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Abstract— Due to labor shortage and rising labor cost for
the apple industry, there is an urgent need for the devel-
opment of robotic systems to efficiently and autonomously
harvest apples. In this paper, we present a system overview
and algorithm design of our recently developed robotic apple
harvester prototype. Our robotic system is enabled by the
close integration of several core modules, including visual
perception, planning, and control. This paper covers the main
methods and advancements in deep learning-based multi-view
fruit detection and localization, unified picking and dropping
planning, and dexterous manipulation control. Indoor and field
experiments were conducted to evaluate the performance of the
developed system, which achieved an average picking rate of
3.6 seconds per apple. This is a significant improvement over
other reported apple harvesting robots with a picking rate in
the range of 7-10 seconds per apple. The current prototype
shows promising performance towards further development of
efficient and automated apple harvesting technology. Finally,
limitations of the current system and future work are discussed.

I. INTRODUCTION

The apple industry relies heavily on manual labor. For
instance, in the United States alone, it is estimated that the
seasonal labor force needed for apple harvesting is more
than 10 million worker hours each year, attributing to about
15% of the total production costs [1]. The growing labor
shortage and increased labor cost have thus become major
concerns for the long-term sustainability and profitability of
the apple industry. In the meantime, the past decade has
seen great transitions in apple production systems; traditional
unstructured orchards have been replaced with high-density
orchard systems where trees are smaller and more uniformly
structured (i.e., v-trellis, vertical fruiting wall, etc.). These
modern tree structures can greatly facilitate orchard automa-
tion, and thus there has been a renewed interest in pursuing
robotic harvesting as a promising solution to reduce the
harvesting cost and dependence on manual labor.

Over the past few years, several robotic systems have
been designed to autonomously harvest different horticultural
crops, including sweet pepper [2], strawberry [3], apple
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[4], and kiwifruit [5]. For apple harvesting, the automation
system designs can be mainly grouped into two categories.
The first category is the shake-and-catch harvesting [6],
where vibrations are applied to the tree trunk and/or branches
to detach the fruits. Although the shake-and-catch harvesting
systems are efficient in detaching fruits from trees, they often
result in a high rate of apple bruising that is not acceptable
for fresh market. The other category is the fruit-by-fruit
harvesting where manipulators are used to pick fruits in a
controlled manner, and thus can substantially reduce fruit
damage. However, designing such systems with high picking
efficiency and practical viability presents a great challenge.

So far, several fruit-by-fruit robotic apple harvesting sys-
tems have been developed [4], [7]–[10]. For instance, Baeton
et al. combines a 7 degree-of-freedom (DOF) industrial
manipulator with a vacuum activated, funnel shaped gripper
for apple detachment, and the harvesting cycle time is 8-10
s/fruit [7]. In [4], both hardware and software designs of an
apple harvester are presented. Field tests conducted on a v-
trellis orchard show that this system is able to pick 84% of
150 apples attempted with the overall harvesting time being
7.6 s/fruit. In [8], Hohimer et al. developed a harvesting
robot based on a pneumatic soft-robotic end-effector, and the
average time that the system takes from apple detachment
to transported to storage bin is 7.3 s/fruit. Despite the
aforementioned progresses, the low picking efficiencies of
existing systems are still unsatisfactory for their practical
use in the real orchard environment [11].

Towards the goal of developing a practically and eco-
nomically viable robotic harvesting system, we have been
developing an efficient automated apple harvesting system
over the past three years. Tests in orchard field and indoor
simulated orchard environment demonstrated a promising
picking rate of ∼3.6 s/fruit, a significant improvement over
the existing systems reviewed above. While the mechanical
and preliminary control designs have been reported in [9],
this paper presents the algorithm design and integration
of the developed system, focusing on three major mod-
ules – perception, planning, and control – where several
advancements have been made. First, we develop a deep
learning-based multi-view fruit detection and localization
framework by fusing two RGB-D sensors facing different
angles. Compared to the single camera-based algorithm
we developed earlier [12], this multi-view fusion offers
enhanced performance in both detection and localization.
Second, a unified planning algorithm that simultaneously
optimizes picking sequence and dropping spots is developed,
which significantly improves harvesting efficiency. Lastly, a
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computationally-efficient nonlinear controller is synthesized
to enable accurate and smooth manipulator movement. Ex-
periments in both an indoor simulated orchard environment
and a real orchard field were conducted to illustrate the
performance of the integrated system.

The remainder of this paper is organized as follows.
Section II provides an overview of the developed robotic
apple harvesting system. The algorithm designs of percep-
tion, planning and control modules are detailed in Section III,
and experiment results are discussed in Section IV. Finally,
conclusions are drawn in Section V.

II. SYSTEM OVERVIEW

The developed robotic apple harvesting system is shown
in Fig. 1, which is comprised of four primary hardware
components: a perception module consisting of two Intel
RealSense D435i RGB-D cameras, a 3-DOF manipulator,
a vacuum-based end-effector, and a dropping module. All
components are affixed to a Segway mobility platform for
ease of movement in orchard. The RGB-D cameras, the
manipulator, and all communication devices are connected
to an industrial computer (Xeon E2176G CPU and 64 GB
RAM) resided in the mobility platform. The robot operating
system (ROS) is used to fully integrate the entire software
and facilitate the communication and control of different
components.

Fig. 1. The developed robotic apple harvesting prototype.

A. Hardware Design

For automated apple harvesting, the first and foremost task
is orchard perception, which detects and localizes the fruits to
guide robotic manipulations. Different from existing works
(e.g., [7], [10]) that attach the camera to the manipulator
or the end-effector, the RGB-D cameras are installed on
the Segway mobility platform to provide a global view
of the scene, facilitating the use of multiple manipulator
arms planned in our future versions. Moreover, the multi-
camera setup is introduced to provide multi-view sensing
from different perspectives, which is intended to achieve
enhanced perception accuracy and robustness through sensor

fusion to alleviate the impact of occlusions and challenging
lighting conditions.

To efficiently approach the target fruits, a 3-DOF ma-
nipulator with simple and compact mechanical structure is
designed and assembled. Specifically, the manipulator is
comprised of one prismatic joint and two revolute joints. The
two revolute joints are linked using an L-shaped aluminum
plate, which creates a pan-and-tilt module. The prismatic
joint is assembled as the base of the pan-and-tilt module to
extend the depth of the manipulator’s workspace. A hollow
aluminum link is installed on the pan-and-tilt module to
ensure that the end-effector can reach the apple locations,
and it also acts as a vacuum tube for grasping fruits in
the harvesting process. Instead of relying on a hybrid pneu-
matic/motor actuation mechanism in our previous design [9],
all the joints of the current manipulator are driven by servo
motors, which not only reduces actuation complexity but also
facilitates integrated control scheme design.

In our system, a vacuum-based end-effector is designed
to grasp and detach fruits. A soft silicone vacuum cup is
attached to the front end of the aluminum tube. The vac-
uum cup with a special geometric configuration has shown
satisfactory performance in conforming to various apple
contours [13]. Meanwhile, the rear end of the aluminum
tube is connected to an electric powered wet/dry vacuum
via a flexible and expandable tube. The vacuum-based end-
effector can reduce potential damage to fruits. Moreover,
if the manipulator does not reach the apple accurately, the
vacuum-based end-effector can tolerate some approaching
inaccuracies since it can attract the fruit within a certain
distance (about 1.5 cm in our current prototype) when
adequate vacuum flow is provided.

For ease of collecting and transporting picked apples, a
dropping module is assembled and affixed to the mobility
platform. The base of the dropping module is a rectangular
aluminum plate with a foam cushion covering. The manip-
ulator can stop at any spots above the dropping module and
then release the harvested fruit, thus reducing the harvesting
cycle time. After the apple have fallen on the sloped surface
of the dropping module, it rolls down to the rear end of the
dropping module where a screw-driven conveyer is installed
to transport the apple to a bin [14].

B. Software Design

The software suite is designed and integrated in the ROS
framework. Different software components are primarily
communicated via custom messages sent through ROS ac-
tions and services. Fig. 2 shows the main algorithm flow
of the software system during an apple harvesting cycle.
The algorithm structure mainly consists of three modules:
perception, planning, and control. The logic flow of the apple
harvesting cycle is detailed in the following.

At the beginning of each harvesting cycle, the RGB-D
cameras are triggered to acquire images. With the obtained
image information, the perception algorithm (Section III-
A) is used to detect and localize the fruits within the
system’s workspace. A list of 3D apple locations are then



Fig. 2. Algorithm flowchart in an apple harvesting cycle.

generated and subsequently transformed into the 3D posi-
tions expressed in the coordinate frame of the manipulator.
Based on the apple location list, the planning algorithm
is utilized to optimize the apple picking sequence and its
corresponding dropping spots (Section III-B). The detected
apples will be chosen as the targeted fruits by following the
planned picking sequence, and a reference trajectory will be
generated to guide the motion of the manipulator. The target
apple location and its corresponding reference trajectory are
passed onto the control module, which then actuates the ma-
nipulator to follow the reference trajectory to reach the fruit.
Once the fruit is successfully attached to the end-effector
(detected by a pressure sensor mounted inside the tube), the
rotation mechanism is triggered to rotate the whole aluminum
tube by a certain angle to detach the apple (Section III-
C). Finally, the manipulator returns to a dropping spot and
releases the fruit. It is apparent that the software design of
our robotic system requires multi-disciplinary advances to
enable various synergistic functionalities and coordination
for achieving reliable automated apple harvesting. The next
section describes each of the software components in more
details.

III. ALGORITHM DESIGN AND INTEGRATION

In this section, we describe our software components on
perception, planning, and control in details.

A. Multi-view fusion for robust detection and localization
One of the key tasks in robotic apple harvesting is fruit

detection and localization, where the former is to segment
apples from the background areas whereas the latter subse-
quently calculates the 3D positions of the detected apples.
In our preliminary work, a network with Mask R-CNN
backbone and a suppression end was developed in [12] using
a single RGB-D camera. In this new version, we extend the
perception system to systematically fuse two RGB-D cam-
eras to enhance the detection performance. This is motivated

Fig. 3. Apple detection structure based on two-camera setup.
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projection from a2
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Fig. 4. Apple matching unit of the fusion scheme: assume we have two
apples a and b which are identified as a1, b1 in the main camera (View
1) and are identified as a2, b2 in the side camera (View 2). Based on the
extrinsic calibration of the two cameras, a2, b2 in the side camera are first
transformed into a′2, b′2 in the main camera. Then we match a1 with a′2
and match b1 with b′2 based on the overlap.

to address the two major challenges in orchard perception as
identified in our previous filed tests: leaf/branch occlusion
and varying lighting conditions. Exploiting multiple cameras
from different views can alleviate the impact of occlusion
and challenging lighting conditions as the two cameras can
provide complementary views for enhanced performance.

The network architecture of the proposed detection ap-
proach is shown in Fig. 3. The raw images captured by the
two RGB-D cameras from different perspectives are fed into
identical but separate deep learning network which consists
of two components: a feature learning backbone and a feature
suppression end. The feature learning backbone adopts the
classical backbone designed in Mask R-CNN [15] to extract
apple features and generate region proposals. Since the
feature learning backbone might generate wrong inference
features, the image patches inside the bounding boxes are
then passed to a feature suppression end to remove some mis-
classified candidates. Once the images from the cameras are
processed by the deep learning network, the bounding boxes
of apple candidates are obtained. This suppression Mask R-
CNN design has been reported in [12]. For the multi-view
object detection, the key task is to associate the identical
objects from two views. To merge the detection results from
the two camera channels, we further design a fusion scheme



that consists of an apple matching unit and a fuzzy logic unit.
In the matching unit, we match the bounding boxes from
the two camera frames based on the extrinsic calibration of
the two cameras. As showed in Fig. 4, the bounding boxes
and apple positions detected from the side camera are trans-
formed into the corresponding ones represented under the
coordinate frame of the main camera. Based on the overlap
relationship, we build associations for apples between two
cameras. For the matched and unmatched bounding boxes, a
fuzzy logic unit is utilized to combine the detection results
to further enhance the accuracy of the labeled candidates.
As shown in Fig. 5, we design expert rules for the fuzzy
logic unit. A triangular fuzzy membership function [16]
is applied to process the crisp input, and the results are
distilled to determine the final detection confidence. Fig. 6
shows an example of the detection results. It is clear that
apples with high occlusion can be identified more effectively
by introducing the multi-view fusion detection mechanism.
Moreover, F1-score is used to quantitatively evaluate the
detection performance. Specifically, all detection outcomes
are divided into four types: true positive (TP), false positive
(FP), true negative (TN), and false negative (FN), based on
the relation between the true class and predicted class. Then
precision (P) and recall (R) are defined as follows:

P =
TP

TP + FP
,

R =
TP

TP + FN
.

The F1-score is the harmonic mean of the precision and
recall, which is defined as follows:

F1 =
2P ·R
P +R

.

The detection algorithm with two-camera setup achieves an
F1-score of 93.92%, while the one with a single camera
achieves an F1-score of 90.5%. The code on the network
and fuzzy logic implementation is open sourced (https:
//github.com/pengyuchu/DualCamFusion).

Rule 1 
If d1 > 0.5 or d2 > 0.5, 
then o > 0.5.

Input (View 2)

detection score (d2)
ratio of apple pixels (c2)

Input (View 1)

detection score (d1)
ratio of apple pixels (c1)

ΣRule 2 

If d1 > 0.2 and d2 > 0.2, 
and either c1 > 0.2 or 
c2 > 0.2, then o > 0.5; 
otherwise, o < 0.5.

Rule 3 
If d1 < 0.5 and d2 < 0.5, 
and either d1 < 0.2 or 
d2 < 0.2, then o < 0.2.

Output
detection 
confidence (o)

Fig. 5. Fuzzy logic unit: the inputs are detection score (d1, d2) and the
ratio of apple pixels (c1, c2) from both view 1 and view 2 with a limited
range of 0−1. We use fuzzy reasoning to evaluate all three rules in parallel
and then the results of the rules are combined and distilled to the detection
confidence o.

After detecting the fruits, apple localization is performed
by employing the depth information provided by the RGB-D
camera. More precisely, for each bounding box, the image

Fig. 6. A comparison example between multi-view fusion detection and
single-view detection. The blue bounding boxes represent the targets de-
tected with the single-view detection algorithm. The yellow bounding boxes
denote additional detection by introducing multi-view fusion mechanism.

pixels of the detected apple are extracted to generate a range
matrix by utilizing the disparity map. We then calculate the
mean value of the range matrix and regard it as the apple’s
depth range. Combining the depth range with the center
of the bounding box pixels, back-projection [17] is used
to calculate the 3D position of the apple. This process is
conducted for each of the bounding boxes to obtain positions
of all detected apples in the image.

B. Unified picking/dropping and motion planning

In our system, there are two levels of planning tasks. At a
high level, we need to plan the apple picking sequence and
dropping spots based on the list of detected apple locations
provided by the perception module. At a lower level, we need
to generate reference trajectory for a selected target apple for
the manipulation control.

The high-level harvesting sequence planning is necessary
as it plays a crucial role in reducing the harvesting cycle
time. Different from existing works [4], [18] that only
focus on optimizing the fruit picking sequence, we take
both the apple picking and dropping spot sequences into
consideration. This flexibility is enabled by our dropping
module design where the end effector does not need to
return all the way to the home position to release the picked
fruits. As shown in Fig. 1, the dropping module allows the
end effector to release the detached apple in a large area,
offering additional flexibility and optimization freedom for
improved harvesting efficiency. More specifically, given N
detected apples with pi ∈ R3, i = 1, · · · , N , denoting their
3D positions expressed in the manipulator frame. The apple
picking sequence and the dropping spot sequence are defined
as follows:
• The apple picking sequence S = {s1, · · · , sN} is

a permutation of {1, · · · , N}, which determines the
sequence of picking apples with the corresponding
position sequence {ps1 , · · · , psN } that the manipulator
will follow to travel through. Each apple only will be
visited once.

https://github.com/pengyuchu/DualCamFusion
https://github.com/pengyuchu/DualCamFusion


• The dropping spot sequence Sd =
{
p̄s1 , · · · , p̄sN−1

}
is

a list of ordered 3D positions where the manipulator will
stop by and release the harvested fruit. As discussed in
Section II-A, the dropping module provides a specific
domain (which is denoted by P̄) for the manipulator
to release the fruit, and hence the dropping spots p̄si
should be generated from this domain, i.e., p̄si ∈ P̄.

In the planning phase, we consider that the manipulator will
start from its home position p0 and approach the detected
apples by following the sequence S defined above. For
i = 1, · · · , N −1, once the apple located at psi is harvested,
the manipulator will move to the position p̄si to release the
fruit and then heads to the next apple located at psi+1

. In par-
ticular, if the last apple in the picking sequence is harvested,
the manipulator will return back to the home position p0

for fruit release. According to the above description, it can
be concluded that the manipulator’s maneuver satisfies the
following sequence:

p0→ps1→ p̄s1→· · ·→psN−1
→ p̄sN−1

→psN→p0. (1)

The planning objective is to determine the picking sequence
S and its corresponding dropping spot sequence Sd by
optimizing the travel cost along the maneuver sequence
(1). We use Euclidean distance to define the travel cost, as
follows:

g = ‖ps1 − p0‖+

N−1∑
i=1

gsi,si+1 + ‖p0 − psN ‖, (2)

where gsi,si+1
= ‖p̄si − psi‖ + ‖psi+1

− p̄si‖ ∈ R (i =
1, · · · , N−1) is the travel cost between two adjoining apples
in S. Given psi and pss+i

, the optimal dropping spot p̄∗si can
be determined by solving the following problem:

min
p̄si

gsi,si+1(p̄si) = ‖p̄si − psi‖+ ‖psi+1 − p̄si‖,

s.t. p̄si ∈ P̄.
(3)

Let g∗si,si+1
= ‖p̄∗si−psi‖+‖psi+1

−p̄∗si‖ ∈ R be the minimal
value of gsi,si+1 . Then, the optimization problem over the
picking sequence S is formulated as

min
S
g(S) = ‖ps1 − p0‖+

N−1∑
i=1

g∗si,si+1
+ ‖p0 − psN ‖,

s.t. si ∈ {1, · · · , N} , i = 1, · · · , N,
si 6= sj , for any i 6= j and i, j = 1, · · ·N.

(4)

To determine the apple picking sequence and the dropping
spot sequence. We first calculate the minimal travel cost
between any two apple positions via (3). With the obtained
minimal travel cost for any pair of two apples, the optimiza-
tion problem (4) can be reformulated as a travel salesman
problem (TSP). The nearest neighbor algorithm [19] is uti-
lized to address the TSP, and then the apple picking sequence
S and the dropping spot sequence Sd can be determined.

Based on the sequences S and Sd, the apple location
psi and the dropping spot p̄si will be assigned in turn as
the targeted position pd =

[
xd, yd, zd

]>
where the manip-

ulator needs to reach. In our implementation, the planning

algorithm described above will be performed whenever the
perception system sends an updated list of detected apple
locations. To facilitate the manipulation control, given a
targeted position pd (e.g., top of the picking list), we use the
quintic function [20] to generate a corresponding reference
trajectory pr(t) =

[
xr(t), yr(t), zr(t)

]>
. This reference tra-

jectory is a function of time with its terminus being the target
position pd. The introduction of the quintic function-based
reference trajectory pr brings the following advantages: First,
the reference trajectory is continuously differentiable and
its terminal velocity and acceleration are zero, which is
conducive to ensuring that the end-effector approaches the
desired position along a smooth path. Second, by adjusting
function parameters, the velocity profile of the reference
trajectory can be modified, and thus the end-effector can
reach the desired position within a specific time interval.

C. Efficient nonlinear control for accurate reference tracking

Given a target apple and the generated reference trajectory
using the planning algorithm discussed above, we next
introduce the control algorithm that drives the manipulator
to follow the reference trajectory. As shown in Fig. 2, one
key requirement of the control module is to adjust the
manipulator to approach the detected fruits or dropping spots
with high accuracy and flexibility. To achieve this goal, a
motion control strategy is developed by fully exploiting the
mechanical structure of the developed 3-DOF manipulator.

The kinematic description of the 3-DOF manipulator is
shown in Fig. 7. Denote p =

[
x, y, z

]> ∈ R3 as the position
of the end-effector. Based on the Denavit–Hartenberg con-
vention [20] and the kinematical diagram presented in Fig.
7, the forward kinematics function of the manipulator can be
derived, as follows:

x = dx3 cos(θ) cos(ϕ) + dx2 cos(θ) + dz2 sin(θ) + dx1 +D,

y = dx3 sin(ϕ) + dy2 + dy1,

z = −dx3 sin(θ) cos(ϕ)− dx2 sin(θ) + dz2 cos(θ) + dz1,
(5)

where dx1, dx2, dx3, dy1, dy2, dz1, dz2 ∈ R are the link
lengths, and

[
ϕ, θ,D

]> ∈ R3 are the joint variables.
As described in Section III-B, the planning mod-

ule will provide the reference trajectory pr(t) =[
xr(t), yr(t), zr(t)

]>
for the targeted position pd. The ob-

jective of the manipulation control is to regulate the end-
effector to follow the reference trajectory pr and finally
approach the target position pd. The revolute joint parameters

Fig. 7. Kinematical description of the 3-DOF manipulator.



ϕ, θ and prismatic joint parameter D are all driven by
electrical motors, and the velocity-based control scheme is
employed to generate explicit speed command to smoothly
adjust the joints based on real-time position feedback. Specif-
ically, based on (5), the time derivative of

[
x, y, z

]>
can be

calculated as

ẋ = −dx3(sin(θ) cos(ϕ)ωθ + cos(θ) sin(ϕ)ωϕ)

− dx2 sin(θ)ωθ + dz2 cos(θ)ωθ + vD,

ẏ = dx3 cos(ϕ)ωϕ,

ż = −dx3(cos(θ) cos(ϕ)ωθ − sin(θ) sin(ϕ)ωϕ)

− dx2 cos(θ)ωθ − dz2 sin(θ)ωθ,

(6)

where ωϕ, ωθ ∈ R are the angular velocity of the revolute
joints ϕ and θ, respectively, and vD ∈ R is the linear
velocity of the prismatic joint D. Furthermore, the error
signals

[
ex, ey, ez

]> ∈ R3 are constructed as

ex = x− xr,
ey = y − yr,
ez = z − zr.

(7)

Based on (6), (7), and by virtue of Lyapunov-based control
techniques [21], the velocity controller is designed as

ωϕ =
−kyey + ẏr
dx3 cos(ϕ)

,

ωθ =
kzez + dx3 sin(θ) sin(ϕ)ωϕ − żr

dx3 cos(θ) cos(ϕ) + dx2 cos(θ) + dz2 sin(θ)
,

vD = −kxex + dx3(sin(θ) cos(ϕ)ωθ + cos(θ) sin(ϕ)ωϕ)

+ dx2 sin(θ)ωθ − dz2 cos(θ)ωθ + ẋr,
(8)

where kx, ky , kz ∈ R+ are positive constant gains. The ve-
locity controller (8) can ensure that the end-effector position
tracks the reference trajectory

[
xr, yr, zr

]>
asymptotically,

and rigorous stability analysis can be conducted based on the
Lyapunov-based control techniques [21].

IV. EXPERIMENT AND RESULTS

In this section, both indoor and field experiments are
presented to demonstrate the performance of the developed
system. The indoor tests with artificial trees are focused
on validating the planning and control schemes, and the
integrated system is further evaluated in the orchard field.

A. Indoor test validation

Indoor tests were carried out in a simulated orchard
environment, which consists of artificial trees hanging real
apples, a flat-panel lighting system, and a Qualisys motion
capture system.

We first validate the performance of the planning algorithm
that is used to generate picking sequence and dropping spots
based on the apple locations provided by the perception
module. Three trials with different apple configurations are
carried out for thorough validation. These three trials each
have 5 apples, 7 apples, and 9 apples randomly hung on
the artificial tree, and Fig. 8 depicts the scenario of Trial
1 for reference. The perception algorithm is used to detect

Fig. 8. The scenario of Trial 1 for planning evaluation, where green
bounding boxes represent detected apples.

TABLE I
COMPARISON OF TRAVEL DISTANCE AND TRAVEL TIME BETWEEN THE

PROPOSED PLANNING SCHEME AND NON-PLANNING CASE

Trial Fruit number Travel distance NP (P) Travel time NP (P)
1 5 4.12 (3.18) [m] 12.55 (10.70) [s]
2 7 5.61 (4.28) [m] 17.11 (14.51) [s]
3 9 6.81 (4.86) [m] 21.07 (17.65) [s]

where NP = non-planning case and P = proposed planning scheme.

and localize these fruits, and then the planning module is
triggered to determine the picking sequence and dropping
spots. The travel cost defined in (2) is calculated with the
obtained picking sequence and dropping spots. We also
actuate the manipulator to reach the apple positions and the
dropping spots by following the planning results, and the
total travel time (i.e., the maneuver time of the manipulator)
is recorded. Moreover, to better demonstrate the effective-
ness of the planning algorithm, the non-planning case is
introduced for comparison. In the non-planning case, we do
not optimize the dropping spots and consider that once the
manipulator reaches a detected apple, it will always move
to the home position to release the fruit. The same testing
scenarios are used to obtain the travel cost and travel time
under the non-planning case. The results are summarized in
Table I. It is clear that the proposed planning algorithm can
significantly reduce the travel cost by optimizing the picking
sequence and dropping spots. Furthermore, the travel time
is an intuitive indicator to show the effect of the planning
module in reducing the harvesting cycle time. Compared to
the non-planning case, the proposed planning algorithm can
efficiently reduce the travel time.

To thoroughly validate the control performance, the ma-
nipulator are driven to multiple target positions, and then
the Qualisys motion capture system is utilized to evaluate
the motion accuracy. Specifically, as discussed in Section
III-C, the developed manipulator includes three joints, i.e.,[
ϕ, θ,D

]>
. The desired joint values are selected from

the following sets: ϕd, θd ∈ {−20◦,−10◦, 10◦, 20◦} and
Dd ∈ {0.1m, 0.3m, 0.5m}, and the corresponding target
positions can be computed based on (5). A total of 48



TABLE II
AVERAGE ABSOLUTE ERROR BETWEEN TARGET POSITIONS AND

MANIPULATOR FINAL POSITIONS WITH THE DESIGNED CONTROLLER

Nonlinear controller (8)
x-axis error [cm] 0.3905
y-axis error [cm] 0.3324
z-axis error [cm] 0.2742

Distance error [cm] 0.6566

target positions are generated, which are evenly distributed
in the workspace of the manipulator. Furthermore, a spher-
ical marker is attached to the end-effector, ensuring that
the Qualisys motion capture system can measure the end-
effector position precisely through marker identification. The
manipulator is actuated from the home position to each of
the target positions, and the final position of the end-effector
is recorded. Based on 48 pairs of final position records and
the corresponding target positions, the average errors along
the x-axis, y-axis, z-axis and the average distance errors are
calculated. The controller designed in (8) is tested, and the
results are shown in Table II. It can be seen that the average
distance error is less than 1 cm, indicating that the proposed
control scheme can achieve satisfactory performance.

B. Field test and validation
To further evaluate the performance of the integrated pro-

totype, field experiments are conducted in the Horticultural
Teaching and Research Center of Michigan State University
during the 2021 harvest season1.

In the field test, the robotic apple harvesting system is
run autonomously and continuously to harvest fruits within
its workspace with fully integrated perception, planning,
and control functionalities. On average, the duration for the
manipulator to approach a target apple or move back to its
corresponding dropping spot ranges between 0.75 s and 1.4
s. Detaching and releasing the fruit roughly take 1 s and
0.5 s, respectively. For the successfully harvested apples, the
average cycle time is approximately 3.6 s, including software
algorithm processing and hardware execution. Compared to
our previous prototype [9] and the existing literature [4], [7],
[8], [10] which took 7-10 seconds to harvest an apple, the
current robotic apple harvesting prototype clearly has made
significant advancement in terms of harvesting efficiency,
thanks to the simple yet efficient mechanism as well as the
integrated algorithm design.

However, there is still a considerable gap in achieving
a satisfactory picking rate. In this field test, a total of
142 apples were attempted and 74 of them were picked
successfully with the picking rate being 52.1%. We studied
the failed cases and identified the following major causes.
First, we found that the depth measurement in the RealSense
RGB-D camera is susceptible to varying lighting conditions
and cases when fruit is partially obscured by foliage or
branches, and sometimes provides inaccurate depth informa-
tion with an error as large as 10 cm. Second, unlike the

1A video of the robotic apple harvester demonstrating the field tests is
available at https://www.youtube.com/watch?v=_6-5qbZplZo

(a) (b)

Fig. 9. Examples of failed apple harvesting: (a) due to inaccurate
localization; and (b) due to obstruction caused by branches.

v-trellis structured orchard used in [4] where most of the
apples are well exposed, the orchard where we conducted the
experiment does not have a well-structured fruiting system
and a high percentage of fruits are being occluded by leaves
and branches, which create challenges for the robotic system
to approach the target fruits. Third, there are also many
occurrences during which the end-effector has failed to
detach target fruits due to inadequate vacuum power. Fig.
9 illustrates two failed harvesting scenarios.

These findings provide useful insights towards further
improvement of our system. The two-camera setup enhances
fruit detection and localization in the indoor environment
but appears to have limited contribution to improving the
accuracy of fruit localization in the field. Fusing additional
sensing modalities such as LiDAR could be a good way
to achieve robust fruit localization and is currently under
investigation. We also need to design an object segmentation
algorithm to identify the obstacles (trunks, branches) and
develop a path planning scheme to avoid obstruction. Finally,
the vacuum system and fruit detachment strategy should also
be further improved for reliable fruit picking.

V. CONCLUSION

The algorithm design and integration for a newly-
developed robotic apple harvesting prototype was introduced
in the paper. The algorithm component is comprised of three
core modules: perception, planning, and control. Indoor and
field experiments demonstrated that the developed algorithm
component can synergistically work with the hardware com-
ponent to achieve the primary apple harvesting functionali-
ties, offering a promising picking cycle time of 3.6 seconds.
Guided by lessons learned from these experiments, future
work will include improving fruit localization accuracy and
robustness, developing object segmentation algorithms for
obstacle detection, and designing optimal path planning
scheme for obstacle avoidance.
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