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Abstract— Free-space-oriented roadmaps typically generate
a series of convex geometric primitives, which constitute the
safe region for motion planning. However, a static environment
is assumed for this kind of roadmap. This assumption makes
it unable to deal with dynamic obstacles and limits its applica-
tions. In this paper, we present a dynamic free-space roadmap,
which provides feasible spaces and a navigation graph for
safe quadrotor motion planning. Our roadmap is constructed
by continuously seeding and extracting free regions in the
environment. In order to adapt our map to environments with
dynamic obstacles, we incrementally decompose the polyhedra
intersecting with obstacles into obstacle-free regions, while
the graph is also updated by our well-designed mechanism.
Extensive simulations and real-world experiments demonstrate
that our method is practically applicable and efficient.

I. INTRODUCTION

Mapping modules are of vital importance for safe motion
planning. They often take raw sensor data as input then
output abstract environment representation. However, voxel-
based maps need to store cumbersome environment data,
which is both memory and time-consuming. The resolution
also limits it to represent the environment in a finer resolution
[1, 2]. Point cloud maps do not directly support dynamic
environments or efficient queries for motion planning. There-
fore, it is necessary for a map representation to be able to
consume less memory, handle dynamic obstacles, and be
convenient for motion planning.

Free spaces, instead of obstacles, is useful information for
robot navigation [3]. Polyhedron-shaped free-space roadmap
is a natural idea that uses a set of polyhedra to represent
the union of free space of the environment. It has the fol-
lowing advantages: 1) Polyhedron could tightly approximate
free configurations and naturally suits for non-convex and
unstructured environments. 2) Connectivity between each
polyhedron represents topological structures of environments
that have significant importance in motion planning. 3) Stor-
age requirement is significantly lower because polyhedrons
can represent vast space by few parameters. 4) Analytical
expression of the polyhedron is convenient to encode free
space information for trajectory optimization and can easily
add safety requirements.

Although polyhedron-shaped free-space roadmap has the
above advantages, existing methods cannot deal with dy-
namic environments, which are common scenes for aerial
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Fig. 1: Illustration of dynamic free-space roadmap. The
polyhedron colored with red overlap dynamic obstacles.
Green polyhedra are obtained by decomposing the red one.

robots. To our best knowledge, existing polyhedron-shaped
free-space roadmaps have no efficient update strategy to deal
with topological changes due to moving obstacles. Related
works [4]–[8] all assume that the environment is static. To
bridge this gap, this work introduces an efficient method that
incrementally updates the free-space roadmap when there are
moving obstacles on the map. Firstly, we use Iterative Re-
gional Inflation by Semidefinite (IRIS) [9] to extract all free
spaces in the map to generate polyhedra. Then a navigation
graph will be built by checking connectivity between each
polyhedron. After that, we build oriented bounding boxing
[10] for every moving obstacle, thus the infeasible region
is approximated tightly. Then we utilize the hyperplanes of
the bounding boxes to decompose polyhedra overlapping the
obstacles into some small free polyhedra. Finally, we take
advantage of the prior information of the graph to update
the graph efficiently.

Contributions of this paper are:
1) An efficient method is proposed that incrementally

updates polyhedral maps in the dynamic environments
yet preserves connectivity.

2) An incremental graph updating mechanism is designed.
3) An autonomous navigation system that uses the above

methods is tested in simulation and real-world to vali-
date that our methods are practical.

II. RELATED WORK

A. Free-Space Oriented Map Representation

There are many works focusing on polyhedronizing free
regions in environments for efficient navigation and trajec-
tory optimization. Deits and Tedrake [6] adopt IRIS which
proposed by themselves to segment space into convex re-
gions, then perform a mixed-integer optimization to obtain a
collision free trajectory. Wang et al. [7] tightly approximates
all free configurations by unions of polyhedra for encoding
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Algorithm 1 MapPolyhedronization

1: Notation:sampling time:s, maximum sampling times:S,
expected ratio of vol(Pg) to vol(F):ρe, vol(·) means
volume.

2: Input:M,S,ρe,
3: Output:Pg

4: F ← GetFreeRegion(M)
5: O ← GetObstacleRegion(M)
6: Pg ← ∅, ρ← 0, i← 0, s← 0
7: while ρ < ρe and s < S do
8: q ← random(F ,Pg)
9: s← s+ 1

10: bbox← BoundingBox(q)
11: Pi ← IRIS(q, bbox,M)
12: if IsGoodPoly(Pi) then
13: i← i+ 1
14: Pg.← Pg ∪ Pi

15: ρ← UpdateRatio(Pg,F)
16: end if
17: end while
18: return Pg

free space information into multi-aerial robots trajectory
optimization. The work mostly relevant to ours is [4]. The
author extracts free spaces from noisy and partly incomplete
visual SLAM data by voxel clustering and merging, then
a topological navigable graph is constructed, which make
global path planning easy and computationally inexpensive.
In [5], the author also use IRIS to generate polyhedra to
represent obstacle-free regions from raw point cloud data,
then projecting original sparse and noisy points onto the
surfaces of polyhedra to form a dense version of point cloud
which provides abundant environment information for human
users. This is a rather inspiring work which for the first time
combines point regulation and space convexification to create
dense point cloud and navigable space.

Nevertheless, these works still assume a static environ-
ment. In applications, there are more or less dynamic objects
in the considered navigation scene.

B. Representation of Dynamic Environments

Dealing with dynamic environments is a challenging topic
in autonomous navigation. There are some approaches which
handle it at a low level of map abstraction. In [11], the
author uses a probabilistic grid map to represent the en-
vironment and a hidden Markov model to occupancy state
and state transition probabilities of the grid. The occupancy
state of each grid will be updated when observations be-
come available. Some other approaches explicitly model the
dynamic objects instead. For example Anguelov [12] and
Biswas [13] compute the shape of dynamic models, use
expectation maximization to identify dynamic parts of the
maps that are created at different timestamps. In [14], two
probability occupancy grid map are maintained accordingly
for static parts and dynamic parts of the environment, these
two grid maps will be updated by Bayesian rules once

observations come from sensors. Lau et al. [15] develop
algorithms that incrementally update grids which affected by
changes. Meanwhile, Euclidean distance maps and general-
ized Voronoi diagrams can also be incrementally updated
by their algorithms. Some other methods explicitly model
aspects of the environment dynamics. For example, Wang et
al. [16] and Eppenberger et al. [17] identify dynamic objects
from environment based on the fact that the positions of
dynamic objects change overtime. However these methods
focus on tracking dynamic objects rather then represents the
environments’ dynamic parts.

III. METHODOLOGY

A. Map Polyhedronization

We combine IRIS [9] and RILS [18] to segment the
environment into convex regions. IRIS proposed by Deits
and Tedrake alternates two convex optimizations to generate
a polyhedron by a given query seed: First a Quadratic
Program (QP) generates a convex region represented by a
set of hyperplanes. Second a Semidefinite Program (SDP)
finds a maximum volume inscribe ellipsoid (MVIE) in the
convex region that constructed in first step. RILS is similar
to a non-iterative version of IRIS but more efficient because
of a bounding box is applied to reduce obstacles need to
considered. Like RILS does, we also use bounding box in
IRIS to relieve computational burden.

Let M denote the global occupied grid map. Note that
the map M will only be used for map polyhedronization
and not needed in subsequently motion planning. We denote
by F ⊆ M the free configurations in map M and by Pg

the union of polyhedra where Pg ⊆ F and

Pg =

N⋃
i=0

Pi, (1)

Pi = {x ∈ R3|Aix � bi}, (2)

The map polyhedronization algorithm is detailed as Al-
gorithm 1. Firstly, we randomly sample a query point q =
[xp, yp, zp] ∈ R3 that F while outside Pg . Then IRIS takes
the query point and the bounding box around it as input
to generate a polyhedron Pi in H-representation from M.
Each elements in Pg is managed in a hierarchical structure.
In order to approximates the map more tightly, Algorithm 1
will not stop until the ratio ρ of Pg to F or sampling times
s over expected thresholds.

Note that the purpose of polyhedronizing a map is to ob-
tain the set of polyhedra which approximates all free spaces,
thereby any other algorithms that generate a polyhedron by
a query point can replace IRIS in Algorithm 1.

B. Polyhedron Decomposition and Restoration

1) Preliminaries: After map polyhedronization, we need
to consider how to deal with the situation where obstacles
overlap the polyhedra. Indeed the first thing is to distinguish
point clouds which are inside the polyhedra. Therefore axis-
aligned bounding box of these polyhedra are constructed, and



Algorithm 2 PolyhedronDecomposition

1: Notation:P = {P1, P2, . . . , Pm}, Pi ∈ Pg

2: Input:P ,obb
3: function POLYHEDRONDECOMPOSITION(P ,obb )
4: for Pi in P do
5: if Pi.state == complete then
6: Decomposition(Pi, obb)
7: else if Pi.state == decomposed then
8: Pi ← ObstainCollisionsons(Pi)
9: POLYHEDRONDECOMPOSITION(Pi,obb)

10: end if
11: end for
12: end function
13:
14: Input:P ,obb
15: function DECOMPOSITION(P ,obb)
16: P .state ← decomposed
17: Pt ← ∅
18: for Hi in obb do
19: Pi ← Intersection(P,Hk)
20: if IsGoodPoly(Pi) and DeRedun(Pi,Pt) then
21: Pt ← Pt ∪ Pi

22: P .addson(Pi)
23: end if
24: end for
25: end function

managed by a multi-level segment tree SegTree which is
used for efficient stabbing queries [19]. For a given point p =
[xp, yp, zp] ∈ R3, the query time complexity is O(log3n+k)
and k bounding boxes enclose the point p can be obtained
at the same time. We denote by Pl the polyhedra obtained
by querying the SegTree and enclosing the query point p.

In order to separate obstacles from polyhedra, an oriented
bounding boxe obbi are generated for each obstacle Oi,
where

obbi = {x ∈ R3|Aix � bi}. (3)

Any polyhedron intersecting the obstacle Oi is denoted by
Pi. Similar to dilating obstacles in grid map, we expand the
oriented bounding box by radius r of the aerial robot to
maintaining a configuration space.

2) Polyhedron Decomposition and Restoration: Benefit-
ing from the convex sets property: the intersection of any
collection of convex sets is convex. It is obvious that any
polyhedron determined by halfspace intersection is also a
convex set. In viewing of this, a natural idea is to utilize
hyperplanes of the bounding box to decompose the polyhe-
dron to exclude the obstacle enclosed by oriented bounding
box. The pipeline for Polyhedron Decomposition algorithm
is detailed in Algorithm 2.

We use label complete and decomposed to distinguish
whether a polyhedron is a complete one or a decomposed
one. For every polyhedron in P that will be decomposed by
obb, we first check the label of the polyhedron. Polyhedron
that labeled as complete will be decomposed by each hyper-

Fig. 2: Polyhedron  decomposed into polyhedra ®-°
by oriented bounding box ¬, however polyhedron ® is
redundant since it insides ¯.

Fig. 3: Illustration of avoiding unnecessary connectivity
checks by prior knowledge.

planes of obb. As illustrated in Fig. 2, redundant polyhedra
in decomposition procedure will be abandoned. While for
decomposed polyhedron, all elements in the next level of
the hierarchy that intersecting with obb will be decomposed
again.

Corresponding to polyhedron decomposition, polyhedron
restoration is also a necessary part. Any polyhedron Pi

decomposed by the dynamic obstacle Oi should be restored
as before. For the situation that the obstacle Oi moves to
another place, we first restored all elements in Pi to their
original shape. Afterward, polyhedra will be decomposed by
obstacles that still intersecting them. Algorithm 3 describes
the process in detail.

Algorithm 3 PolyhedronRestoration

1: Notation: obbj ∩ obbi = ∅, and pij will be treated as a
vector as input to Algorithms 2 for simplicity.

2: Input:Oi,obbi,Pi

3: for pij in Pi do
4: Restroation(pij)
5: for each obbj that intetsecting with pij do
6: PolyhedronDecomposition(pij , obbj)
7: end for
8: end for
9: return Pg



Fig. 4: The detailed informantion of cluster and sparse scenario. the grid map,free-space roadmap and navigation graph of
sparse scenario are presented on the top while the bottom corresponds to the sparse.

3) Graph Construct and Update: Connectivity between
each polyhedron can be naturally used for path searching.
A global graph can be constructed base on it for search-
based planning methods. We interpret the geometric center
of the polyhedron as room and the geometric center of
the intersection between polyhedra as doors. The rooms are
vertices of the graph thus going from one room to another
adjacent room will go through doors. Thanks to convex
set property, edges that connect any two vertices in graph
are collision free. The graph will be updated after every
polyhedron decomposition and restoration. In order to update
the graph efficiently, we take full advantage of the prior
information between the convex hulls to avoid unnecessary
connectivity checks. As illustrated in Fig. 3, there is no need
to check the connectivity between Polyhedron C1 and C3,
C2 and C4 since they are naturally disjoint. The connectivity
between C1 − C4 can be established quickly. Moreover, we
do not need to check the connectivity between polyhedron
A and each of C1−C4 by utilizing the prior information of
the graph.

IV. EXPERIMENTS AND RESULTS

To validate the applicability and evaluate the efficiency
of our algorithms, simulations and real-world experiments
are both conducted. For feasibility validation, we conduct
motion planning in simulations and real-world experiments

to demonstrate that our roadmap can provide safe feasible
spaces for our planners in real-time. While for efficiency
evaluation, we mainly focus on roadmap update efficiency.
We evaluate the map update efficiency by computing time
for polyhedron decomposition td, the computing time for
polyhedron restoration tr and the computing time for graph
update tg .

A. Simulation Experiments

In simulation experiments, we validate our algorithm in
both clustered and sparse scenarios to demonstrate that our
algorithm is feasible and efficient. The size of two scenarios
are set to the same. There are four dynamic obstacles in
both scenarios. The detailed information of two scenarios is
shown in Fig. 4. In clustered scenario, both the map and
the dynamic obstacles are random generated. The detailed
specifications of map are illustrated in Tab. I. While in sparse
scenario, the map is constructed according to a underground
garage in real world. The dynamic obstacles are also random
generated. In clustered envieonment, there are totally 2613
polyhedra generated, and 37753 edges in the graph. While
in sparse scenario, there are only 651 polyhedra, and 5468
edges in the graph.

We conduct trajectory planning in both scenarios to val-
idate the feasibility of our algorithm. We randomly select
the start and goal point in free spaces, then A∗ is applied to



Fig. 5: Feasibility validation. Once there is an obstacle occur
in convex hulls (red color) we want to pass through, the
convex hulls (red color) will be decomposed into some small
obstacle-free convex hulls (green color).

search a series of polyhedra connecting the start and goal in
the graph. Finally, A collision-free trajectory is generated by
a global trajectory optimizer [7]. The re-planning frequency
is set to 10Hz and triggered whenever the polyhedra the
vehicle is going through has been decomposed or restored in
last 0.2s. Results illustrated in Fig. 5 demonstrate that when
dynamic obstacles occur in the polyhedra that the quadrotor
are going through, these polyhedra is decomposed efficiently
and the graph is updated at the same time. After that A∗ finds
another series of free polyhedra connecting the current point
and the goal. The results validate that the roadmap is able to
reflect changes in the environment for real-time safe motion
planning.

We also evaluate the efficiency of our algorithm by the
three metrics in both scenarios. Results are shown in both
Tab. II and Tab. III. In clustered scenario, the average time of
polyhedron decomposition and restoration are 2.784ms and
0.482, and the average time of graph update is 25.017ms.
While in sparse scenario, the average time of polyhedron
decomposition and restoration are 2.777ms and 0.3632ms,
and the average time of graph update is 16.823ms. Com-
paring results in these two scenarios, we can see that the
average time of td and tr have negligible difference in two
scenarios. However the average time of graph update tg
varies a lot. This is reasonable since it requires more convex

TABLE I: Specifications of Two Maps.

Map Size Resolution
Cluster Scenario 50m× 50m× 5m 0.2m× 0.2m× 0.2m

Sparse Scenario 50m× 50m× 5m 0.2m× 0.2m× 0.2m

TABLE II: Time Metrics of Cluster Scenario Simulation.

Times Total Time Average Time
Decomposition 853 2.375s 2.784ms

Restoration 809 0.390s 0.482ms

Graph Update 801 20.039s 25.017ms

TABLE III: Time Metrics of Sparse Scenario Simulation.

Times Total Time Average Time
Decomposition 1140 3.166s 2.777ms

Restoration 1527 0.55458s 0.3632ms

Graph Update 1115 18.763s 16.823ms

hulls to approximate the environment in clustered scenario
than a sparse one in same size space. In a space with fixed
size, the greater the number of convex hulls is, the more
complex the connections between the convex hulls become,
thus resulting in a slower graph update efficiency. That is
why we utilize the prior information of the graph to avoid
unnecessary connectivity checks. Even the update time of the
map varies in this two scenarios, it still meets the real-time
requirements.

B. Real-World Experiments

For real-world experiments, we integrate our roadmap into
a quadrotor platform and use FAST-LIO [20] to pre-build the
environment. We use the combination of foam pillars and a
ground vehicle controlled by human operators as dynamic
obstacles. The location of the quadrotor and dynamic obsta-
cles is provided by motion capture. The quadrotor platform
and the obstacles are shown in Fig. 6. The experiments was
divided into two parts, that are to validate the feasibility and
evaluate the efficiency of our algorithm. In the first part, the
start point is fixed, then we manually select a goal point.
The quadrotor searches a series of collision-free polyhedra
connecting the start point and goal point, then accomplishes
the flight. The Max velocity of the quadrotor is set to be
1m/s. In the second part, we mainly focus on evaluate the
efficiency, so there are only the obstacle move freely in the
environment and the Max velocity is 6.5m/s.

TABLE IV: Time Metrics of Real-World Experiments.

Times Total Time Average Time
Decomposition 1070 1.6806s 1.569ms

Restoration 1069 0.151254s 0.1414ms

Graph Update 1070 3.735s 3.491ms

In the first experiments, we set the start point and goal
point as the two ends of the map. We try to manipulate the
obstacle to block the flight of quadrotor. Since the roadmap
is efficiently updated and the connectivity is preserved, the
quadrotor quickly finds a series of polyhedra connecting
start and goal when obstacle moves. Finally the quadrotor
successfully avoid the dynamic obstacle and reach the goal
point as shown in Fig. 6. The results of second experiments
are shown in Tab. IV, these three metrics reflect that the



Fig. 6: Left figures show that A star find a path that through
the right side of the middle pillar. As the obstacle moves,
the trajectory was blocked, re-plann mechaand the algorithm
finds another collision-free path.

roadmap is updated efficiently. Comparing to experiments
in simulations, td, tr, tg in real-world environment is much
lower because the map is smaller and sparser. Meanwhile,
there are only one dynamic obstacle, hence there will only
be two levels in the hierarchy at most.

V. CONCLUSION

In this paper, we present dynamic free-space roadmap, a
novel map representation that provides both safe feasible
space and navigation graph. The roadmap can be incre-
mentally updated by using our polyhedron decomposition
and restoration method. We adopt the hierarchy structure to
manage the map, making our map convenient to maintain.
By utilizing the prior information of the graph, unnecessary
connectivity checks are avoided thus the graph can be up-
dated efficiently. We also conduct simulations and real-world
experiments to demonstrate that our method is feasible and
efficient. In the future, we will design a path search method
and trajectory planner that fit our roadmap. A prediction
module for dynamic obstacles will also be incorporated into
our quadrotor to achieve autonomous flights in dynamic
environments.
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