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Abstract— For Lifelong SLAM, one has to deal with tem-
porary localization failures, e.g., induced by kidnapping. We
achieve this by starting a new map and merging it with
the previous map as soon as relocalization succeeds. Since
relocalization methods are fallible, it can happen that such a
merge is invalid, e.g., due to perceptual aliasing. To address this
issue, we propose methods to detect and undo invalid merges.
These methods compare incoming scans with scans that were
previously merged into the current map and consider how
well they agree with each other. Evaluation of our methods
takes place using a dataset that consists of multiple flat and
office environments, as well as the public MIT Stata Center
dataset. We show that methods based on a change detection
algorithm and on comparison of gridmaps perform well in both
environments and can be run in real-time with a reasonable
computational cost.

I. INTRODUCTION

Lifelong SLAM (see [1, Sec. III]) involves the lifelong
operation of a robot that is moving through its environment
while it is always mapping to extend and update the map.
Over the course of its lifetime, it will inevitably happen that
localization is lost, e.g, when the robot is kidnapped (turned
off, moved by a human, and turned on again), when sensors
temporarily provide no or unusable data, or when the SLAM
algorithm fails. In such cases, the robot first starts building
a new map and later performs relocalization (see [2], [3])
as soon as it can find its pose again with respect to the
previously created map. In this case, we merge the previous
map with the current map to create a combined map that
covers the entire area explored so far. However, relocalization
algorithms can fail under certain circumstances, e.g, due to
perceptual aliasing when two different places in the map
look alike. In order to recover from this case, we propose
an invalid merge detection algorithm, which can later detect
whether or not a merge was correct and, if the merge turns
out to be incorrect, revert this merge.

Most approaches in literature that perform relocalization
try to optimize their algorithms to achieve a high relocaliza-
tion accuracy. However, it is usually not considered that even
an algorithm with a high accuracy will eventually fail, if it
runs for a long time and on a variety of datasets. In particular,
there are sometimes environments where two different places
appear exactly the same to the robot and this ambiguity
may not even be detectable by looking at the existing map
because so far only one of these two places has been mapped.
In general, there is always a trade-off between the desire
to relocalize quickly and the desire to relocalize reliably:
The longer one waits, the more information can be gathered,
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(a) Invalid merge.

(b) Corrected merge.

Fig. 1: Example of an invalid map merge, due to an ambigu-
ous corridor. Blue � circles are considered vertices from
the active epoch, and the left images highlight the scan
points that belong to them. Gray � corresponds to data from
other epochs. The right images show the classification results
from our change detection based method for detecting invalid
merges. Red � corresponds to change, green � to agree, and
gray � to no info.

which lowers the chance of wrong relocalization. However,
early relocalization is desired because data from a previous
map may be needed to allow the robot to continue its task
(e.g. navigation to places in the other map). Thus, we want
to relocalize early, and be able to undo potential mistakes
later.

When implementing an this idea, we are confronted with
two main questions: How to detect an invalid merge? And
how to undo that invalid merge? In this paper, we provide
answers to these questions with the following contributions:

• Theoretical investigation into how invalid merges can
be detected.

• Four concrete algorithms to efficiently detect invalid
merges with high accuracy.

• A model for handling multiple, disconnected graphs in
a graph-based SLAM system.

• Algorithm for merging graphs and undoing merges.
• Evaluation scheme based on a reference map that re-

duces manual effort to a minimum.
• Evaluation on two real-world, indoor datasets.

In the following, we assume a graph-based SLAM al-
gorithm [4] based on 2D lidar data. Some of the methods
proposed in this paper can also be generalized to the 3D
case, however.
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II. RELATED WORK

Map merging has been studied mostly for multi-robot use
cases where several robots map an environment together
and try create a complete map by merging their individual
maps [5]. Due to the distributed nature of this application,
the focus is often on the question of how the amount of
data exchanged between the robots can be kept small [6]
and when it is the best time to merge [7].

However, some authors have also considered map merging
for single-robot applications, where merging is used as a
means to facilitate relocalization [8], [3]. This is the use
case of map merging on which we focus in this paper.

When it comes to map merging algorithms, different types
of maps have been considered. One common approach is
to perform map merges on the level of a gridmap [5],
[9], [10], [11]. While merging gridmaps may be sufficient
for some applications, this kind of merge is fairly limited
because it cannot easily perform a non-rigid alignment where
parts of the map are warped slightly. In the case of graph-
based SLAM approaches, the merged gridmap also has the
disadvantage that it does not contain any graph structure
anymore, so individual lidar scan poses cannot be optimized
further when new data becomes available. There is also some
research on merging feature maps [5] and point clouds [3].
However, these strategies suffer from similar limitations.
Thus, we focus on merging maps at the level of the SLAM
graph [8], [6] in this paper.

When it comes to detecting and undoing invalid map
merges, we are not aware of any directly comparable re-
search. However, there have been some works on detecting
wrong loop closures [12], [13], [14], which is a closely
related problem, since an invalid map merge is fairly similar
to a wrong global loop closure. Furthermore there is some
research on map quality measures [15], [16], [17], which
could be used to detect invalid merges by computing a map
quality measure and assuming that a invalid merge must have
happened if it drops below a certain threshold. We adapt the
method in [12] (histogram) and [16] (entropy) to compare
our methods against.

III. INTEGRATION IN SLAM PIPELINE

In this section, we explain how to integrate map merging
and unmerging into a graph-based SLAM pipeline. First, we
introduce the concept of an epoch: An epoch ends, whenever
incremental localization methods get disrupted. This is bound
to happen, e.g., when the robot is turned off or detects that it
was kidnapped. As soon as normal operation resumes, a new
epoch is started. We assign each epoch a unique id ι ∈ N
and we add it to each vertex v that is submitted into a graph
using data from that epoch.

Similar to [2], our architecture assumes that at any
given point in time, there is a single active SLAM graph
GI∗n and a set of zero or more inactive SLAM graphs
{GI1 , . . . , GIn−1}. Each graph contains data from one or
more epochs (via map merging), represented by I . We denote
the current epoch (ι∗) and sets that contain the current epoch
(ι∗ ∈ I∗) with an asterisk. GI∗n is the graph that is actively

used by SLAM, meaning that the robot is localized wrt. to
this graph, and data from the current epoch is added to it.
When an epoch ends, the active graph gets moved into the
set of inactive graphs and a new empty active graph GI∗n+1

is
created when a new epoch starts. Note that a graph implicitly
defines a map, so, in the following, we use the two terms
interchangeably.

A. Map Merging

In order to know which maps to merge, we perform
place recognition to find the relative pose between two
graphs. For this purpose, one can for example use RANSAC
approaches [18], an IRON key point matcher [19], a FLIRT
keypoint matcher [20], or similar approaches. Once a unique
match has been found, we assume that the algorithm provides
a set Eloop of one or more loop closure edges that connect
vertices of the two graphs.

We assume that the active map is given by a SLAM graph
GI∗1 = (VI∗1 , EI∗1 ) with a set of vertices VI∗1 and a set of
edges EI∗1 . Correspondingly, the inactive map is given by
GI2 = (VI2 , EI2). To construct the merged graph, we first
create a new graph based on the union of both graphs and the
loop closure edges, i.e., GI∗1∪I2 = (VI∗1 ∪ VI2 , EI∗1 ∪ EI2 ∪
Eloop) where Eloop ⊆ VI∗1 × VI2 . Graph optimization will
automatically align the graphs into a single coordinate frame,
or, alternatively, the graphs can be manually transformed
based on the relative pose(s) in Eloop to give better initial
values for optimization. After merging two maps, it makes
sense to try to find additional loop closures where the maps
overlap to improve their alignment.

During live operation, we only search for matches between
all inactive graphs GIi ∈

{
G1, . . . , GIn−1

}
and GI∗n , but not

between different inactive maps. When merging, we make
sure that we continue to use GI∗n ’s reference frame to avoid
significant pose jumps, which makes map merges much more
pleasant for other navigation modules. We continue with
this procedure, as long as there are inactive maps left. So,
there may be several subsequent merges of several different
inactive maps into the same active map. Furthermore, note
that an inactive map GIi may also have been created as a
result of merges themselves (‖Ii‖ > 1).

B. Unmerging

After merging an inactive map into the active map GI∗n ,
we run our invalid merge detection (see Sec. IV) whenever
a new vertex is added, i.e., new sensor information becomes
available. For these algorithms, it is crucial to differentiate
vertices of the current epoch V{ι∗} ⊆ VI∗n from vertices
that stem from other epochs VI∗n\{ι∗} ⊂ VI∗n . In case we
detect an invalid merge, we undo all merges into the active
map, such that I∗n = {ι∗}. In principle, this may lead to
undoing more merges than necessary in some cases, but
reduces the complexity of the problem. The benefit of more
selectively undoing merges seems limited in most use-cases,
where multiple subsequent merges are the exception.

Before we merge an inactive map into the active map, we
create a backup of that inactive map and store it in RAM or



(a) The inactive map. (b) The active map. (c) A risky, invalid merge.

(d) Detectable via unexpected appearance. (e) Detectable via better hypothesis. (f) Detectable both ways.

Fig. 2: Toy environment for illustrating the two types of approaches for detecting invalid merges. It consists of three different
rooms A, B, and C, connected by a four-way crossing. The inactive map is visualized in blue (a), the active map in green (b).
Unexplored parts of the environment are drawn with dotted lines. In (c), a risky merge is performed, which turns out to be
wrong (rotated clockwise by 90°). At the time of the merge, however, the merged map appears to be consistent. Depending
on which path the robot takes, we can detect that the merge was wrong via unexpected appearance (red not equal sign) (d),
better hypothesis (red questionmark) (e), or by both classes of methods (f).

on disk, depending on the available memory. If lidar scans
are never modified, it is sufficient to only backup the graph
structure without duplicating the scans. Once we want to
undo a merge, we simply restore the inactive map(s) from
backup.

As far as the active map is concerned, the exact solution
would require to also create a backup before the merge,
store all sensor data after the merge, and reprocessing it
after restoring the backup. In practice, this is very slow and
requires a lot of memory. For this reason, we propose an
alternative solution: We remove all vertices v ∈ VI∗n\{ι∗}
from the active map that were merged into it. In addition,
we remove all edges connected to these vertices. Finally, we
optimize the graph to get a good estimate of G{ι∗}. This is
not guaranteed to lead to exactly the same result as if the
merge had never taken place. However, we did not find any
cases where this leads to significantly worse results.

If graph pruning such as [21] is used, special care needs to
be taken. If an inactive graph is merged into the active graph,

we cannot prune information from the active graph because
the same area is covered in the merged graph as this merge
might later be undone, which would break the active graph.
Therefore, we perform pruning on the active SLAM graph
only considering vertices from the current epoch. As soon
as epoch ι∗ ends, and we did not find an invalid merge, we
can prune the complete graph.

IV. INVALID MERGE DETECTION

We differentiate two different types of approaches that can
detect invalid map merges, better hypothesis and unexpected
appearance. The first one detects that later a better merge
hypothesis is found than the one used during the merge
and the second one detects that the observed environment
contradicts the environment in the merged map. In this
context, appearance can refer to any observable property
of the environment such as its geometry or its color. They
are illustrated using a toy example environment in Fig. 2.
While Fig. 2d and Fig. 2e show cases where only one type



(a) Input data: Dt � and Ds �. (b) Example rays and classification regions. (c) Final classification result.

Fig. 3: Visualization of a single scan pair comparison with adapted algorithm from [22]. Sensor origins are big dots, sensor
measurements are small dots. The long wall is perceivable by both scans, but the left/right wall (*/*) only by Dt/Ds,
respectively. Red � corresponds to change, green � to agree, and grey � to no info. Note that only Ds is getting classified.

of approaches can detect the invalid merge, this is unusual
in practice. In both cases, the other type of approach would
likely become usable as well if the robot continues to explore
its environment.

The first approach finds a better hypothesis of how two
maps can be merged via place recognition. Assume the same
place is recorded in both maps. If a merge is correct, this
place should be located at a single location in the merged
map. According to an incorrectly merges map, a place
can appear to exist at two different locations (see Fig. 2e
and Fig. 2f). When detecting invalid merges by generating
better hypotheses, there are two failures modes: First, due
to perceptual aliasing, two different places A and A’ can
look similar. This can cause these methods to undo a correct
merge. Second, changes in appearance of room A can cause
failure to detect the invalid merge in Fig. 2e.

The second approach detects an unexpected appearance
of the environment, e.g., via methods that can predict map
quality or differences in maps. An invalid merge can cause
different places to overlap in the merged map (see Fig. 2d and
Fig. 2f). This usually leads to walls intersecting at unusual
angles and is often easy to spot for humans as a “broken
map”. Note that in order to detect unexpected appearance,
it is not necessary to recognize a place: “This is place C,
therefore it cannot be place B”. Instead, finding that “this is
not place B” is sufficient. This fact suggests that detecting
unexpected appearance might be the easier problem to solve.
The two failure modes for this approach are the other way
around: Changes in appearance of a place can cause these
methods to undo correct merges and perceptual aliasing can
cause them to miss a invalid merge.

In the following, we focus only on methods for detect-
ing unexpected appearance. An advantage of this type of
methods is that it can run on local information around the
robot’s current location. In contrast, when searching for a
better hypothesis, every new bit of sensor data needs to be
compared to all known places. For this, every algorithm can
be used that is capable of finding a merge to begin with. In
principle, using both types of methods in parallel will likely
yield better results at increased runtime costs.

A. Change Detection
The following approach is based on a method from [22],

for detecting changes in 3D point clouds. It operates on

a pairs of scans (Dt, Ds). Each scan consists of Da =
(xa, Sa), where xa is the scan’s global 6D pose and Sa is the
set of endpoints in spherical (3D scans) or polar (2D scans)
coordinates. The algorithm returns a subset of point indices
Ct = {i1, · · · , iM} , i ∈ {1, · · · , |Dt|} that violate the free-
space of Ds. When (Dt, Ds) are aligned correctly, the points
in Ct most likely depict dynamic or semi-static objects. But
aligning (Dt, Ds) incorrectly can also cause a lot of free-
space violations, e.g. by criss-crossing wall segments. This
fact can be used to detect invalid merges.

We adapt the algorithm from [22] such that it additionally
differentiates whether a measurement in Dt agrees with how
Ds has perceived the environment (green � points in Fig. 3c)
or Ds has no information about that part of the environment
(grey � points in 3c). For that, we adapt the range check
(see [22, Algorithm 1, line 4]) such that it returns a list of
class labels

(
c1, · · · , c|D

t|
)

, with

cp =


change, rt < rsmin + Tr

agree,
rt ∈ [rsmin − Tr, rsmax + Tr]
∧ rsmin + rsmax ≤ 2 · Tr

no info, otherwise

depending on the min and max range rsmin and rsmax of nearby
points from Ssnear ⊂ Ss. The agree interval can become large
when Ssnear is looking at things at a steep angle or at object
boundaries. To address this issue, we additionally check that
this interval is smaller than 2 · Tr. In our experiments, we
use Tr = 0.1 m and Tα = 3° (for calculating Ssnear ⊂ Ss).

Whenever a new scan Di is added to a map G∗I , ‖I∗‖ > 1
after a merge, we take the most recent n ∈ N scans from the
current epoch (see Fig. 1, vertices highlighted in blue �).
Then, we pair each of these scans with all scans from other
epochs, that overlap by at least τ meters (see Fig. 1, vertices
highlighted in gray �). For this, we utilize a visibility grid,
where each cell contains the ids of all scans from other
epochs that have observed it. Since the grid does not contain
any data from the active epoch ι∗, it is sufficient to compute
it once after the merge.

Our adapted algorithm gets applied to all paired scans
symmetrically. Each point will get multiple classifications,
one for each paired scan. Additionally, new classifications
cpnew will occur over time, whenever new scans are submitted



into the map. For each point, we update and store the class
label cpfused using the following fusion scheme:

cpfused =


agree, cpfused = agree ∨ cpnew = agree
no info, cpfused = no info ∧ cpnew = no info
change, otherwise

This scheme prioritizes the agree class over the change class
in order to become robust, e.g., against obstacles that appear
see-through to the lidar. We cache the fused classification
results during a SLAM session. However, when the estimated
pose of a vertex has changed significantly during graph
optimization, e.g., due to loop closures, the cache gets
invalidated and the classifications are re-done if the vertex is
still relevant for invalid merge detection.

Finally, we count how often the different number of
classes occur for all considered points and calculate the ratio
rinvalidity = Cchange

Cagree+Cchange ∈ [0, 1] and perform an unmerge if
it is above a threshold rinvalidity > tunmerge. Note that points
with no information do not influence rinvalidity.

B. Gridmap

In the following, we propose a gridmap-based approach to
detect invalid merges. For this purpose we consider a window
of the n ∈ N most recent keyframes. First, we compute the
axis-aligned bounding box of all scans associated to these
keyframes. This bounding box corresponds to the area of
interest.

Then, we compute two gridmaps in this area; the first
gridmap is based on the newest keyframes and the second
gridmap is based on vertices whose epoch ι is different from
the current epoch. i.e., that have been merged into the active
map. Our gridmap has three possible states for each cell:
empty, occupied, and unknown. In our experiments, we use
a cell size of 2.5 cm.

After computing the gridmaps, we perform a cell-wise
comparison. Specifically, for cells a, b from the first and
second gridmap respectively, we determine the sets

Coverlap ={¬a is unknown ∧ ¬b is unknown}
Ccontradictions ={(a is empty ∧ b is occupied)

∨ (a is occupied ∧ b is empty}

and compute the invalidity ratio

r =

{
|Coverlap| ≥ τ, |Ccontradictions|

|Coverlap|

|Coverlap| < τ, 0

for a minimum overlap threshold τ ≥ 0. It holds that r ∈
[0, 1] and larger r indicates more contradictions and thus, a
higher probability that an invalid merge occurred.

Because occupied areas such as walls tend to be quite thin
in the gridmap, a slight misalignment by a single cell already
leads to a contradiction. Therefore, we use the dilation
operation (with a square structuring element of 7× 7 cells)
on both gridmaps before comparing them to increase the size
of occupied areas.

C. Map Quality Measures – Entropy

Another idea to detect invalid merges is to use some kind
of map quality metric in order to assess the quality of the
map and to use a low quality as an indicator that a invalid
merge has happened. Different map quality metrics have
been proposed in literature, e.g., [15], [17]. Some of these
metrics measure aspects of the map’s quality that are not
suitable for detecting invalid merges since they are designed
to respond to noisy maps or slightly misaligned scans. As
an example of a map quality approach, we implemented the
entropy measure proposed by [16], [23, Sec. VI].

We compute the entropy based on the point cloud obtained
by combining all lidar scans of the SLAM map. The entropy
of a point qk ∈ {q1, . . . , qQ} is given by

h(qk) =
1

2
ln (det(2πeΣ(qk)))

where Σ(qk) is the covariance of all points in a radius
r = 0.3 m around qk. This corresponds to the differential
entropy of a Gaussian distribution with covariance Σ(qk).
The entropy of the entire map is obtained by averaging over
all points

H =
1

Q

∑Q

k=1
h(qk) .

Because we are not interested in the absolute entropy of the
map but rather of the influence of the merges, we compute

∆H = Hall −
1

2
(Hcurrent epoch −Hother epochs) ∈ R .

This way, we can detect if the merge increases or reduces the
entropy and interpret an increase in entropy as an indicator
of an invalid merge.

D. Loop Closure Verification – Histogram

Another related problem to invalid merge detection is loop
closure verification. Thus, we implemented the histogram-
based approach proposed by from Corso [12, Sec. 3.1],
which is in turn inspired by [24]. This method somewhat
resembles the gridmap approach from Sec. IV-B. The key
difference is that does not consider each grid cell as occupied
or unoccupied but instead counts the number of points in
each grid cell to obtain a histogram. Corso uses a nor-
malized histogram in his paper, but we decided to use an
unnormalized histogram to be able to compare maps with
vastly different sizes and thus different numbers of points.
Specifically, we compute the unnormalized histograms for
the most recent n vertices of the current epoch h1(·, ·)
and the unnormalized histogram of all other epochs h2(·, ·).
These two histograms can be compared using the intersection
kernel with subsequent normalization

c =

∑
i,j min (h1(i, j), h2(i, j))∑

i,j h1(i, j)
∈ [0, 1]

where h1(i, j) and h2(i, j) are the number of points in the
grid cell at location (i, j) in the respective map. We then use
1− c ∈ [0, 1] as an invalidity measure since large c indicates
a good agreement between h1(·, ·) and h2(·, ·) whereas small



Fig. 4: Maps from the segments of the MIT Stata Center dataset (white), aligned to a reference map created from “2012-
02-02-10-44-08” (black).

TABLE I: Datasets used for testdata sequence generation.

Dataset Recording Segments Duration
(minutes)

Flats and
Offices

Office 1 33 242
Office 2 20 115
Flat 1.1 14 103
Flat 1.2 12 47
Flat 2 35 129
Flat 3 13 109
Flat 4 7 28
Flat 5 9 39

Sum 143 812

MIT Stata
Center

2012-01-18-09-09-07 18 36
2012-01-25-12-14-25 11 20
2012-01-25-12-33-29 7 14
2012-01-28-11-12-01 19 36

Sum 55 106

TABLE II: Testdata sequences used for evaluation.

Correct Invalid
Dataset Sequences Merges Merges

Flats and Offices 436 252 184
MIT Stata Center 1114 559 555

c suggests a mismatch between the two histograms. In our
experiments, we use a histogram cell size of 0.5 m.

V. EVALUATION

Our evaluation tests how well the approaches described
in Section IV can differentiate correct merges from invalid
merges. In addition, we investigate the computation time they
require. We use two datasets, an internal “Flats and Offices”
dataset and the public “MIT Stata Center” dataset1.

1https://projects.csail.mit.edu/stata/

A. Evaluation Scheme

We run our SLAM pipeline on a set of sequences with
two segments each. Each segment contains a small part of
a dataset and corresponds to a single epoch ι (see Sec. III).
The contents of the first segment are simply used to generate
a map GI1 . When the second segment starts, our SLAM
pipeline creates a new map GI2 , unconnected to the first
one. Usually, we would automatically recognize places in
GI1 and perform a map merge (if the maps overlap). For this
evaluation, however, we deactivate automatic map merges
and force a map merge with a predefined pose at a predefined
point in time, which may be correct or incorrect. This
approach ensures that we get consistent merges for evaluation
(place recognition might be randomized or gets improved)
and enables us to manually add specific merges.

After the merge, all invalid merge detectors output the
respective invalidity ratio rinvalidity for each new scan but,
during evaluation, we do not undo invalid merges. This
allows us to retrieve the maximum invalidity ratio that each
approach reaches for each test sequence. If this maximum
invalidity ratio lies above a threshold rinvalidity >= tunmerge,
the maps would have gotten unmerged at some point during
processing. With this scheme, we can calculate the number
of true positives, false positives, true negatives, and false
negatives for all possible tunmerge. While this scheme does
not explicitly consider how quickly an invalid merge gets
detected and undone, only that it happens at some point be-
fore the second segment is finished, it is useful for comparing
classification performance and finding a good tunmerge.

B. Dataset: MIT Stata Center

The MIT Stata center dataset features indoor scenes from
an academic building, from which we only use the subset
depicted in Table I. The chosen recordings are all from the
second floor of the building and start and stop roughly at
the same location. We use the Hokuyo UTM-30LX Laser

https://projects.csail.mit.edu/stata/


data from the base of the PR2 robot, the robot’s raw wheel
odometry, and the Microstrain 3DM-GX2 IMU. In order get
more evaluation sequences from the same amount of data, we
segment each run into smaller pieces of about 100 s. With
this approach, we get a lot of segments that are still long
enough for place recognition and invalid merge detection,
and with different start and stop poses.

The sequences for our evaluation with this dataset were
generated with minimal manual labeling required: First, we
create a reference map from the unsegmented “2012-02-02-
10-44-08” dataset. Then, we create maps for all 55 segments
and align them to the reference map via our place recognition
module. To make sure these transformations are correct, we
inspect and correct them manually, if necessary. An overview
of the segments aligned to the reference map is shown in
Fig. 4. Using this information, we can calculate the relative
transformations between all 2970 = 55·54 pairs of segments.
For each such pair, we estimate the overlap of their maps
and discard it, if it is below 1.5 m2. The remaining pairs
form the set of evaluation sequences. The last step is getting
a map merge pose and whether that pose corresponds to a
correct or an invalid merge. For this, we run the sequence
in our pipeline with extremely careless parameters for the
place recognition module. This ensures that a merge takes
place in almost all cases, and that we get invalid merges
frequently. Finally, we can differentiate correct merges from
invalid merges using the relative transformation estimated via
the reference map.

C. Dataset: Flats and Offices

Our internal Flats and Offices dataset consists of record-
ings in two office spaces and five different flats, see the
upper part of Table I. For Flat1, we use data from two floors
(Flat1.1 and Flat1.2). The recordings contain data from a
low resolution 360° 2D lidar, the robot’s wheel odometry
and its IMU. The test sequences (see Table II) of Flats and
Offices contains a mixture of correct and invalid merges that
our SLAM pipeline performed during other tests, as well
as manually added merges. Segments in this dataset often
correspond to a run through parts of the flat or office, e.g.
one or two rooms. Some segments also explore the whole
environment. The same part of the environment gets explored
in multiple segments, at different points in time. We can as-
semble these segments into sequences in many different ways
to create Lifelong SLAM scenarios that include incremental
map building, changes in the environment, and kidnapping.

D. Results

Our evaluation results are shown in Fig. 6 and Table III.
We use Receiver Operating Characteristic (ROC) curves
in order to compare the classification performance of our
proposed methods. Regarding the compute time, note that
we run each method whenever a new vertex gets added to
our graph, but only if a a merge has already occurred. We
store the runtime for each of these function calls and show
the mean computation time over all evaluated sequences. All

Fig. 5: Example of an invalid merge (rotated by 180°) that
is hard to detect via unexpected appearance.

(a) Results for MIT Stata Center. (b) Results for Flats and Offices.

Fig. 6: The top row compares classification performance via
ROC curves. The bottom row compares runtime costs via
violin plots. Note that we chose a different scale for the
entropy method.

presented results were obtained on a laptop with a single core
of an Intel® i7-8650U @ 1.90GHz CPU.

The evaluation shows that the change detection and the
gridmap methods perform similarly. Depending on the struc-
ture of the input data, their runtimes and classification
performance differ slightly. The entropy method and the
histogram method have quite poor classification performance
in comparison. The histogram method is the fastest method
we considered because it uses a fairly coarse grid. In contrast,
the entropy method is by far the slowest because it needs to
compute the neighborhood of every single point in the map,
which is extremely costly even though we implemented this
step using a k-d tree to improve performance.

Differences in timing between the two datasets are due to

TABLE III: Evaluation results

Dataset Method AUC Mean compute time
(ms per new vertex)

MIT Stata
Center

Change Detection 0.987 11.87
Gridmap 0.994 42.38
Entropy 0.701 998.40
Histogram 0.671 0.518

Flats and
Offices

Change Detection 0.974 8.10
Gridmap 0.971 6.75
Entropy 0.725 2376.48
Histogram 0.808 0.700



differences in the lidar sensors and the length of the seg-
ments. The lidar used in Flats and Offices only provides 360
points per scan, while the Hokuyo lidar in MIT Stata Center
provides 1040 points per scan and has a longer maximum
range. On the other hand, the MIT Stata Center dataset has
smaller segments than Flats and Offices, resulting in maps
that have fewer vertices. In Flats and Offices, there are areas
where the number of overlapping scans in the map is quite
high. This explains why change detection (runtime quadratic
wrt. considered scans) runs slower than gridmap (runtime
linear wrt. considered scans) on Flats and Offices, but is
faster on MIT Stata Center.

Especially in the Flats and Offices dataset, there are a
few test cases that are arguably undetectable via unexpected
appearance. One such example is visualized in Fig. 5. In
order to detect invalid merges like these, we would need an
algorithm that continuously searches for better hypotheses.

VI. CONCLUSION

We have proposed four methods for detecting invalid map
merges via unexpected appearance. When early online map
merges are needed in a SLAM system, our evaluation shows
that the change detection and gridmap methods are capable
of significantly improving robustness, without requiring too
many resources. Note that in case of a valid merge, the
compute invested into the change-detection-based approach
is not in vain. It provides information about how semi-static
objects changed since the environment was last explored.

However, the current methods for invalid merge detection
are not yet flawless. One promising way to reduce the
number of false classifications is to employ methods for
detecting better hypotheses in parallel, e.g., continuously
performing place recognition w.r.t. already merged maps.

The proposed methods for detecting unexpected appear-
ance in maps are applicable to other situations besides
detecting invalid merges, when the alignment of two sets
of scans needs to be verified. For example, when detecting
wrong global loop closures, the two sets consist of scans
around the two vertices connected by the global loop closure
edge. With some adaptations, they could also be used a
measure for map quality.

Additionally, we proposed a way for handling multiple
maps in SLAM. Its usefulness extends far beyond the basic
case where robot is turned off, moved, and resumes opera-
tion. For example, the start of a new epoch can also be used
as a recovery mechanism to prevent corruption of the active
map due to incremental localization failures, e.g., caused by
a featureless corridor when using only lidar odometry.
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