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Impact Makes a Sound and Sound Makes an Impact: Sound Guides
Representations and Explorations
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Abstract— Sound is one of the most informative and abun-
dant modalities in the real world while being robust to sense
without contacts by small and cheap sensors that can be placed
on mobile devices. Although deep learning is capable of extract-
ing information from multiple sensory inputs, there has been
little use of sound for the control and learning of robotic actions.
For unsupervised reinforcement learning, an agent is expected
to actively collect experiences and jointly learn representations
and policies in a self-supervised way. We build realistic robotic
manipulation scenarios with physics-based sound simulation
and propose the Intrinsic Sound Curiosity Module (ISCM).
The ISCM provides feedback to a reinforcement learner to
learn robust representations and to reward a more efficient
exploration behavior. We perform experiments with sound
enabled during pre-training and disabled during adaptation,
and show that representations learned by ISCM outperform
the ones by vision-only baselines and pre-trained policies can
accelerate the learning process when applied to downstream
tasks.

I. INTRODUCTION

Research in the field of neuroscience shows that with mul-
tiple cues from a diverse range of sensory modalities comes
enhanced behavioral performance towards faster response,
more accurate movement, and a better sense of stimulus [1].
When presented with multiple modalities, e.g., a combination
of auditory, haptic, and visual perception, an observer will
make the assumption of unity that decides whether the
multimodal information originates from a common source or
from some separated objects and events [2]. The perception
of unity arises when the perceiver assumes that a physical
event is redundantly expressed and sensed across diverse
modalities, and decisions are commonly made based on the
temporal and spatial consistency of information [3], or on
semantic congruence factors [1].

Undoubtedly, vision is extremely information-rich and is
one of the most important senses for humans to perceive
the world, but is nevertheless hard for a robot to directly
extract knowledge from. Though the issue is dramatically
alleviated when combined with deep neural networks, visual
representations usually are hard to interpret and somehow
constrain the tasks they are trained on. For many vision
tasks, a common behavior begins by constructing neural
networks based on pre-trained models, or by training neural
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networks in a self-supervised way, e.g., an intra-modal design
of simple but diverse sub-tasks [4], or crossmodal prediction
of information consistency [5], [6]. However, only the later
design can, at least partially, persist the assumption of unity.

In most scenarios, a vision-based reinforcement learner
requires to learn representations and policy jointly [7]. Both
are highly coupled: sufficient and stable representations
are essential for policy learning [8]; a diverse and near-
optimal policy is needed to collect samples to learn unbiased
representations. Humans can benefit from multiple sensing
cues in terms of both perception and behavior. Intuitively,
an active agent who is allowed to explore freely can benefit
from multimodal cues in two aspects: 1) learning mean-
ingful representations by crossmodal self-supervision [9],
[10], [11], and 2) being intrinsically motivated to explore
the environment under the unity assumption reflected by the
uncertainty of crossmodal predictions.

Sounds are generally much more distinctive compared
with visual events. For some specific tasks related to physical
properties estimation, the sound alone is reliable to guide
a robot and measure its performance [12]. For others, it
may be informative but not sufficient, e.g., a classification
of objects that share common auditory properties [13], or
precise control of a water-pouring robot [14]. In this case,
sounds are supposed to fuse with other sensory inputs to
present a much more robust description of states, or to
scaffold the agent’s exploration.

There are more chances that sound is abundantly dis-
tributed while hardly considered for general manipulations
due to the facts that 1) vision is content-rich and is thus
sufficient for traditional planning-based robots so the sound
is often ignored; 2) the correlation of sound events with
a task goal could be implicit to program or to discover
automatically by traditional methods, which further limits
its exploitation. However, things go the other way when
a deep reinforcement learner is deployed to control. 1)
Learning exclusively with vision can be exhausting. Though
deep neural networks are capable of extracting features
from high dimensional inputs, there is no guarantee of
information sufficiency as samples are collected gradually.
Representations can possibly overfit the trajectories of a non-
optimal agent, especially when transferred to new scenes
where a biased policy could lead to a worse learning process.
Moreover, exploration time for robots is often desired to be
minimal for natural wear and safety concerns, which calls
for the necessity of efficient and robust pixel interpretation.
2) Fortunately, latent associations among modalities [15],
[16] and behavior consequences [17] can be discovered



automatically by deep learning, which prompts the potential
of crossmodal control.

Therefore, our approach contains two phases: first, to train
the image encoder of a Reinforcement Learning (RL) agent
with visual-auditory correlations, and second, to use the
crossmodal error as an intrinsic reward to encourage mean-
ingful exploration. Contributions in this paper include: 1) the
ManipulateSouncﬂ environment built upon the ThreeDWorld
simulator [18] that comprises robotic control with physically
generated sound (see Fig[l); 2) a general architecture to
utilize sound feedback for unsupervised RL exploration, re-
sulting in more robust representation and active exploration.
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Fig. 1. ManipulateSound environments with different objects that have
different physical properties: (a) a task with three different cubes to push
out; (b) a fine-tuning task with a single blue ceramic cube to push out; (c) a
task with a single brown wooden cube to push out; (d) a task with a single
red metal cube to push out; sound intentionally turned off during evaluation.

II. RELATED WORK

We introduce sound to boost self-supervised representation
learning as well as active exploration of unsupervised RL
agents.

A. Self-supervised Representation Learning

Self-supervised learning is a collection of methods to
learn representations from data that has automatically created
pseudo-labels according to certain objectives. Based on the
sensory inputs, they can be roughly classified into two cate-
gories: intra-modal and crossmodal self-supervised learning.

A common intra-modal way to create pseudo-labels of
images is to perform multiple parameterized augmentations.
Then, neural networks are trained to predict which trans-
formation has been carried out on each sample [4], [19].
We argue that it makes more sense to a robot when the
transformation owns a realistic meaning. For instance, to ob-
tain representations with ego-motion equivariance addressed,
images are collected with a camera on a moving car and
grouped into neighbor pairs by driving commands [20]. The
forward model in the Intrinsic Curiosity Module ICM) [21]
predicts s;y1 with (s¢,a;) so that the agent can learn to
represent the environmental dynamics.

Self-supervised representation learning is naturally ap-
plicable for scenarios with multiple modalities involved.
Representations emerge concurrently with different focuses
and biases, but often have strong relations from one to
another. To jointly model multiple modalities, such as audio
and visual components of videos [22], a binary classification
model to discriminate whether the visual and auditory input
are aligned [23], [24], or a regression model to predict
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corresponding audio statistics given vision [25] can be es-
tablished. Although these settings are simple enough, they
reveal the unity assumption of events, such that extraordinary
abilities can be acquired, e.g., sound localization, audio-
visual retrieval [6] and speech separation [26]. In our case,
we train a discriminating model which is easy to implement
and applicable for general usage.

When applied to robotic control, the available sensory
perception is much more diverse [27], [28], [29], [30]. A
work by [31] shows that a fused state of visual input,
force-torque sensing, and proprioception trained by self-
supervision is beneficial for sample efficiency. However, it
can be difficult to handcraft such sub-tasks and properly
assign weights among modalities. We keep the complexity
low by focusing on the impact of sound.

B. Active Exploration

A reinforcement learning agent can gain remarkable abil-
ities by purely maximizing the reward of experiences [17].
However, for a task with sparse rewards [32], [33], which
is a common case, the learning process can be quite slow
due to the inefficiency of sampling. Reward-shaping [34]
is a commonly used method to alleviate this problem, but
it requires expert knowledge and human effort to tune and
is vulnerable to environmental disturbance. Many active
exploration strategies have been investigated to encourage
the agent to seek novel states [35], [36], [21], [37] among
which ICM proves to be robust on many tasks [8], [7]. So
we construct our auditory-curiosity module on top of ICM,
building on an existing visual processing pathway.

As an alternative to sound, haptic sense [38] achieves
good performance and active exploration in terms of frequent
contacts, supporting sample-efficient learning. Similar to our
work, [39] use vision and action to predict next clustered
auditory events, and the classification error will thus be used
as the overall intrinsic reward. However, the transferability of
learned representations is not as well studied as in our work.
Work in [24] trains a discriminator to exploit information
consistency of aligned image sequences and audio, and
intrinsic reward is computed according to the uncertainty of
the classifier. Despite the extra efforts required to construct
offline data sets, they are restricted to Atari games or audio-
dense scenarios. When applied to robotic control, an object
will only produce sound when there is a contact. Silence
or background noise dominates most of the time. It is even
harder to construct misaligned pairs because a random shuffle
strategy fails in cases where silence is capable of being
aligned with most of the visual scenes. Moreover, a cold-
starting problem will arise, particularly when the policy is
not sufficiently rewarded to produce collisions. Therefore,
we use intrinsic motivations extracted from both visual and
auditory cues.

III. INTRINSIC SOUND CURIOSITY MODULE

Typical reinforcement learning problems are formulated
as Markov Decision Processes (MDPs), comprised by states
S = {s:}, actions A = {a.}, transition probability P,
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and rewards R = {r;}. The goal of the agent is to find
the optimal policy 7* (s, a;) that maximizes the expected
discounted sum of rewards [E . 220:0 Y"7¢4n. Usually, out of
realistic constraints and generality consideration, we do not
have full access to internal states S but a series of sensors
attached to the workspace, resulting in partial observations
O = {o:}. Before being fed into the policy module, high-
dimensional sensory inputs must be compressed to latent
states that can efficiently represent the environment [40], [8].

A. Visual Representation Learning

Visual exploration is a fundamental task for embodied
Al agents, where the agent is allowed to actively gather
visual information about the environment and then distill
knowledge into models such as a topological map or a
dynamics model [41]. Generally, the agent is supposed to
explore as many novel states as possible with an internal
encouragement aligned to certain targets, e.g. a measure of
the coverage such as the amount of visited unique states
in a navigation scenario [24], a prediction error of a learned
dynamics model [21], [42] or of a reconstruction model when
an agent tries to generate other views of an object than the
observed ones [41].

With a combination of multiple sensory inputs for internal
states, the agent is allowed to have a more comprehensive
view of the environment. However, it will require either a
lot of domain-specific assumptions or an increase in model
complexity [15], [43] to derive efficient representations from
fused inputs. In order to make a fair comparison with
vision-only baselines, we use sound in a supplementary
way. Only in the pre-training stage has the agent access
to sound. The baseline encoder is trained by dynamically
modeling the environment with visual states, while the one
of ISCM (Intrinsic Sound Curiosity Module) additionally
fits a visual-auditory sub-task (see Fig[2). Before adaptation
to downstream tasks, visual encoders of the DDPG [44]
learner are initialized with weights from the ISCM and ICM
baseline.

Let the visual and auditory observation at time step ¢
be denoted as o} and o', respectively. A visual encoding
function ¢(-) comprised of convolutional neural networks is
thus applied on o} to compute the state s; = (o} ), which is
later used for both policy learning and dynamic environment
modeling. Evidence shows that a well-pre-trained encoder is
essential for the generalization of supervised learning models
[45], [4] and RL agents [7], [8]. Hence, the sound-free
visual encoder ¢(-) and the sound-guided counterpart ¢(-)
are trained separately for comparison.

There are two jointly-trained dynamics models in ICM: a
forward model D and an inverse model D. The forward
model tries to predict the forward n-step transition s;,, given
the current state s; and action ay, i.e. sy, = D (54, a4),
while the inverse one tries to predict the action taken between
aligned states d; = D’ (sy, s¢4,,), which encourages noise-
robust representations [21]. These two dynamics models
are optimized concurrently with respect to Lo constraints,
defined as LY = ||844, — 54403 and L = ||a; — a4||3. Note

that here we use Lo loss also for action predictions since we
control the continuous actions of the robot arm, otherwise a
cross-entropy loss can be considered for discrete actions.

To benefit from sound, a crossmodal prediction model
C(-), which can be either a discriminator C”(-) or a re-
gressor CF(.), is then trained to learn the associations of
concurrent vision and sound. It is optimized by minimizing
the error between the visual-auditory projection 37 = C(s;)
and the targeted latent auditory feature s = ¢(07'), where
¢(-) is a fixed auditory encoder with output suitable for
either discrimination or regression. Typically, to construct
auditory features for regression, ¢(-) consists of randomly
initialized neural networks, with no requirements of any
further training. These representations are compact, stable,
and generally reliable [8], [37], especially when dealing
with impact sound whose information density could be low
compared to information in speech. Alternatively, ¢(-) can be
chosen as a threshold to distinguish valid event sound from
background noise, considering the simplicity and the afore-
mentioned knowledge that even with a simple discriminating
task, surprisingly good abilities can be acquired through
cross-modal learning [6], [24], [5]. Much of the time in a
manipulation scenario, there is just silence before any valid
collision or friction happens. To avoid the model eagerly
collapsing to zero prediction and causing dying neurons [46],
we use weighted cross entropy loss by w to amplify the
importance of positive samples, i.e.

L7 = —w- st log 8 — (1 —s{) log(1— 5. (1)

For regression, the optimization is similar except for an
unweighted Ly loss LE" = [|31 — s2.

To summarize, the optimal encoders for visual representa-
tions in vanilla ICM and the proposed ISCM are separately
written as

¢" = argmin E, [L]?] )
o]
and
¢* = argminE,; [(1 — )Ly + OzL(tC] ) 3)
@

where LY = BLE + (1 — B)L! is the overall dynamics
loss and «, 3 are hyper-parameters to mediate the relative
importance between modules. Note that the objective is
expected to be minimized over samples with time stamp £.
Therefore, it is reasonable to encourage the agent to collect
informative samples by injecting the model’s prediction error,
as a form of intrinsic reward, into the agent’s exploration
objective.

B. Intrinsic Visual-Auditory Reward

Unlike typical supervised learning in which the data is
drawn from a stationary distribution, RL agents actively seek
samples according to the policy that updates towards reward-
weighted maximum likelihood estimation [47]. So when
dealing with the sparse-reward case, the intrinsic reward
mechanism helps prevent representations to focus too much
on non-interesting areas.
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Fig. 2. An overview of the Intrinsic Sound Curiosity Module (ISCM) comprised of: 1) visual-auditory observations available in exploration (blue-shaded
square), crossmodal learning (green-shaded square) and vanilla vision-based ICM architecture (red-shaded square).

The visual-auditory reward in our case is defined as r* =

log(LY + €) — if the agent’s assumption violates its per-
ception, it will be encouraged to experience more, and vice
versa. € is a constant added to maintain numerical stability,
particularly for values near zero. With 7P = log(LP + €) as
the ICM reward when modeling the environment dynamics,
the overall intrinsic reward of ISCM is computed as

re = MrC 4 (1= NP, 4

where A\ controls the relative importance of crossmodal
prediction and dynamics modeling for exploration.

C. Learning

The learning process is separated into 1) fully unsuper-
vised pre-training and 2) task-specific fine-tuning stages with
the curiosity mechanism omitted. It begins with an agent
freely exploring an environment, trajectories of {0} } and
{o{'} are accumulated for representation learning; intrinsic
rewards are computed for policy learning. When the freedom
limit is reached or when the agent is believed to have
enough knowledge, the pre-trained visual encoder will be
fixed, and the actor-critic networks will be fine-tuned on
downstream tasks with only vision and extrinsic sparse
rewards accessible. Refer to Algorithm [T] for pseudo code.

IV. EXPERIMENTS
A. Environments

The experiments are carried out in simulation because
unsupervised exploration in the real world is costly which
we leave for future work. One way to manipulate objects
with authentic sound is to use a fixed data set with a physics
computation interface [48]. For generality, we build our
manipulation scenarios based on ThreeDWorld (TDW) [18],
a novel embodied Al simulator [41] which is built upon the
Unity game engine with multimodal capacities. To the best
of our knowledge, it is the only one so far that supports
physically simulated impact and scrape sounds [49], [50]
at run time. The tabletop robot is composed of a 6-DoF

OpenManipulator-Pro robotic arm and a 2-DoF grippeﬂ
It is allowed to manipulate cubes with diverse physical
properties that are essential for both dynamics and sound
characteristics, e.g., masses, materials, and bounciness.

Observations A camera and a single-channel microphone
are placed above the table to capture observations. We focus
more on vision and sound, so the robot’s proprioception is
not included, and the robot has no knowledge of the objects’
coordinates.

Rewards One or several cubes are randomly placed inside
a red circular area, and the goal is to push them out of the
circle within a limited number of steps. Specifically, each
step will have a penalty of -1/50, and an immediate reward
of 1 will be delivered once the task is completed, otherwise
the episode ends at 50 steps.

B. Implementations

We use the ICM implementation of URLB [7] as the
baseline, and further extend it to our ISCM architectureEl

1) Visual Observation: a) Raw RGB image observations
(0f_5, 0f_1, o)) are stacked to the size of 84 x 84 x 9
pixels. b) Four layers of CNN with ReLU activation are
applied subsequently to encode vision to a latent state s;. ¢)
A model with two layers of fully connected neural networks
with ReLU activation is constructed for sound prediction.
d) Visual inputs are available in both pre-training and fine-
tuning.

2) Auditory Observation: a) An auditory observation o;*
is generated at run-time by a physical engine; it is then
converted to the spectrogram o} using Short-Time Fourier
Transform (STFT). This is a consideration that complex
sounds that come from objects with distinct materials are
more distinguishable in the frequency domain with the help
of the Fourier transform. Since the agent is updated with
samples from a replay buffer and actions are chosen solely
based on the visual input, there is no wait for the computation

3:https ://github.com/ROBOTIS-GIT/open_manipulator_p
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Algorithm 1: Pseudo Code for ISCM Learning

Initialize: Replay buffer D < @, policy neural
networks 7, visual encoder ¢, auditory encoder ¢;
for n =1 to Npre—train do > Exploration

Observe o; = {0}, o'},

s < (o) ). 57t p(of);

a < 7(s¢);

Observe 0,41 ~ Pl.;

D+ DU (Ot7 ag, Ot+1);

Sample Dygtcn from D;

Update @, m using samples in Dyqser, With Eq. [3]
and Eq.

end

Fix visual encoder ¢* <— ¢ for evaluations;

Chose task T

D« 0;

for n =1 to Ntine—tune do

Observe o} ;

s @ (o) );

ap < 7(s¢);

Observe 041,17 ~ P2

D+ DU (Ot7 ag, T, Ot+1);

Sample Dygcep, from D;

Update 7 using samples in Dpqycp, With extrinsic
rewards;

> Adaptation

end
Evaluate 7 with the accumulated rewards on task 7
for performance;

of STFT in real-time control. b) Spectrograms (0} 5, of 1,
07) are then stacked as the auditory input of 32 x 32 x 3 size.
¢) Finally, s{* is obtained by applying a certain threshold
for silence discrimination; and by passing through a fixed
auditory encoder with 36-dimensional output for regression.
Auditory inputs are available only in pre-training.

3) ICM Modeling: a) Trajectories of (s;, ay, S¢tn) are
fed into the ICM dynamics models for both encoder training
(Eq with 8 = 0.5) and intrinsic reward rP computation
with € = 1. b) The sample with 7 is thus used to train a
DDPG base learner. c) After enough explorations, the DDPG
model will have to adapt to tasks with supervised rewards.

4) ISCM Modeling: a) Paired multimodal observations
(of , of') are used to train the visual encoder (Eq[3| and
Eq[T] with w, e, = 100,0.2,0.5) and to compute intrinsic
crossmodal rewards rf. b) Overall intrinsic reward (EqE]
with A = 0.8,¢ = 1) is thus computed to train a DDPG-
based learner.

All the mentioned neural networks are optimized by
RAdam [51] with a learning rate equal to 0.001. For many
unsupervised RL approaches, the performance decays with
an excessive number of environment interactions [7]. There
is so far no general strategy to determine when to early-
stop explorations for better generality. We empirically choose
200K environment steps to pre-train and 30K steps to fine-
tune, considering the convergence of learning curves. The

result is averaged over 4 runs with different seeds.

C. Evaluation

The performance of unsupervised agents can be evaluated
by means of measuring the adaptation process on down-
stream tasks or by statistically analyzing data diversity, e.g.,
counting of collisions [39], variance in the introduced sen-
sory vector [38], or transformations (distance of movement,
orientation changes) of objects. However, the latter method
varies from task to task and is not always applicable.

Whereas the main focus of this work is to demonstrate the
effectiveness of learned representations, the tasks are chosen
to be simple to master for an agent. In this case, accumu-
lated reward rather than success rate is more appropriate
to compare the learning efficiency because the former can
reflect the consumed steps, under the setting that the agent
is punished for every unfinished step. Following Michael et
al. [7], task rewards are solely used as the evaluation metrics:
1) as a measurement of active interactions, extrinsic rewards
are accumulated but never leaked during pre-training; 2) the
extrinsic rewards accumulated in the adaptation stage.

D. Results and Discussion

We observe that with sound involved, the agent is more
interested in interacting with objects, resulting in more
occasions of accidental completions (see Fig[3).

Extrinsic Reward Monitoring in Exploration
ISCM ICM

0.5

Extrinsic Rewards

-0.5

train/frame

50k 100k 150k 200k

Fig. 3. Monitoring of extrinsic rewards (recorded but never used) in
exploration. The ISCM agent has more chances of accidentally accumulating
extrinsic rewards as a result of sound contributing to additional rewards.

Observations in the Unsupervised Reinforcement Learning
Benchmark (URLB) [7] indicate that the learned representa-
tions are universally generalizable while the behavior policy
maybe not, especially the policy learned with perfect states
(full observable MDPs). As is shown in Figl] we reiterate
that representations learned in unsupervised exploration are
essential, and add further findings:

e There is a big performance gap between the DDPG
learned from scratch (DDPG, dashed gray curve) and
the other four with pre-trained weights (colored curves),
which suggests that unsupervised exploration is helpful
for faster adaptation to new tasks.

e The full pre-trained module (representations and be-
havior policy) with sound (ISCM, solid green curve)
outperforms the baseline that solely depends on vision
(ICM, solid orange curve).



o Without considering pre-trained policies, representa-
tions learned with a visual-auditory prediction (ISCM-
PR, dashed green curve) outperform the ones learned
with only vision (ICM-PR, dashed orange curve).

e Moreover, by comparing all solid with dashed curves,
we find pre-trained policies to have positive effects on
task adaptation, which reveals that skills acquired in
unsupervised exploration are also reusable. However,
more studies on policy analysis, e.g. decomposition of
the learned policy for abstract behaviors are required
for a clear view.

Episode Reward in Adaptation
=+ ISCM-PR DDPG
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Fig. 4. Episode rewards in fine-tuning stage accumulated by DDPG learners
with all hyper-parameters configured the same except for the initialization of
models: 1) ICM: models with representations and policy pre-trained by ICM.
2) ICM-PR: models with ICM pre-trained representations but a re-initialized
policy. 3) ISCM: models with representations and policy pre-trained by
ISCM. 4) ISCM-PR: models with ISCM pre-trained representations but a
re-initialized policy. 5) DDPG: models without pre-training.

A vision-to-sound regression model is also trained with all
other hyper-parameters configured the same (see Fig[5| for a
clear comparison). Though a vector (for regression) rather
than a scalar (for discrimination) is believed to have a higher
capacity of information, we find the discriminator setup
(green curves) achieves a comparative performance with a
regressor (red curves), while being simple to implement.
Similar findings can be also found in recent works [39]
where clustered auditory events are being predicted instead of
regressing sound features. It may be a result of the following
reasons: 1) impact sound presents not much more informa-
tion than a deduction of event occurrence; 2) simulated sound
is still far away from perfect such that vision, sound, and
dynamics are not matched well as in reality. Future work will
include constructions of more complex environments and
sim-to-real adaptations to investigate more on these research
questions.

V. CONCLUSIONS

Sound is one of the most common and efficient modalities,
but is yet less considered to learn either simulated or real-
world robotic manipulations. Unlike many of the curiosity-
driven RL variants, especially the ones combined with au-
dio that pay attention to non-robotics applications such as
playing Atari games, we are focusing on investigating how
robots can benefit from exploring multimodal environments.
In this paper, the importance of unsupervised representation

Episode Reward in Adaptation
— ISCM/Reg

=+ ISCM/Reg-PR =+ ISCM-PR = ISCM
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Fig. 5. Episode rewards in fine-tuning stage are accumulated by base DDPG
learners that are initialized differently. 1) ISCM: fully pre-trained module
with a discrimination auditory encoder. 2) ISCM/PR: pre-trained represen-
tations (but policy re-initialized) with a discrimination auditory encoder. 3)
ISCM/Reg: fully pre-trained module with a regression auditory encoder. 4)
ISCM/Reg-PR: pre-trained representations (but policy re-initialized) with a
regression auditory encoder.

learning and of active exploration is addressed. We further
propose the ISCM architecture to use physics-based sound
as guidance regarding both aspects. Our experiments demon-
strate that a sound-guided reinforcement learner is more
active and has a great superiority to form sufficient as well
as stable representations over vision-only baselines. In future
work towards more applicable scenarios, we anticipate novel
and interesting robot behaviors emerging in multimodal
environments.
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