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Abstract— As robots across domains start collaborating with
humans in shared environments, algorithms that enable them to
reason over human intent are important to achieve safe inter-
play. In our work, we study human intent through the problem
of predicting trajectories in dynamic environments. We explore
domains where navigation guidelines are relatively strictly
defined but not clearly marked in their physical environments.
We hypothesize that within these domains, agents tend to exhibit
short-term motion patterns that reveal context information
related to the agent’s general direction, intermediate goals and
rules of motion, e.g., social behavior. From this intuition, we
propose Social-PatteRNN, an algorithm for recurrent, multi-
modal trajectory prediction that exploits motion patterns to
encode the aforesaid contexts. Qur approach guides long-term
trajectory prediction by learning to predict short-term motion
patterns. It then extracts sub-goal information from the patterns
and aggregates it as social context. We assess our approach
across three domains: humans crowds, humans in sports and
manned aircraft in terminal airspace, achieving state-of-the-art
performance.

I. INTRODUCTION

Understanding and predicting the intended motion of hu-
mans in an environment is an important skill that robots
across various domains, e.g., social robotics [1], [2], and
aerial robotics [3], must be equipped with in order to enable
safe interactions. Even beyond robotics, other domains such
as surveillance [4] or sports analysis [5], [6] may also benefit
from algorithms for modeling intent in dynamic scenes.

Motion and intent can be influenced by several factors,
making the task challenging. One factor is social behavior,
which describes how agents interact, and it heavily depends
on the context. For instance, in a sports-based setting, e.g.,
a basketball game, close proximity to other agents may be
a valid behavior, whereas in urban settings, e.g., pedestrians
on a side walk, it may not. Respecting motion constraints
is another relevant aspect in this setting, as it is related to
restrictions that may arise from the agent’s own physical
constraints, e.g., pedestrians may have more freedom of
motion than a vehicle, while vehicles may move at higher
speeds, or the constraints imposed by the environment, such
as the topology of a scene, or the rules associated with it,
e.g., pilots should respect flying guidelines. Moreover, agent
motion is driven by each agent’s goals which vary depending
on the situation and the type of agent: goals can be flexible
or fixed, short or long-term, implicit or explicit. This varied
nature makes them difficult to model.

The majority of existing works on trajectory prediction
are mainly focused on pedestrian behaviors [7]-[10] where
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Fig. 1. Aircraft trajectory predictions. Ground truth (GT) in dashed lines;
prediction, solid lines. Left: Various models’ predictions vs. GT for an
agent. Right: SocialPatteRNN (Top) vs. TrajAirNet (Bottom) for multiple
agents.

the context is relatively loosely defined, i.e., except for the
social norm that pedestrians try to maintain the comfortable
distance from others, there are few rules that guide pedestrian
behavior. Moreover, the environmental context is largely
ignored and few existing works, e.g., [1 1], [12] address that.
Recent works show promising results by considering the goal
context in their predictions [5], [13], [14].

In this paper, we specifically focus on the settings where
there exist navigation guidelines relatively strictly defined
yet not clearly marked in their physical environments, e.g.,
in aerial navigation, although there are strict rules analogous
to ground navigation, the air space does not display visible
lanes. To address this challenge, we propose an approach,
known here as Social-PatteRNN, where we aim to learn
such contexts in the form of motion patterns and social
influences extracted from the patterns. Inspired by [10], we
hypothesize that, within these domains, in the short term,
agents tend to exhibit some motion patterns that reveal both
their general directions of motion and their intermediate
goals. We also believe that such patterns further explain
general rules of motion, which may be explicit, e.g., sports
rules or flying guidelines, or implicit, e.g., social etiquette, as
well as, capture admissible motions. From these intuitions,
we propose a data-driven approach to learn these patterns of
motion and use them as a conditioning signal for predicting
multimodal trajectories. Then, we use the learned patterns
to extract sub-goal information which we aggregate to our
model as the social context.

To assess the performance and the generalizability of the
proposed approach across different domains, we evaluate it
on three different scenarios: humans in crowds [5], [15],
humans in sports [5], and manned aircraft [3]. Experimen-
tal results show that the proposed approach has consistent
performance across these domains.
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Fig. 2. An overview of Social-PatteRNN. We show an example of the data flow for during training (—), inference (--+), and both (-->).

Here, ® Scene shows an example of a ground truth (GT) scene showing the locations, patterns and sub-goals of all agents at step ¢. B) Backbone is
the module used for generating locations and summarizing the trajectories. (©) Context Module produces the pattern and social features which form the

context feature used as input to the backbone.

Our main contributions are: 1) we propose a generalizable
approach for exploiting motion patterns for trajectory pre-
diction; 2) we analyze the proposed approach via ablation
to demonstrate the strength of each sub-component; and 3)
we share our findings and insights on the sensitivity of the
performance to the type of dataset and how it is used, and
discuss future directions.

II. RELATED WORK
A. Modeling Techniques

Recent works tackle socially-aware trajectory prediction
through data-driven methods [5], [7], [8], [10]. Here, three
main aspects are generally taken into account. First, the use
of temporal mechanisms for encoding sequences, such as
Recurrent Neural Networks (RNN) [5], [7], [13], [14] and
Temporal Convolutional Networks (TCN) [3], [10], [16],
both of which have been shown to exhibit comparable
performance [17]. Secondly, modeling the multi-modality
of trajectories. For this, researchers have used generative
frameworks such as Conditional Variational Autoencoders
(C-VAE) [3], [5], [18], and Generative Adversarial Networks
(GAN) [I1], [19]. Thirdly, aggregating and modeling social
behavior. Common approaches include using social pooling
[7], [8] and attention-based models [5], [13], [20]. For in-
stance, [7] uses a neighboring-based pooling over the hidden
states of a given set of agents. However, as explained in [10],
the drawback to this type of mechanism lies in the difficulty
of understanding the semantic representation of hidden states
generated by RNNs. Recent works have geared toward using
Graph Attention Networks (GAT) to aggregate social context
[3], [5], [13], showing performance improvements upon prior
work. However, as highlighted by [21], [22], GAT models
exhibit various limitations such as lack of expressiveness
[21], and proneness to issues like over-fitting and over-
smoothing [22]. Other recent approaches have shown promis-
ing results using Transformer-based methods [23] to model

and attend over trajectory sequences [20], [24]. Inspired by
these works, we use a self-attention mechanism [23] to model
the dependencies between the social influences of all agents
on the current agent (See Section III-E).

B. Exploiting Motion Patterns

Social Pattern Extraction Convolution (SPEC) [10] also
uses motion patterns to learn a pattern scene and predict
trajectories from it. Within human crowds, their idea works
well because pedestrians tend to move linearly. However,
we observed that this model does not generalize to different
spatial domains, such as navigating in 3D space, or where
motion is highly dynamic, e.g., sports. It also relies on vari-
ous hyper-parameters for initializing the scene representation
and it is sensitive to said initialization. Motivated by this idea,
we also leverage motion patterns for trajectory prediction.
However, instead of learning a fixed pattern scene, we equip
the algorithm with a module that learns to predict patterns
from current context information, and then uses them to
extract social interactions. Our method uses motion patterns
to guide the agents’ general direction based on the current
state, as opposed to enforcing the motion. This is to account
for unexpected behavior that may require agents to deviate
from the prior intended direction. Finally, our algorithm is
not sensitive to initialization and can be easily applied to
different spatial domains.

III. THE APPROACH

We consider the problem of predicting the distribution of
future trajectories of multiple agents in a shared environment,
given the observations of their past trajectories and context
information. We first formulate this problem as estimating the
conditional probability distribution over future trajectories,
then, provide the technical details of the proposed approach.



A. Problem Formulation

The state of an agent ¢ at time step ¢, xi, represents the co-
ordinates localizing the agent in a scene, e.g., X, = (z,y, 2)%.
Its trajectory is defined as a sequence of 7T states i.e.,
Xt = [x%,x%,...,x%]. In our approach, we transform the
trajectories to relative motions, computed as the displacement
between two consecutive steps, x; and x;_ ;. For simplicity,
we maintain the same notation for relative coordinates.

Within this problem setup, a trajectory is split into two
segments; a history segment, X%, = [x},...,x%] and a
future segment, X% =[xy, ,...,X%] of lengths H and
F, respectively. Then, we define the current context, ci,
and the context history, C%; = [¢!, ..., c%], as information
that further describes the agent’s current state. For instance,
context can be inferred from the observations, learned from
previous experiences, or provided from external sources. In
our approach, context refers to short-term motion patterns as
well as social awareness relative to other agents which are
both learned from training data.

The trajectory prediction problem is thus defined as finding
the distribution of the future trajectories X} for each agent
t={1,...,N} in a scene, given their past trajectories and
the context history. Formally,

X ~ p(Xip|Xly, Cy) Vi€ {1,...,N}.
B. An Overview of Social-PatteRNN

The proposed approach, known here as Social-PatteRNN,
is an end-to-end model illustrated in Figure 2. Its (8) Back-
bone model consists of a recurrent encoder-decoder model
denoted as 2 VRNN in the figure, and the () Location
Extractor for mapping locations into a feature space.

Our innovations are focused on how context information
is learned and used for prediction, i.e., in terms of motion
patterns and social influences. Specifically, we propose the ()
Context Module in Figure 2, consisting of: (2 PatternNet, a
module that learns to predict motion patterns given past con-
text which are used to condition trajectory prediction during
inference; and () InteractionNet a module that exploits such
motion patterns to further reflect social influences.

Our model can be easily be applied to various spatial
navigation domains, e.g., human motions in 2D space or
aircraft navigation in 3D. Moreover, its modularity enables
to easily incorporate other contextual information.

C. Backbone Model

Following prior work [5], [13], [14], we adopt a recurrent
version of the C-VAE, i.e., the Variational Recurrent Neural
Network (VRNN) [25] for modeling the sequential nature
of trajectories and their multi-modality. C-VAEs [26] are an
extension to the VAE [27], a type of generative model that is
generally well-suited for representing multi-modal distribu-
tions by capturing the variations of the input data into a latent
representation. C-VAEs [26] allow to further condition on
context variables as a method for controlling the generation
process. RNNs capture the sequential dependencies in the
data into hidden state variables.

The VRNN is trained as follows: first it takes a relative
location at time-step ¢ for agent i, x! and maps it into
a feature space X.. It then encodes the location feature
along with a context feature € and the previous hidden
state h!_, into a latent variable z! which is then used by
a decoder to reconstruct it into %i. This is done for the
entire history sequence X, while also summarizing the
hidden representation. During inference, the VRNN receives
a history segment as before. Upon processing all history
points, it obtains a final hidden state, hy, which is used
to sample a future trajectory sequence of length F, X}

The model consists of four main components, all of which
are modeled as neural networks; the encoder (or posterior),
p(-), the decoder (or likelihood), ¢(-), the prior, ppe(-), and
the recurrent unit, RNN(-). Additionally, the feature extractor
modules for the input data, the latent space and the context
vectors, denoted f*(-), f?(-), and f€(-), respectively. In our
paper, we denote features with a bar symbol, e.g., Xi. We
note that f%(-) is implemented within the ) VRNN, and
we use f°(-) to simplify notation as it rather refers to the
modules introduced in sections III-D and III-E.

Mathematically, we can express the model as,

%; = f(x1) (1)
¢ = f°(c}) )
zi ~ p(zi|X! ® € ®h,_1) during training 3)
z; ~ ppr(zi|hy—1) during inference 4)
z, = f*(2) (3)
%; ~ q(x,[7, &€ & hyy) (©)
h] = RNN(X| ® &z, ® hy_1) (7)
where for all agents ¢ € {1,..., N} at a given time step ¢,

Eq. 1 and Eq. 2 represent the location and context feature
extractor networks, respectively. Eq. 3 and Eq. 4 show the
encoder and prior networks, which are needed for learning
a latent space Z and for sampling a corresponding latent
representation z; € Z conditioned on the extracted features
and the RNN’s hidden states. The encoder is used only
during training to guide the prior—which does not have
access to the input data—toward the latent space, enabling
it to generate future trajectories during the inference stage.
The decoder network is expressed in Eq. 6. It is in charge
of reconstructing the location X; conditioned on the latent
variable and context features. The RNN in Eq. 7 produces
the hidden representation of the current time step using the
extracted features and previous state information.

The loss function for optimizing the VRNN is:

H
[evae :Z [logq(xi‘zi@éi@ht_l) _
t=1
Drr(p(zi|%} © T © he—1) || ppr(Zi|c; © hy—1))]

The first term represents the log-likelihood for reconstruct-
ing the input location while the second is the KL-divergence
between the encoder and the prior distributions. For details
regarding this equation, we refer the reader to [26], [27].



Distinguished from previous works, we condition the
VRNN not only on the input data but also on a context
feature which embeds features from short-term motion pat-
terns, p;, and agent-to-agent interactions, si. Sections III-D
and III-E further describe these context features.

D. Learning Motion Patterns

Our approach is based on the intuition that social inter-
actions in navigation are more local (short-term) rather than
global (long-term) ones. Whereas previous approaches [3],
[5], [14] use the agents’ long-term goals as the context to
guide the learning process, we use short-term motion patterns
to learn rules of motion, e.g., social behavior (Section III-E).

In our work, a motion pattern consists of a short trajectory
sequence of length P, where P is a hyperparameter. A
pattern can be represented as absolute coordinates, relative
displacements, or controls such as accelerations. Here, we
represent it as a sequence of relative displacements from a
given location xj, ie., pj = [X},...,X}, p]. ® Scene in
Figure 2 depicts an example of the pattern representation.

We obtain pattern features, f)i, from motion patterns using
the ) Pattern Extractor in Figure 2. Mathematically,

pi = fP(pt) (®)

As explained in prior sections, the pattern features form part
of the context feature vector used for training the VRNN.

During inference, since we aim to generate new data, we

do not have direct access to pattern information. To address

this, we train a neural network to predict future motion

patterns given the previous pattern information and hidden
state. We refer to this network as () PatternNet,

= PatternNet(pi_,,h!_,) 9

We optimize this network through a mean squared error
(MSE) reconstruction loss,

Lret = ZMSE P}, p})

E. Learning Social Interactions

In addition to using pattern features to guide the trajectory
prediction process, we are interested in aggregating context
relating to the interactions between agents, which we refer
to as social influences. For this, we take advantage of our
predicted patterns to extract short-term sub-goal information
from all agents in a scene. To do so, for an agent ¢ in
the scene, we deem the endpoint of its predicted pattern as
their next sub-goal, gi. Then, we compute the Social
Influence as the displacement between its current location
x! and its next sub-goal as well as the sub- goals of all
other agents. We denote these influences as s;’, where i
and j are the indices of the agents used to calculate the
displacement, i.e. st = g —x.. The full social influence is
Si = [sil,...,siN] which we use to extract social context
features,

= f5(S)) (10)

Since the final social influence vector is computed relative
to each agent, we additionally incorporate a multi-head
self-attention mechanism to further extract the relationships
between the individual influences of all agents on the current
agent and get a final social feature which captures these
relationships. We refer the reader to [23] for further details of
this mechanism. Here, we refer to the latter feature extractor
with self-attention as () InteractionNet,

Si = InteractionNet(Si_,) (11)
Now, we can finally define the context feature vector
introduced in Section III-A as € = pi ¢ Si. As shown

in Figure 2, context features are fed to the VRNN backbone.
We also feed the context vector to the previously introduced
PatternNet. Thus, Eq. 9 now becomes,

= PatternNet(ci_,,h!_))
Finally, the full loss function for optimizing our model is,

Etotal — ﬁpat + Levae

IV. EXPERIMENTS
A. Datasets

We evaluate our model on the following datasets:

1) TrajAir: TrajAir [3] is a dataset designed for studying
social navigation in non-towered airspace. It consists of 111
days of manned aircraft trajectory data. In [3], the authors
train their model on a subset consisting of 28 days of data.
We consider the 111 days of data; but, we partition the
dataset differently. Since the dataset is heavily unbalanced
toward single agent scenes (Table I), and we are interested
in modeling social behavior in scenes with multiple aircraft,
we train our models on a subset where scenes contain at least
4 agents.

TABLE I
NUMBER OF TRAIN/TEST SAMPLES (IN THOUSANDS) BY NUMBER OF

AGENTS PER SCENE USING TRAJECTORIES OF T' = 140s.
# agents all 1 2 3 4 +4
# trajectories  425/177 298 /177 90/42 26/14 9/3 2/02

2) Stanford Drone Dataset (SDD): SDD [15] is dataset
consisting of top-down videos capturing social behavior
in complex and crowded scenarios with different types of
agents, e.g., pedestrians, bikers, skateboarders, and vehicles.
We use the version in [5] where only pedestrians are con-
sidered.

3) SportVU NBA Dataset (NBA): NBA [0] is a dataset
collected with a SportVU system [6] consisting of motion
tracking data of 10 basketball players; 5 attackers and 5
defenders. We use the version of NBA as in [5]. In [5],
models are trained on each team separately as they consider
the nature of the teams to be intrinsically different. We
train on both teams jointly as we argue that agent behaviors
influence the interactions within their own team as well as
the opponent team.



B. Evaluation

Following prior work on trajectory prediction [3], [5], [7]—
[10], [13], [14], we consider Average Displacement Error
(ADE) and Final Displacement Error (FDE) as our metrics
for assessing performance of our models. We report the best
ADE and FDE values of K = 20 samples.

We first evaluate our approach by ablating its components.
Specifically, we validated the backbone consisting of the
VRNN, the use of motion patterns without social context
(PAT), aggregating social interactions (SOC), and finally,
attending over the interactions (ATT). Then, we evaluate
Social-PatteRNN against four related models: A-VRNN [5],
DAG-Net [5], SPEC [10], and TrajAirNet [3]. We adapted
DAG-Net and SPEC for 3D space, and TrajAirNet for 2D.

C. Implementation Details

We used the VRNN in [5]. The feature extractors as well as
PatternNet were implemented as fully-connected networks.
For the attention mechanism in the InteractionNet we used
4 attention heads. We use Adam optimizer and train for at
most 1000 epochs with and learning rate of 1le — 3 and early
stopping. For the SDD and NBA datasets, we followed [5],
where trajectories are split into H = 8 and F' = 12, and
H =10 and F' = 40, respectively. Empirically, we set the
pattern legths for SDD to P = 6 and for NBA to P = 8. For
TrajAir, we use trajectory segments of 140 seconds and split
them into H = 40 and F' = 100 sampled every 5 steps, and
pattern lengths of P = 20s [3].

V. RESULTS
A. Ablation Study

As explained in section IV-B, we validated the benefit of
each component of the model by performing ablations. The
corresponding results, summarized in Table II, show that
using the pattern learning module improves the results in
term of displacement errors in the three datasets. Moreover,
exploiting pattern information to aggregate social features,
achieves further reductions in error. We note that the more
pronounced improvements correspond to TrajAir’s results,
where, adding pattern learning reduces ADE / FDE by
~ 12/9%, while aggregating social features further improves
these metrics by ~ 5%. We find this specially relevant since
in aircraft navigation, pilots are expected to follow flying
patterns in addition to procuring safe interactions with other
pilots [3]. We also observe that in the sports domain, where
interactions are more frequent, aggregating social encoding
achieves more significant improvements in ADE / FDE, of
~ 11/14%, than only considering motion patterns, ~ 3/2%.

B. Main Results

Figure 1 shows a qualitative result for the TrajAir dataset.
In this example, we can observe that the predicted trajectories
for TrajAirNet and the VRNN baseline do not align with the
correct direction of the ground truth trajectory, while our
models that were conditioned on additional context do. We
can also observe that while the end-point of the trajectory

predicted by DAG-Net gets close to the goal location, it
does not follow the expected aircraft pattern, whereas our
pattern-conditioned approaches do. Furthermore, our pattern-
based models achieve smoother predictions than TrajAirNet
and DAG-Net. We believe that these observations support
our initial hypothesis that through motion patterns additional
context information can be learned, e.g., general direction
and rules of motion. Quantitatively, Table III summarizes
the results for the socially-aware baselines introduced in Sec-
tion IV-B and ours, which we show as Social-PatteRNNand
Social-PatteRNN (ATT), for the models without and with
attention, respectively. From these results we observe that
our models outperform existing baselines in both TrajAir
and NBA, and achieves comparable performance in the SDD
dataset w.r.t to the state-of-the-art model, DAG-Net. As an
additional finding, we observe that the performances of SPEC
and DAG-Net, developed for human data, degrades on the
aerial navigation dataset, while TrajAirNet, developed for
aerial navigation, falls behind on human datasets.

In Figure 1, we can also see the benefit of aggregat-
ing social context information by comparing the predicted
trajectory by our approaches with social context (Social-
PatteRNN and Social-PatteRNN (ATT)), shown in pink and
red, respectively, and that without social context (VRNN-
PAT), shown in orange. Quantitatively, Table II concurs that
adding social context further improves performance.

TABLE 11
THE ABLATION RESULTS IN ADE / FDE ({).

Trajair (km) SDD (m) NBA (ft)
1 VRNN 0.660 / 1.392 0.605 / 1.181 9.176 /1 14.375
2 + PAT 0.580 / 1.264 0.587 / 1.177 8.877 /1 14.110
3 + PAT + SOC 0.555/1.203 0.552 / 1.099 8.312/ 12.604
4 + PAT + SOC + ATT 0.551/ 1.192 0.565/ 1.118 8.125 / 12.342
TABLE III

MODEL COMPARISON IN ADE / FDE ().

Trajair (km) SDD (m) NBA (ft)
1 A-VRNN [5] 0.64 /131 0.56 / 1.14 8.88 / 14.06
2 DAG-Net [5] 0.78 7 1.53 0.53 / 1.04 8.55/12.37
3 TrajAirNet [3] 0.77 /1 1.50 0.92/1.68 99171527
4 S-PEC [10] 0.96 / 2.05 0.70 /7 1.11 11.03 /12,54
5 Social-PatteRNN (Ours) 0.56/1.20 0.55/1.10 8.31/12.60
6 Social-PatteRNN-ATT (Ours) 0.55/1.19 0.57/1.12 8.13/12.34

VI. CONCLUSIONS

In our work, we hypothesized that short-term motion pat-
terns reveal context information related to the agents’ general
direction, rules of motion, and how they interact with each
other. From this intuition, we introduced Social-PatteRNN, a
trajectory prediction algorithm that leverages motion patterns
to capture these contexts. Our experiments show that the
performance of existing approaches are sensitive to problem
domain and how the dataset is composed. The results support



our intuition that short-term patterns are robust indicators for
trajectory prediction and are also less sensitive to problem
domains. As future work, we aim to explore various avenues.
We are interested in further exploiting and learning the
dependencies between the agents by exploring other attention
mechanism, as well as other backbone structures such as
Transformers [20]. We are also interested in incorporating
more context information from input modalities other than
trajectory data. Finally, we plan to extend our work to
develop a safe and socially-aware robot navigation algorithm
for urban driving and aerial navigation in crowded scenarios.
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