infrared images, etc.)
from Sensors, and compresses the data gathered at one time
into a message. The message is then enqueued to a Queue
and waits for transmission. The Socket repeatedly dequeues
a message from the Queue and transmits it through the
wireless network. These messages are usually large in size
(e.g., a single compressed 640 x 480 depth image takes about
200KB of memory [25]) and must be split into hundreds of
packages (e.g., 1500 bytes per package) during transmission.
Therefore, unreliable network protocols such as UDP are not
preferred in this case, and we use TCP as the underlying
transmission protocol. At the server side, the Receiver gets
a transmitted message, decompresses it into raw data, and
provides the raw data to robotic applications.

When a network interruption occurs, the Socket dedicates
itself to the transmission of a single message, and the Queue
grows, until it reaches its limit. Then, Buffering algorithm
decides whether we should discard the newest message, or
which message in the queue should be discarded to make
room for the newest message. In either case, the process
of discarding a message results in data loss, but we can
optimize the buffering algorithm so that the overall Quantity
of Information (Qol) of all received messages is maximized.
Obviously, the key to defining our problem is to model the
received Qol.

A. Modeling the Quantity of Information

C. E. Shannon defined the quantity of information with
entropy, i.e., the uncertainty of random events. We fol-
low the notation used in [26] to model our problem. If
the Receiver receives a sequence of n messages M =

{My, M1, ..., M,,_1}, the overall Qol H(M) is:
n—1
H(M) :H(M0)+ZH(Mi\M0,~-~,Mz‘—1) (D
i=1

where H(z|y) is the entropy of = with known y. Indeed,
there are usually overlaps between the information provided
by messages, especially adjacent messages.

For better understanding, we use the application of build-
ing a map with a depth camera to illustrate the problem,
and other applications have similar forms. Figure 3 shows
two examples of the overlap between depth images while
the robot moves. The depth camera can capture the distance
between the camera and objects within its field of view
(FoV). The FoV of a depth camera is a 3D region in the
shape of a rectangular pyramid (represented with a triangle
in Figure 3) containing a set of rays from the camera. Some
of the rays hit an object, and the camera measures the axial
distance between the object and itself. The other rays that
do not hit any objects indicate that there are no objects
along these rays within the range limit. In Figure 3a, the
robot is moving forward along a corridor. At the former
position (the vertex at the bottom of the red triangle), a part
of the walls is within the FoV; at the latter position (the
vertex at the bottom of the blue triangle), another part of
the walls is within the FoV. Their intersection is redundant
overlap, which is highlighted in yellow. The depth image
provided by the camera at the latter position provides less
new information, because we have already been certain of
the highlighted part of walls based on the information at the
former position. Similarly, in Figure 3b, the robot is turning
around in place, and the intersection is highlighted.

From the above examples, we can see that the actual
H(M;|My, ..., M;_1) is complicated, and is related to the
positions of the camera and objects. However, by summa-
rizing some common cases, we can simplify it with some
assumptions.

Assumption 1: The information provided by every M; is
the same. This is reasonable since the resolutions of images
remain the same. Therefore, without loss of generality, we
assume that H(M;) = 1.

Assumption 2: The information provided by M, but not
by M;_1 is not provided by any M; with j < <. This
assumption may not be true if the robot goes back. However,
it is more likely to be true in a short period of time, such
as during a network interruption. Thus, we can simplify
H(MilM(), ey Mifl) to H(M1|Ml,1)

Assumption 3: H(M;|M;_1) is larger when the time
difference between them is larger. This is reasonable since
larger time differences indicate less probability and quantity
of their overlap. If the time stamp of M; is T;, we further
simplify H(M;|M;_1) to a function V of their time differ-
ence, i.e., V(T; — T;—1).
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Fig. 3: Two examples of the overlap between depth images
while the robot moves. The red triangle represents the field
of view (FoV) at the former position, and the blue triangle
represents the FoV at the latter position. The black lines
represent real-world walls, and the yellow parts are the
overlaps between two depth images. (a) The robot is moving
forward along a corridor. (b) The robot is turning around
in place. (c) The corresponding V function of (a). (d) The
corresponding V' function of (b). Note that (c) and (d) satisfy
our assumptions in Equations 3-6.

Overall, we can simplify Equation 1 to:
n—1
H(M) =1+ V(T; - Ti_y) )
i=1
We further model a variety of simple movement patterns
of the robot (Figure 3 shows two of them). Although the

resulting functions V's vary, they all follow the following
properties.

V(0)=0 3)
Vd>0,V(d) <1 4)

V' is monotonic non-decreasing. 5
V' is non-convex. (6)

Equation 3 indicates that the same message provides no
new information. Equation 4 is reasonable under assumption
1. Equation 5 is reasonable under assumption 3. Equation 6
seems a little strong, but we consider it reasonable under
Equations 3-5, and we find that it is true for a variety of
simple robot motions (including the two examples shown in
Figure 3).

B. Problem Definition

Suppose there are 7" messages generated during the net-
work interruption. Without loss of generality, we assume
their time stamps are 1,2,...,7. The message 0 has been
transmitted before the network interruption, or is being
transmitted when the network interruption occurs. In the

latter case, the TCP protocol promises that the message 0
will be successfully transmitted after the network resumes.
Messages from 7' + 1 and after will all be transmitted once
the network resumes. When the upper limit of the queue is
L, our problem is to choose at most L messages from the T’
messages and maximize the overall Qol. Based on the model
of Qol, we can formulate our problem as follows:

arg max H(M)

st. M = {0} w M {T+1}, )
M| <L, Mc{1,2,..T}

where W indicates concatenating two sequences, and |M |
indicates the length of sequence M.

Obviously, if 7' < L, there is enough space in the queue
to keep all T messages. This case indicates that, in order
to maximize the overall Qol, we should NOT drop any
messages before the queue fills up. In the rest of the paper,
we focus on the case of 7' > L. To avoid misunderstanding,
we use “result” to refer to the resulting maximal Qol, and
“solution” to refer to the resulting message sequence M.

C. Oracle Algorithm

To solve the problem stated in Equation 7, we design a
powerful algorithm called Oracle. According to the Oracle
algorithm, we chose L messages whose time stamps are
{6,26,...,L6} where § = z—_ﬂ We can prove that this
algorithm is the optimal solution, based on the property of
function V stated in Equations 3-6. !

Theorem 1: No solution is better than that of Oracle.

However, this algorithm is unrealizable for two reasons.
First, § might not be an integer, which violates the constraint
in Equation 7. Second, even if we round them to their
nearest integers and get an approximate optimal solution,
we do not know how long the network interruption will last,
which means we do not know 7' in advance. For example,
when L = 4 and T' = 9, the Oracle algorithm’s output is
{2,4,6,8}; when T = 14, the Oracle algorithm’s output is
{3,6,9,12}. However, the Oracle algorithm dropped mes-
sage 3 at time 7' = 9, and cannot retrieve it in practice.
There is an extra constraint for a practical algorithms that
dropped messages cannot be retrieved. We can formulate this
constraint by treating the solution M as a function of 7', and:

M(T) ¢ M(T — 1) w {T} (8)

Although the Oracle algorithm is unrealizable, it can
help us realize the upper bound of practical algorithms. In
addition, it also shows that we should generate a message
sequence with a uniform time distance between each adjacent
pair, i.e., a solution with a uniform frame rate. This cannot
be achieved because the frame rate changes as T increases,
and we do not know 7' in advance. Our idea is to use two
frame rates to approximate the desired frame rate.

'See Appendix I for all the proofs.



IV. OUR AFR BUFFERING

In this section, we propose our buffering algorithm, AFR
(Adaptive Frame Rate), analyze its characteristics, and intro-
duce our implementation.

A. Algorithm Design

The main idea of our AFR algorithm is to adjust the frame
rate, not only for messages to be generated, but also for
messages already in the queue. At any time 7', there are two
frame rates adopted. The queue is logically split into two
parts. After a dropping position p, we keep 1 message for
every r = 2" messages; and before p, we keep 1 message
for every 2" messages. We call this ratio r for dropping
rate. Note that it is easy to change the dropping rate from r
to 2r, by further dropping 1 message for every 2 messages.

For better understanding, we will explain our AFR al-
gorithm with an example, as shown in Figure 4. Suppose
L = 8 and we start by keeping every message (r = 1). At
time T = 8, the queue becomes full. At time 7" = 9, we
must decide whether to drop message 9 or make room for
it. Our AFR algorithm decides to drop message 1, and label
message 3 as the next dropping position (the highlighted
position). At time 7' = 10, AFR decides to drop message
3, and label message 5 as the next dropping position. The
process continues until time 7" = 16, when AFR decides to
drop message 15, raise the dropping rate r to 2, and reset the
dropping position to message 2. From then on, AFR drops
1 message for every r = 2 new messages. Thus, at any time
T, the dropping rate for messages before p is 2r, and the
dropping rate for messages after p and new messages is 7.

During network interruption, the dropping rate r keeps
increasing. When the network resumes, we should reduce
the dropping rate. This is achieved by checking whether the
occupation ratio g of the queue is lower than a threshold R.
In practice, we empirically set R = 2.

Overall, our AFR algorithm is described as Algorithm 1.
In lines 2-4, we detect and reduce the dropping rate; in lines
5-8, we drop the new message based on the dropping rate; in
lines 10-14, we make room for the new message. As we can
see, the complexity of our AFR algorithm is O(1) since there
are no loops. We can implement the queue with a linked list,
or a vector pointing to messages to avoid copying messages.
In practice, our AFR algorithm is efficient enough and can
finish under 10 microseconds, even on embedded devices.

B. Analysis and Comparison

In this subsection, we will analyze the characteristics of
our AFR algorithm by comparing it with other algorithms.

1) Oracle Algorithm: As we introduced in Section III-
C, the Oracle algorithm is an optimal, but unrealizable,
algorithm.

Since we have proved in Theorem 1 that no solution
is better than that of Oracle, our AFR algorithm cannot
be better. However, we can prove that in some cases, the
solution of our AFR algorithm is the same as Oracle’s. In
addition, there is a lower bound of the result of our AFR
algorithm which is a constant multiple of the optimal result.

Algorithm 1 AFR Algorithm

1: procedure ENQUEUE(message m) © r: dropping rate
2 if r > 1 and g < R then > @: occupation ratio
3 rr/2 > R: threshold
4 c+c modr

5: c+—c+1 > ¢: message counter
6 if ¢ <> r then > Drop frame based on r
7 drop m, return

8 c+0

9: if queue is full then

10: drop the message at p > p: dropping position
11: p—p+1
12: if p = L then > L: size limit of the queue
13: rT%k2 > Half the frame rate
14: p+0

15: keep m, return

Theorem 2: 2(vV2 —1) %5 < % <1,

where Hopqcre (T, L) indicates the received Qol when using
the Oracle algorithm at the time 7" with buffer length L, and
H opg indicates that of our AFR algorithm.

2) Drop Oldest Algorithm: The Drop Oldest algorithm
drops the oldest message in the queue when the queue is
full. It is very easy to implement and is probably the most
used algorithm in practice. For our problem, it generates a
solution M(T) = {T'—L+1,T—L+2,...,T}. We formally
prove that our AFR algorithm is better than the Drop Oldest
algorithm.

Theorem 3: Hapr(T,L) > Horp(T, L),

3) Random Drop Algorithm: The Random Drop algorithm
drops a random message in the queue when the queue is
full. Each message in the queue has an equal probability of
being dropped. As a result, it is possible for this algorithm
to generate every possible solution, including the best and
the worst. Intuitively, it seems that the average solution
fits our idea of uniform time distance. However, this is a
misguided conclusion because the Random Drop algorithm is
not randomly dropping T'— L messages from 7' messages but
instead randomly dropping 1 message from L + 1 messages
for T' — L times. The probability that the message ¢ is still
in the queue after all dropping operations is:

L )min(TfH»l,TfL) 9)
L+1

This indicates that older messages are much less likely
to be kept in the queue than newer ones. Thus, even the
average solution does not have a uniform time distance. Un-
fortunately, without further assumptions about the function
V', we cannot prove that our AFR algorithm is better than the
Random Drop algorithm. Instead, we run some simulations
to support our claim.

Figure 5 shows the simulation results of different algo-
rithms for L = 8. The horizontal axis is 7' and the vertical
axis is the resulting Qol. In this simulation, we set the
function V(d) = 1 — 0.618%. This is the case when the

P{i € M(T)} = (
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Fig. 4: An example of our AFR algorithm (L = 8). When a new message arrives and the queue is full, the message at
the dropping position (highlighted) is dropped, and the dropping position moves to the next position. When the dropping
position is at the end of the queue (e.g., when T' = 16, 32), the frame rate r is increased and the dropping position is moved

back to the beginning.
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Fig. 5: Simulation results of different algorithms (L = 8).

robot is moving backward away from a wall. Note that with
T increasing, the result of the Oracle algorithm (the green
curve) increases, but never reaches 9. This is because with
L = 8, the Qol could reach 9 if and only if there are no
overlaps between each pair of adjacent messages (including
My, and T + 1). The result of our AFR algorithm (the red
curve) is very close to that of the Oracle algorithm. In some
special cases (I'" = 18,36,72...), the result of our AFR
algorithm is the same as that of the Oracle algorithm. The
result of the Drop Oldest algorithm (the grey curve) is very
bad because it always keeps the 8 newest messages, and there
are a lot of overlaps among them. The result of the Random
Drop algorithm is random. We run the simulation 10,000
times, and record the statistics. The dark blue curve shows
the expectation of all results, and the light blue region shows
plus or minus 1 standard deviation (about 68% results are
within this region). The average result of the Random Drop
algorithm is better than that of the Drop Oldest but worse
than that of Oracle and our AFR. This result confirms our
analysis of the Random Drop algorithm.

C. Implementation

We implement our AFR algorithm based on ROS [3],
which is the de facto robotic middleware. We modify the
code of the class TransportSubscriberLink which is located
at the ROS Communication (ros_comm) project [27]. The
original ros_.comm implements the Drop Oldest algorithm.
For comparison, we also modify it to implement the Random

Drop algorithm and the ORBBuf algorithm [6]. Each modi-
fied version is linked into a dynamic-link library libroscpp.so.
Since we implement different algorithms at the middleware
layer, they are transparent to the developers and no user
code needs to be modified. The only operation is to replace
libroscpp.so with the desired version. It is also easy to
provide an interface for developers to choose the desired
algorithm, which is left for future work.

V. EVALUATION

In this section, we show the advantage of our AFR

algorithm with mapping and tracking applications.

o Section V-B shows that, by using our AFR algorithm,
the error of the resulting map can be reduced by about
10%-20%.

e Section V-C shows that, by using our AFR algorithm,
the probability of tracking failure is reduced from about
40%-60% to under 10%.

o Section V-D shows that our AFR algorithm is efficient.
The time overhead is under 10 microseconds, while the
ORBBuf algorithm introduces about 10 milliseconds of
overhead.

A. Experiment Setup

In the following experiment, each data sequence is re-
played on a laptop that acts as the robot. The server is
equipped with an Intel Core i7-8750H @2.20GHz 12x CPU,
16GB memory, and an NVIDIA GeForce GTX 1080 GPU.
All software modules are connected with ROS middleware.
The ROS version is Lunar on Ubuntu 16.04.

We set up the experiments based on InfiniTAM [28],
which is one of the most integrated state-of-the-art 3D
reconstruction frameworks. Its interface allows us to change
the underlying mapping and tracking algorithms.

We use the TUM RGB-D dataset [29] as input. The dataset
contains color and depth images captured with a Microsoft
Kinect sensor which is a typical RGB-D sensor used in
robotic systems. The data was recorded at full frame rate
(30 Hz) and sensor resolution (640 x 480). The dataset also
provides the ground-truth trajectory of the sensor, which is
obtained from a high-accuracy motion-capture system with
external tracking cameras.
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To reproduce the result multiple times, the robot and the
server are connected directly with a 1Gbps Ethernet cable,
and we use the Linux #c utility to modify the outgoing
bandwidth of the robot to emulate the cloud robotic envi-
ronment. We employ the Belgium 4G/LTE dataset [2]. We
choose a very challenging trace labeled car_0002, shown in
Figure 6. The horizontal axis is time in seconds, and the
vertical axis is the bandwidth in KB/s. The orange dotted
line indicates the approximate required bandwidth to transmit
messages. Generally, the bandwidth limit of a 4G network
is about 15MB/s, which is enough to transmit all messages.
However, in this challenging trace, the network bandwidth
varies second-wise, and the overall bandwidth is not enough
to transmit all messages. Specifically, at the 21st and 23rd
second, the bandwidth drops below 500KB/s.

All test cases are repeated 10 times, and we organize and
report the statistical result of each test case.

B. Remote Mapping Application

In this experiment, we use the ground-truth trajectory
to guide the dense mapping algorithm [30]. Each message
contains a color image (compressed with low-quality JPEG),
a corresponding depth image (compressed with lossless
RVL), and the corresponding pose of the sensor (represented
with a transformation matrix). Messages are generated at
30Hz. With the help of the pose of the sensor, the mapping
algorithm never fails, and each pixel of all received messages
either provides information of a new 3D point or reduces the
error of a known 3D point.

We measure the quality of the resulting 3D model by
comparing the errors with the reference 3D model. The
reference 3D model is generated by processing all messages
in an off-line manner. The error is measured by the RMSE
(root mean square error) of the minimal distance between
each point of the comparison 3D model and the reference
3D model. This is a commonly used method to compare two
3D models. We employ a tool called CloudCompare [31] to
complete the calculation.

The results are organized into Figure 7. The horizontal
axis is the queue size. Each box plot indicates the average,
the median, the maximum, the minimum, and two quartile
values of results of each test case. Surprisingly, increasing
the queue size does not improve the RMSE much, when
using the Drop Oldest and the Random Drop algorithm.
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Fig. 7: The resulting RMSE using different algorithms under
different queue sizes.

This is probably because under this network trace, the queue
is full most of the time. For the ORBBuf algorithm, the
situation is not improved, because the ORBBuf algorithm is
specialized for tracking algorithms. For our AFR algorithm,
increasing the queue size would reduce the probability of a
high dropping rate. Specifically, when the queue size is 5,
our AFR algorithm results in a frame rate of 8§ Hz at around
the 21st and the 23rd second, which makes the RMSE larger.
On average, our AFR algorithm reduces the average RMSE
by about 10% compared with the Random Drop and the
ORBBuf algorithm, and by about 20% compared with the
Drop Oldest algorithm.

C. Remote Tracking Application

In this experiment, we provide the same data sequence, ex-
cept for the poses of the sensor, to a tracking algorithm [32]
under the same network trace condition. Figure 8 shows the
probability of tracking failure during our experiments. The
horizontal axis is the queue size. As we can see, increasing
the queue size does not help reducing the probability of
tracking failure when using the Drop Oldest and the Ran-
dom Drop algorithm. The ORBBuf algorithm is a specified
algorithm to meet the needs of tracking algorithms, and the
probability of tracking failure is greatly reduced. Our AFR
algorithm can also greatly reduce the probability of tracking
failure. Specifically, when the queue size is larger than 10,
no tracking failure occurs. Overall, our AFR algorithm can
reduce the probability of tracking failure from about 40%-
60% to under 10%.

Figure 1 shows an example of the 3D models resulting
from different buffering algorithms. Figure la shows the
reference reconstructed 3D model. In Figures 1b-1d, red
points represent points with large error and blue points
represent points with small error. Figure 1b shows a result
of the Drop Oldest algorithm. The tracking algorithm failed
at around the 23rd second, and its result had already been
inaccurate at around the 14th second. Therefore, its resulting
3D model shows a large error. Figure 1c shows a result of
the Random Drop algorithm. The tracking algorithm failed
at around the 7th second. Therefore, its resulting 3D model
loses a lot of information. Figure 1d shows a result of our
AFR algorithm. The tracking algorithm succeeds all the time,
and its resulting 3D model is fairly accurate.
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rithms under different queue sizes.
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Fig. 9: Time overhead introduced by different buffering algo-
rithms. Content-aware algorithms such as ORBBuf introduce
more time overhead. Our AFR algorithm is as efficient as the
Drop Oldest and Random algorithms.

D. Time Overhead

During the above experiments, we measure the time
overhead of different algorithms. The result is organized in
Figure 9. The ORBBuf algorithm introduces a time overhead
of about 10 milliseconds when recalculating ORB features is
needed. The network trace used in our experiment is a very
challenging one, and the recalculating process is triggered
about 400 times within the 794 input frames. Nonetheless,
our AFR algorithm is an efficient algorithm that introduces
negligible time overhead (under 10 microseconds), which is
of the same order as the Drop Oldest and Random Drop
algorithm. Less time overhead indicates less processor time
footprint, so the robot can handle more tasks or consume
less energy.

Overall, our experiments have shown that our AFR algo-
rithm can improve the overall performance of cloud robotic
systems with negligible time overhead, under challenging
network situations where the network bandwidth varies dra-
matically and data loss is inevitable.

VI. CONCLUSION

In this paper, we address the problem caused by data loss
during robot-cloud communication. By modeling the Qol of
the data received at the server under the cloud robotic system
architecture, we have proposed a novel buffering algorithm
that can select the message that can maximize the received
Qol. It is easy to implement and efficient, without the need

for feedback from the server, nor heavy and domain-specific
content-related calculations. We have shown that our AFR
algorithm performs better than prior algorithms in multiple
applications with negligible time overhead.
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APPENDIX I
PROOF OF THEOREMS

By our AFR algorithm, there exists some non-negative
integers x1, x3, 11, 2, n and [ that satisfy:

rT1+x2+1=L+1

7= 2"y =27
i1+ xere +1l=T+1
0<i<2"

Based on the above definition, we get:
HAFR(T7 L) = $1V(T1) + .%‘QV(TQ) + V(l)

A. Lemma 1

le,dg,d3,d4 >1,if di +doy = d3 + d4 and |d1 — dg‘ <
|d3 — dy4|, then V(dl) + V(dQ) > V(dg) + V(d4)
Proof:
Without losing generality, we can assume that dz < d; <
dy < dy. Since V(d) is non-convex, by Jensen’s Inequality,
we have:

dy —dy dy — ds

d) > 2"y d

Vid) > FrlV(d) + TV ()
dy — ds dy — ds

> U7y BBy

Vidy) 2 =V (ds) + 2= 2V (da)

Note that (d4 — dl) + (d4 7d2) = (d4 — dl) + (dl 7d3) =
d4 7d3 and (dl 7d3) + (dg — d3) = (dl — dg) —+ (d4 7d1) =
d4 — d3. Thus, summing the above inequalities leads to:

B. Theorem 1: No solution is better than that of the
Oracle’s.

Proof:
For any solution M, from our definition of the quantity

of information, the distance d; between adjacent messages
satisfies:

L+1
Zdi =T+1
=1

L+1
Hy(T,L) =Y V(d;)

By Jensen’s Inequality, we have

L1 _ L+1 5
> e V(di) < V(Zi:l d

i o, T+1
L+1 - L+1)_V(

L+1

)

which shows that Hg (T, L) < Horacle(T, L).
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Harpr(T,L) < 1

C. Theorem 2: 2(\/2 — 1)L+1 Horacte(I,L) =

Proof: .
1) :l"he left part. Let [ = g—ﬁ = %ﬂcg’fﬁl We have
r1 > 1 > rq, and therefore:
Hapr(T, L)
HOracle (Ta L)
_$1V(T1) + .’EQV(T‘Q) + V(l)
(21 4 x2 + 1)V (0)
> =
(1’1 + T2 + ].)V(l)
xr1 + ZEQ%
_(E1 —+ i) + ].
_ X + L— I
L+1 L+4+xz+1
By taking the partial derivative of the last term with respect
to x1 to be 0, we can get its minimum which leads to:
T L—x L
>2(vV2—1)——
it a1 2V D
2) The right part.
HOTacle(T7 L)
T+1
=(L+1)V(—/)

L+1
=(r1 + 22 + 1)V(%x§ﬁjl)
21V (r) + 22V (rs) + V()
1 +xo+1
=21V (r1) + 22V (r2) + V()

>(z1+ 22 +1)

D. Theorem 3: Hapg(T,L) > Horp(T, L).

Proof:
By Lemma 1 and Jensen Inequality,

Hop(T,L)
=V(z1(r1 — 1) + 22(r2 = 1) +1) + (21 + 22)V (1)
=V(x1(r1 — 1)+ z2(ra — 1) + 1) + V(1)

+ (1 + 22— 1)V(1)
<V(zi(ri — 1)+ (@2 —1)(r2 — 1) +1) + V(r2)

+ (1 + 22— 1)V(1)

<V(z1(ry — 1) +1) + 22V (r2) + 21V (1)

Vizi(rm =1+ +V(Q1)

+ (z1 = DV (L) + 22V (r2)
<V((x1—=1)(r1 =1)+1)+V(r)

(1 = V(1) + 22V (r2)

<V(1) + 2,V (ry) + 22V (r9)
=Harr(T,L)
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