
db-A*: Discontinuity-bounded Search for Kinodynamic Mobile Robot
Motion Planning

Wolfgang Hönig, Joaquim Ortiz-Haro, and Marc Toussaint

Abstract— We consider time-optimal motion planning for
dynamical systems that are translation-invariant, a property
that holds for many mobile robots, such as differential-drives,
cars, airplanes, and multirotors. Our key insight is that we
can extend graph-search algorithms to the continuous case
when used symbiotically with optimization. For the graph
search, we introduce discontinuity-bounded A* (db-A*), a
generalization of the A* algorithm that uses concepts and data
structures from sampling-based planners. Db-A* reuses short
trajectories, so-called motion primitives, as edges and allows
a maximum user-specified discontinuity at the vertices. These
trajectories are locally repaired with trajectory optimization,
which also provides new improved motion primitives. Our novel
kinodynamic motion planner, kMP-db-A*, has almost surely
asymptotic optimal behavior and computes near-optimal solu-
tions quickly. For our empirical validation, we provide the first
benchmark that compares search-, sampling-, and optimization-
based time-optimal motion planning on multiple dynamical
systems in different settings. Compared to the baselines, kMP-
db-A* consistently solves more problem instances, finds lower-
cost initial solutions, and converges more quickly.

I. INTRODUCTION

Motion planning for robots with known kinodynamics
remains challenging, especially when a time-optimal motion
is desired. Consider the example in Fig. 1 of a simple
dynamical model in 2D (unicycle, 3-dimensional state space
and 2-dimensional control space). Finding the time-optimal
solution is surprisingly challenging for state-of-the-art meth-
ods when constraining the control space to model a plane
with a malfunctioning rudder, i.e., with a positive minimum
speed and asymmetric angular velocity limits.

Current planning approaches are sampling-based, search-
based, optimization-based, or hybrid. Each of these methods
has their strengths and weaknesses. Sampling-based planners
can find initial solutions quickly and have strong guaran-
tees for convergence to an optimal solution. However, in
practice the initial solutions are far from the optimum, the
convergence rate is low, and the solutions typically require
some post-processing. Search-based approaches can remedy
those shortcomings by connecting precomputed trajectories,
so-called motion primitives, using A* or related graph search
algorithms. Yet, the seemingly strong theoretical guarantees
only hold up to the selected discretization of the state
space and the precomputed motions. Moreover, scaling this
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A) δ = 0.41 T∆t = 13.3s B) δ = 0.22 T∆t = 16.3s C) δ = 0.00 T∆t = 19.5s

Fig. 1. A kinodynamic planning problem, where a plane-like 2D robot
with a malfunctioning rudder (no sharp right turns) has to move from the
left configuration (filled blue) to the right configuration (blue outline) in
minimum time. A) An initial solution by “stitching” motion primitives with
bounded discontinuities (magnitude indicated by hue of red color). B) A
refined solution using more primitives and a lower discontinuity bound δ.
C) Final trajectory computed with optimization using B) as initial guess.

approach to higher dimensions has proved difficult and
requires careful, frequently hand-crafted design of the motion
primitives. This curse of dimensionality can be overcome by
optimization-based planners, which scale polynomially rather
than exponentially with the number of state dimensions.
However, these planners are, in the general case, only locally
optimal and thus require a good initial guess both for the
trajectory and time horizon.

In this paper, we present a new approach for kinodynamic
motion planning of mobile robots that combines key ideas
and strengths of the aforementioned previous methods. We
rely on a graph-search method, because it provides a theo-
retically grounded exploration/exploitation tradeoff, but we
want to remedy its primary shortcoming of a predefined
discretization, similar to sampling-based planning. The naive
approach of simply increasing the number of primitives is
intractable, due to the resulting infinite number of states
and infinite branching factor. We solve this challenge with a
combination of bounded-discontinuity search with nonlinear
optimization. Introducing the discontinuity makes the search
tractable: we can reuse the primitives and have a finite
number of states to expand. While the resulting trajectory
is not feasible, it can be used as initial guess of trajectory
optimization that locally repairs the discontinuous trajectory
into a valid trajectory. We execute search and optimization
in an iterative fashion, where the value of the discontinuity
bound decreases in every iteration. For large bounds, the
search is very fast, but the optimizer might fail to find a valid
solution. For very small bounds, the search requires a longer
runtime, but the optimizer has an excellent initial guess.
This combination results in an efficient anytime planner with
probabilistic optimality guarantees.
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More specifically, our first contribution is the introduction
of kMP-db-A*, a new kinodynamic motion planner that
combines a novel search algorithm, discontinuity-bounded
A* (db-A*), and trajectory optimization in an iterative
fashion. Db-A* generalizes A* with ideas from sampling-
based planning to obtain solution trajectories that may have
discontinuities up to a user-specified bound. Our second
contribution is the, to our knowledge, first benchmark that
compares the three major kinodynamic motion planning
techniques on the same problem instances with the identical
objective of computing time-optimal trajectories. While we
focus in our evaluation on the challenging case of time-
optimality, our approach supports arbitrary cost functions.

II. PROBLEM DESCRIPTION

We consider a robot with state x = [xt,xr] ∈ X ⊂
Rdw × Rdx−dw , where the first dw dimensions indicate the
translation in the workspace (dw ∈ {2, 3}) of the robot and
the remaining dx−dw dimensions may contain orientation or
derivatives. The robot can be actuated by controlling actions
u ∈ U ⊂ Rdu . We consider dynamics that are translation
invariant, with

ẋ = f(xr,u), (1)

where f only depends on xr and not on xt. In order to
employ gradient-based optimization, we assume that we can
compute the Jacobian of f with respect to xr and u.

The robot is operating in a workspace W ⊆ Rdw that
indicates the free space for safe navigation. The free state
space then becomes Xfree = {x = [xt,xr] ∈ X |xt ∈ W}.

Almost all generic kinodynamic motion planners assume
a discrete-time formulation with zero-order hold, i.e., the
applied action remains constant during a timestep. We can
then frame the dynamics Eq. (1) as

xk+1 ≈ step(xk,uk) ≡ xk + f(xr
k,uk)∆t, (2)

using a small timestep ∆t so that the Euler approximation
holds sufficiently well.

Let X = 〈x0,x1, . . . ,xT 〉 be a sequence of states sampled
at times 0,∆t, . . . , T∆t and U = 〈u0,u1, . . . ,uT−1〉 be
a sequence of actions applied to the system for times
[0,∆t), [∆t, 2∆t), . . . , [(T − 1)∆t, T∆t). Then our goal of
moving the robot from its start state to a goal state can be
framed as the following optimization problem:

min
U,X,T

J(U,X, T ) (3)

s.t.


xk+1 = step(xk,uk) ∀k ∈ {0, . . . , T − 1}
uk ∈ U ∀k ∈ {0, . . . , T − 1}
xk ∈ Xfree ∀k ∈ {0, . . . , T}
x0 = xs; xT = xf ,

where xs ∈ X is the start state and xf ∈ X is the goal state.
The objective function J is application specific; we will focus
on time-optimal trajectories, i.e., J(U,X, T ) = T∆t.

Example 1: Consider a unicycle robot with state x =
[x, y, θ] ∈ X = SE(2) ⊂ R2 × R1, i.e., x, y are the
position and θ is the orientation. The actions are u =

[v, ω] ∈ U ⊂ R2, i.e., the speed and angular velocity can be
controlled directly. The dynamics are translation invariant:
ẋ = [v cos θ, v sin θ, ω]. The choice of U can make this
low-dimensional problem challenging to solve. For example,
Fig. 1 shows a plane-like case (positive minimum speed,
i.e., 0.25 ≤ v ≤ 0.5 m/s) with a malfunctioning rudder
(asymmetric angular speed, i.e., −0.25 ≤ ω ≤ 0.5 rad/s).

III. RELATED WORK

There are several conceptually different algorithmic ap-
proaches to solving kinodynamic motion planning problems.

Search-based approaches rely on existing methods for
discrete path planning, such as A* and variants. The common
approach is to generate short trajectories (motion primitives)
using a state lattice (i.e., pre-specified discrete state com-
ponents) [1]. Each primitive starts and ends at a grid cell
and swept cells can be precomputed for efficient collision
checking. Once motion primitives are computed, existing
algorithms such as A* or the anytime variant ARA* can
be employed without modification.

These methods can solve Eq. (3) if xs and xf fall
within the chosen lattice and retain very strong theoretical
guarantees on both optimality and completeness with respect
to the chosen primitives. The major challenge is to select
and compute good motion primitives, especially for high-
dimensional systems [2], [3].

Sampling-based approaches build a tree T rooted at the
start state xs. During tree expansion, i) a random state xrand

in the state space is sampled, ii) an existing state xexpand ∈
T is selected, and iii) a new state xnew is added with a
motion that starts at xexpand and moves towards xrand. The
classic version of this approach, kinodynamic RRT [4], is
probabilistically complete when using the correct variant [5].
Asymptotic optimality can be achieved when planning in
state-cost space (AO-RRT) [6], [7], [8] or by computing a
sparse tree (SST*) [9]. These methods rely on a distance
function d : X ×X → R and often use fast nearest neighbor
data structures such as k-d trees for efficiency. The mentioned
algorithms work without solving a two-point boundary value
problem, which is computationally expensive.

Sampling-based approaches are designed to explore the
state space as fast as possible and typically do not use a
heuristic function, unlike search-based methods. The explo-
ration/exploitation tradeoff is typically controlled by using
goal-biasing instead. These approaches cannot solve Eq. (3)
directly, because the probability to reach xf by sampling is
zero. Instead, the goal constraint is typically reformulated to
xT ∈ Xf using a goal region Xf rather than a goal state xf .

Optimization-based approaches locally optimize an ini-
tial trajectory using the gradients of J , unlike the previous
gradient-free methods. Dynamics, collision avoidance, goal
constraints, and control limits are modeled with piece-wise
differentiable functions. In CHOMP, Hamiltonian Monte
Carlo is used to perturb local solutions [10], while Tra-
jOpt [11] and GuSTO [12], [13] rely on sequential convex
programming (SCP). Trajectories can also be computed with
optimal control solvers that rely on Differential Dynamic



Programming [14] or extend the linear quadratic regulator
to nonlinear systems [15].

Both STOMP [16] and KOMO [17] use only the (geo-
metric) state sequence Xt as decision variables and support
kinodynamic systems via constraints. All optimization-based
approaches require an initial guess as a starting trajectory, but
this guess does not need to be kinodynamically feasible.

These approaches can solve Eq. (3) directly for a differ-
entiable J and given number of timesteps T . The observed
solution quality is significantly higher (e.g., in terms of
smoothness) compared to sampling-based or search-based
approaches. Moreover, optimization-based approaches do not
suffer from the curse of dimensionality directly, although
higher dimensions might result in more local optima.

Hybrid approaches combine two or more ideas. One
can combine search and optimization [18], search and sam-
pling [19], [20], [21], or combine sampling and optimiza-
tion [22]. For some dynamical systems, using insights from
control theory for the motion planning can also be beneficial
[23], [24], [25], but requires domain knowledge. Motion
planning can also benefit from using machine learning for
computational efficiency [26], [27].

Our approach relies on the fact that the dynamics are
translation-invariant for many mobile robots. The most sim-
ilar related works are a method that reuses edges within a
sampling-based planning framework [21] and a search-based
approach that has an enhanced duplicate detection [28]. Un-
like those works we also include trajectory optimization and
reuse precomputed and online computed motion primitives
for fast convergence in practice. Moreover, our discontinuity
bound δ is not a fixed user-specified value but converges to
0, which allows us to provide stronger theoretical guarantees.

IV. APPROACH

Our general approach is shown in Algorithm 1. We assume
that we have access to a set of motion primitives, which are
valid trajectories according to our dynamics.

Definition 1: A motion primitive is a tuple 〈X,U, T, c〉
with

X = 〈x0, . . . ,xT 〉 xt
0 = 0, xk ∈ X

U = 〈u0, . . . ,uT−1〉 uk ∈ U
xk+1 = step(xk,uk) ∀k ∈ {0, . . . , T − 1}

c = J(U,X, T ).

(4)

Typically, at least some of these are computed offline (e.g.,
using an optimization-based kinodynamic planner), while
others can also be generated online. There is no requirement
on the optimality of each motion primitive, although optimal
motion primitives, where J is minimized for the respective
start and goal states, are beneficial in our setting.

Our kinodynamic planning approach iteratively improves
the solution. In every iteration, the following steps are
executed: i) the set of used motion primitives grows and the
bound that limits the maximum magnitude of discontinuous
jumps that a solution may have is computed (Lines 4 to 5);
ii) our discrete planner, db-A*, computes an initial solution
that may include a bounded violation of some constraints

Algorithm 1: kMP-db-A*: Kinodynamic Motion
Planning with db-A*

1 M← ∅ . Set of motion primitives
2 cmax ←∞ . Solution cost bound
3 for n = 1, 2, . . . do
4 M←M∪ AddPrimitives()
5 δ ← ComputeDelta(M)
6 Xd,Ud, Td ← db-A*(xs,xf ,Xfree,M, δ, cmax)
7 if Xd,Ud successfully computed then
8 X,U, T ← Optimization(Xd,Ud, Td, cmax)
9 if X,U successfully computed then

10 Report(X,U, T) . New solution found
11 cmax ← min(cmax, J(X,U, T )) . cost bound

12 M←M∪ ExtractPrimitives(X,U)

(Line 6); iii) the result of db-A* warm-starts an optimization-
based formulation (Line 8); and iv) additional motion prim-
itives are extracted from the optimization (Line 12).

A. db-A*: Discontinuity-bounded A*

In the following, we rely on a user-specified metric d :
X × X → R, which measures the distance between two
states. This is analogous to sampling-based planners, and we
assume that 〈X , d〉 is a metric space in order to use efficient
nearest neighbor data structures, such as k-d trees.

Definition 2: Sequences X = 〈x0, . . . ,xT 〉, U =
〈u0, . . . ,uT−1〉 are δ-discontinuity-bounded solutions to
Eq. (3) iff the following conditions hold:

d(xk+1, step(xk,uk)) ≤ δ k ∈ {0, . . . , T − 1} (5a)
uk ∈ U ∀k ∈ {0, . . . , T − 1} (5b)
xk ∈ Xfree ∀k ∈ {0, . . . , T} (5c)

d(x0,xs) ≤ δ (5d)
d(xT ,xf ) ≤ δ. (5e)

Intuitively, Definition 2 enforces that the sequences con-
nect the start and goal states with a bounded error δ in
the dynamics, which corresponds to “stitching” primitives
together. By the definition of a metric space, X and U fulfill
all constraints of Eq. (3) if δ = 0.

Our approach to compute such sequences is discontinuity-
bounded A* (db-A*), see Algorithm 2. Db-A* is, like A*,
an informed search that relies on a heuristic h : X → R
to explore an implicitly defined directed graph efficiently.
Nodes in the graph represent states and an edge between
nodes indicates a δ-bounded motion that connects the states.

The algorithm keeps track of nodes to explore using
a priority queue, which is sorted by the lowest f(x) =
g(x) + h(x) value, where g(x) is the cost-to-come. The
overall structure is the same as in A*: The OPEN priority
queue O is initialized with the start state (Line 3), the current
node n is the removed first element of O (Line 5), and that
node is expanded in order to compute valid (collision-free)
neighbors (Lines 10 to 12). Newly found nodes are added
directly to O (Line 17), while previously found nodes are
updated if the solution cost is reduced (Lines 21 to 26).

Unlike A*, we consider two states to be identical for
nonzero δ values. The major changes of db-A* from A*



are highlighted in Algorithm 2. We use the notation x⊕m
to indicate that a motion m is applied to state x; that is, we
shift m by the translational part of x. For efficient search, we
adopt two k-d trees (rather than a hashmap in A*). Namely,
we use Tm (Line 1) to index the start states of all provided
motion primitives, which can be done once at the beginning.
In order to reuse the same distance metric d, we use the
translation-invariance property and set xt of a given state x
to 0. This data structure allows us to efficiently find suitable
motions extending from a given state (Line 9). The second
k-d tree Tn (Line 2) contains the states of all explored nodes
and grows dynamically (Line 18). It is used to find nearby
previously explored states (Line 15) in order to limit the
graph size and enable rewiring. The discontinuity with a
magnitude of up to δ may occur in two cases. First, when
we select suitable motion primitives for expansion (Line 9)
and second, when we prune a potential new node in favor
of already existing states (Line 15). The tradeoff between
the two can be selected by a user-specified parameter α ∈
(0, 1). For most search-based algorithms, collision checking
is achieved using a binary occupancy grid, which makes the
choice of the grid size a critical decision. Instead, we rely on
broadphase collision checking. The required data structures
can be efficiently precomputed for the environment and each
motion primitive. For the collision check in Line 11, we
only need to shift the data structure for the selected motion
primitive, before executing the broadphase collision check.

We now discuss the theoretical properties of db-A*.
Theorem 1: Sequences X and U returned by db-A* (Al-

gorithm 2) are a δ-discontinuity-bounded solution to the
given motion planning problem.

Proof: Algorithm 2 only returns a sequence in Line 7.
Due to the condition in Line 6, Eq. (5e) holds.

By Definition 1, we have d(xk+1, step(xk,uk)) = 0 ≤ δ,
uk ∈ U , and xk ∈ X for each motion primitive m ∈ M.
Thus, Eq. (5b) holds. During the search, we expand motions
whose start states are at most αδ away from the current
state n.x (Line 9). There are two cases. First, the motion
corresponds to an edge leaving from the current state n.x
(Line 17), in which case we have d(m0, n.x) ≤ αδ, where
m0 is the (translated) first state of motion m. Second, the
motion becomes an edge leaving from some neighbor state
n′.x that is at most (1 − α)δ away from n.x (Line 15), in
which case we have d(m0, n′.x) ≤ αδ+(1−α)δ = δ, using
the triangle inequality of our metric space. Thus, Eq. (5a)
holds for all edges.

We already know that xk ∈ X . Motions are only used as
edges, if the entire motion is in Xfree (Line 11), thus Eq. (5c)
holds. Finally, Eq. (5d) holds because O is initialized with
xs (Line 3) and Eq. (5a) holds.

Remark 1: Db-A* is incomplete and suboptimal if δ > 0.
Proof: Consider an example where a robot has to move

through a narrow door to navigate to an adjacent room.
Even if a δ-discontinuity-bounded solution for the problem
exists, db-A* may not find it, because motions are added in
a random order and only if no other node is within (1−α)δ
(Line 15). Since db-A* is incomplete, it cannot guarantee

Algorithm 2: db-A*
Input: xs,xf ,Xfree,M, δ, cmax

Result: Xd,Ud or Infeasible
1 Tm ← NearestNeighborInit(M) . Use start states of

motions (excl. position)
2 Tn ← NearestNeighborInit({xs}) . capture explored

vertices (incl. position)
3 O ← {Node(x : xs, g : 0, h : h(xs), p : None, a : None)}

. Initialize open priority queue
4 while |O| > 0 do
5 n← PriorityQueuePop(O) . Lowest f-value
6 if d(n.x,xf ) ≤ δ then
7 return Xd,Ud, Td . Lowest f-value

8 . Find applicable motion primitives with discontinuity up to αδ
9 M′ ← NearestNeighborQuery(Tm, n.xr, αδ)

10 foreach m ∈M′ do
11 if n.x⊕m /∈ Xfree then
12 continue . entire motion is not collision-free

13 gt ← n.g + cost(m) . tentative g score for this action
14 . find already explored nodes within (1− α)δ
15 N ′ ← NearestNeighborQuery(Tn, n.x⊕m, (1− α)δ)
16 if N ′ = ∅ then
17 PriorityQueueInsert(O, Node(x : n.x⊕m, g :

gt, h : h(n.x⊕m), p : n, a : m))
18 NearestNeighborAdd(Tn, n.x⊕m)
19 else
20 foreach n′ ∈ N ′ do
21 if gt < n′.g . This motion is better than a known

motion
22 then
23 n′.g = gt . Update cost
24 n′.p = n . Update parent
25 n′.a = m . Update action
26 PriorityQueueUpdate(O, n′)

27 return Infeasible

that no better δ-discontinuity-bounded solution exists, once
it finds one.

We note that Remark 1 uses a very strong definition
of completeness in continuous state space. Other possible
definitions include δ-robust completeness [9]; we leave the
analysis regarding that property to future work. For the
purpose of this paper, it is important to recognize that the
strong properties of A* hold in the limit, i.e., as δ → 0.

B. Kinodynamic Optimization

For the Optimization subroutine, we rely on k-Order
Motion Optimization (KOMO) [17], which solves the fol-
lowing optimization problem:

min
X

T∑
l=1

Ĵ(xl−k:l) (6)

s.t.

{
gl(xl−k:l) ≤ 0 ∀l ∈ {1, . . . , T}
hl(xl−k:l) = 0 ∀l ∈ {1, . . . , T}

.

Here, xl−k:l denotes the sequence xl−k,xl−k+1, . . . ,xl and
the inequality constraints gl and equality constraints hl only
depend on the current and up to k prior states. This k-
order Markov assumption allows us to solve the nonlinear
optimization problem efficiently e.g., using the augmented
Lagrangian method, because k is typically small (1 to 3).



When using the Euler approximation in Eq. (2), we can
transform Eq. (3) for a given T into Eq. (6) by encoding
the dynamics, start, and goal constraints using hl and the
action and state constraints into gl. Since U is not a decision
variable in this formulation, the dynamics constraint has to
be encoded by using state constraints or by augmenting the
state space. We note that if T and ∆t are fixed and J = T∆t,
we can use any Ĵ to optimize in the nullspace of J . This
allows us to include arbitrary regularization terms (in our
case, smoothness) to guide the optimization and improve the
convergence and success rate of the optimizer.

Some optimization methods may refine the given Td in
Line 8 of Algorithm 1 either by adding ∆t as an optimization
variable [13], [29] (which introduces additional nonlineari-
ties), or by applying a linear search over multiple potential
values of T that are around Td, e.g., T ∈ 〈0.8Td, Td, 1.2Td〉.
We use the latter approach for Algorithm 1.

When no estimate of T is available, we can use a linear
search over T . For some dynamics, e.g., differentially-flat
systems, it is also possible to use a modified binary search,
where the first exponential search identifies an upper bound
and the following binary search finds the optimal T . We use
the latter approach for our baseline.

C. Motion Primitive Generation

Instead of sampling control sequences at random, we solve
two-point boundary value problems with random start and
goal configurations in free space with nonlinear optimization,
which results in a superior primitive distribution. Specifically,
we generate motion primitives offline using the following
steps. First, random sampling of a start and goal configura-
tion in free space; second, solving Eq. (6) using linear search
over T ; and third, splitting the resulting motion into multiple
pieces of a desired length. We sort the primitives using an
iterative greedy method that approximately minimizes the
dispersion. LetM be the set of all motions,Ms be the set of
sorted motions, andMr =M\Ms be the set of remaining
motions. We initialize Ms = {argmaxm∈M d(m0,mf )},
where m0 refers to the initial state of the motion and mf

to the final state of the motion. Then, we add an element to
Ms in each iteration selected by

argmax
mr∈Mr

(
min

ms∈Ms

d(m0
r,m

0
s) + min

ms∈Ms

d(mf
r ,m

f
s )

)
. (7)

Thus, we pick the motion in each iteration that maximizes
the minimum distance to other, already picked motions.

For AddPrimitives we add motions from the precom-
puted sequence Ms. Additional motions can be generated
online using the same procedure.

Instead of letting users manually specify δ, we use the
automatic procedure ComputeDelta, which estimates δ
given a desired branching factor bd. First, we initialize a k-d
tree Tm of all motions, as in Line 1 of Algorithm 2. Second,
we randomly sample a state xrand. Third, we use Tm to
find the bd-closest motions that could be applied from xrand.
Fourth, we record the distance δr = max d(m,xrand), where
m is one of the bd-closest motions. The estimated value

of δ is the average over multiple δr values. This procedure
reduces δ as the number of motion primitives increases in
expectation and is easy to tune at the same time.

Motion primitives can also be extracted online in Algo-
rithm 1. The ExtractPrimitives procedure uses the
output of the optimization regardless of the constraint satis-
faction and works as follows. First, intervals of valid sub-
trajectories are computed by checking if all the constraints
are fulfilled. Longer intervals can be split up as in the offline
computation. The resulting primitives can be particularly
useful for the planning problem at hand, because they are
computed using the full knowledge of the environment.

D. Properties

We conjecture that the approach in Algorithm 1 will
eventually compute the optimal solution, because as the
number of iterations n increases, we add more primitivesM,
which, by definition of ComputeDelta, reduces δ. Thus,
as n→∞, we have δ → 0. For δ = 0, db-A* as described
in Algorithm 2 becomes regular A*, which is known to be
complete and optimal. The major flaw of this argument is
that, in the limit, we also have an infinite number of motion
primitives and thus an infinite branching factor.

Formally, we can follow [6, Th. 3] to establish almost
surely asymptotic optimality (which also implies probabilis-
tic completeness) under the assumption that we have a non-
zero probability of our Optimization method to find a
solution if one exists. This assumption is justified by the
fact that the nonlinear trajectory optimization has a region
of attraction ∆ > 0 and for small δ > 0 our initial guess
will fall in this region of attraction, allowing the optimization
method to eventually compute a solution if one exists.

Theorem 2: The kMP-db-A* motion planner in Algo-
rithm 1 is asymptotically optimal, i.e.

lim
n→∞

P ({cn − c∗ > ε}) = 0, ∀ε > 0, (8)

where cn is the best cost in iteration n and c∗ is the optimal
cost.

Proof: We closely follow [6, Th. 3]. Let S1, . . . , Sn be
random variables denoting the suboptimality cn−c∗. In every
iteration of Algorithm 1 we either reduce the cost if we find
a new solution, or we remain with the same cost, i.e., cn+1 ≤
cn. Each iteration, we add more motion primitives and thus
reduce δ. Using the assumption of the non-zero probability
for our Optimization method to find a solution, we have
E[Sn|sn−1] ≤ (1− ω)sn−1, i.e., in expectation the solution
improves by a constant amount ω > 0 every iteration. Then,
we have

E[Sn] =

∫
E[Sn|sn−1]P (sn−1)dsn−1 (9)

≤ (1− ω)

∫
sn−1P (sn−1)dsn−1

= (1− ω)E[Sn−1] = (1− ω)n−1E[S1].

With the Markov inequality we have P (Sn > ε) ≤
E[Sn]/ε = (1 − ω)n−1E[S1]/ε, which approaches 0 as
n→∞.



V. EXPERIMENTAL RESULTS

We compare different motion planners, including ours,
on the same problem scenarios. For fair comparison, we
share code and data structures as much as possible, use the
respective state-of-the-art open-source implementations, and
focus on settings where the dynamics and not the collision-
checking create challenges.

A. Dynamical Systems

Unicycle (1st order) has a 3-dimensional state space
[x, y, θ] ∈ SE(2) and a 2-dimensional [v, ω] ∈ U ⊂ R2

control space with dynamics defined in [30, Eq. (13.18)].
The simplest version (v0) uses bounds v ∈ [−0.5, 0.5] m/s
and ω ∈ [−0.5, 0.5] rad/s. More interesting variants are a
plane-like version (v1) using a positive minimum speed of
0.25 m/s, and a plane-like version with a rudder damage (v2)
(ω ∈ [−0.25, 0.5] rad/s).

Unicycle (2nd order) has a 5-dimensional state space
[x, y, θ, v, ω] ∈ X ⊂ R5, a 2-dimensional [v̇, ω̇] ∈ U ⊂ R2

control space, and dynamics defined in [30, Eq. (13.46)]. Our
version (v0) uses v ∈ [−0.5, 0.5] m/s, ω ∈ [−0.5, 0.5] rad/s,
v̇ ∈ [−0.25, 0.25] m/s2, and ω̇ ∈ [−0.25, 0.25] rad/s2.

Car with trailer has a 4-dimensional state space
[x, y, θ0, θ1] ∈ X ⊂ R4, a 2-dimensional [v, φ] ∈ U ⊂ R2

control space, and dynamics and visualization given in [30,
Eq. (13.19), Fig. 13.6]. We add an additional constraint
|∠(θ0, θ1)| < π/4 that avoids that the angle between the car
and the trailer exceeds a threshold. Our version (v0) uses
v ∈ [−0.1, 0.5] m/s, φ ∈ [−π/3, π/3], L = 0.25 m, and
d1 = 0.5 m, where L and d1 are defined in [30].

Quadrotor has a 13-dimensional state space (pose and
first order derivatives using a Quaternion representation), a 4-
dimensional control space (force for each of the four motors),
and dynamics defined in [31, Eq. (1)]. We use the parameters
of the Crazyflie quadrotor with limits on the motor forces,
velocity, and angular velocity. Note that the low thrust-to-
weight ratio of 1.4 is very challenging for kinodynamic
motion planning and that problem settings with a harsh initial
condition prevent the use of specialized methods [32], [33].

We use ∆t = 0.1 s for all dynamical systems except the
quadrotor, which uses ∆t = 0.01 s due to the fast rotational
dynamics.

B. Environments

For most of the dynamical systems, we consider three
environments (see Fig. 2), which are inspired by the common
use-cases in the related literature. For the v2 unicycle, we
use the wall environment as shown in Fig. 1. For the
quadrotor, we use an empty environment without obstacles.
The scenario requires the quadrotor to recover from a harsh
initial condition with an upside-down initial rotation and
nonzero initial first derivatives. All environments only use
simple geometric box shapes for efficient collision checking.
The environments are bounded, where the bounds only limit
the translational part of the state, i.e., parts of the robots are
allowed to be outside. One such example is visible in the
park solution of Fig. 2.

Fig. 2. Example environments park, kink, and bugtrap (left to right) for
the car with trailer dynamics. The start state is indicated in filled blue, the
goal with a blue outline, and a near-optimal solution of the (x, y)-part of
the state as computed by kMP-db-A* as a time-colored line.

C. Algorithms

For a search-based approach, we rely on SBPL1 (Search-
based Planning Library), a commonly used C++ library
with integration in the Robot Operating System (ROS).
SBPL contains an example for unicycles, although the used
dynamics do not match the ones from [30, eq. 13.18]. Thus,
we generate our own primitives using the formulation in
Section IV-B. Moreover, we make minor adjustments to the
heuristic to enable time-optimal anytime planning using the
provided implementation of ARA* in SBPL. Due to limits in
SBPL2, we limit our evaluation to the v0 first order unicycle.

For a sampling-based approach, we rely on OMPL [34]
(Open Motion Planning Library), a widely used C++ library
with integration in ROS through MoveIt. OMPL implements
several kinodynamic planners, including SST* [9], which
we use. As part of this work, we contribute minor changes
to allow time as an optimization objective. Since sampling-
based kinodynamic approaches cannot reach a goal state, we
use a goal region instead that we verify to be small enough
such that an optimizer can find an exact solution.

For an optimization-based approach, we rely on RAI3

(Robotic AI), a C++ library that implements KOMO and
nonlinear optimization algorithms. For each of the dynamical
systems, we implement the appropriate constraints and their
derivative computation. In case of the trailer and the quadro-
tor, we add parts of the actions as decision variables (angle
φ and motor forces, respectively); otherwise the decision
variables are the state sequences only. As an initial guess,
we use a geometric solution as found by RRT* of OMPL.
We then use the modified binary search method as outlined in
Section IV-B. This combination of geometric RRT*+KOMO
is anytime like the other approaches we compare to.

For db-A*, we implement Algorithm 2 in C++ using the
data structures provided in OMPL to represent states and for
nearest neighbor computation. Algorithm 1 is implemented
in Python that executes C++ binaries for subroutines when
necessary. As heuristic h, we use Euclidean distance divided
by the upper bound of the speed. For the AddPrimitives
function, we precompute 10 000 motion primitives for most

1https://github.com/sbpl/sbpl
2The official documentation states: “[For custom scenarios], you will have

to implement your own environment (a very involved topic that might be
covered in the future).” http://sbpl.net/node/47

3https://github.com/MarcToussaint/rai

https://github.com/sbpl/sbpl
http://sbpl.net/node/47
https://github.com/MarcToussaint/rai


TABLE I
BENCHMARK RESULTS COMPARING SUCCESS RATE (p), TIME FOR THE FIRST FOUND SOLUTION (tst), THE COST OF THE FIRST FOUND SOLUTION

(Jst), AND THE COST OF THE SOLUTION AFTER 5min (Jf ). TIME AND COST ARE THE MEDIAN OVER 10 TRIALS. BEST RESULTS ARE BOLD.

# System Instance SST* SBPL geom. RRT*+KOMO kMP-db-A*
p tst[s] Jst[s] Jf [s] p tst[s] Jst[s] Jf [s] p tst[s] Jst[s] Jf [s] p tst[s] Jst[s] Jf [s]

1
unicycle 1st order, v0

park 1.0 1.2 5.9 3.5 1.0 0.0 6.2 6.2 1.0 3.1 5.3 3.2 1.0 0.9 3.2 3.1
2 kink 1.0 1.2 47.5 17.9 1.0 0.2 22.6 22.6 1.0 9.9 24.8 21.7 1.0 5.5 15.4 13.1
3 bugtrap 1.0 1.1 63.3 30.0 1.0 1.4 36.8 36.6 1.0 10.8 40.3 22.2 1.0 21.6 23.8 22.1
4 unicycle 1st order, v1 kink 0.8 38.5 43.2 34.3 0.0 — — — 1.0 11.9 23.9 23.7
5 unicycle 1st order, v2 wall 0.8 29.9 45.2 37.4 0.0 — — — 1.0 7.3 20.0 18.0
6

unicycle 2nd order
park 1.0 4.7 14.4 7.5 1.0 5.5 10.6 6.1 1.0 7.9 6.8 6.1

7 kink 1.0 2.6 71.0 59.7 0.5 18.1 24.6 21.1 1.0 10.7 20.4 19.8
8 bugtrap 1.0 5.2 66.8 51.1 1.0 23.2 39.9 27.2 1.0 40.6 33.9 25.9
9

car with trailer
park 0.6 24.6 13.6 13.6 1.0 15.6 10.8 6.2 1.0 10.0 5.7 5.4

10 kink 1.0 9.1 70.8 66.5 0.1 217.5 174.4 130.8 1.0 94.8 34.1 24.2
11 bugtrap 1.0 0.7 47.5 43.8 0.0 — — — 1.0 8.3 21.5 19.4
12 quadrotor empty 0.0 — — — 1.0 207.2 2.6 2.6 1.0 131.0 1.6 1.6

dynamical systems (30 000 for the quadrotor) and only add
a subset per iteration. Generating the primitives took about
8 h per dynamical system utilizing all CPU cores.

The benchmark infrastructure is written in Python and
all tuning parameters can be found in the open-source
repository4. Collision checking is done using FCL (Flexible
Collision Library) [35] in all cases. All approaches use the
Euler integration Eq. (2), although KOMO uses an implicit
formulation by design.

D. Benchmark

We execute our benchmark on a desktop computer with
AMD Ryzen 9 3900X (3.8 GHz) and 32 GB RAM. Our
results are summarized in Table I.

We summarize the main results as follows. SBPL can
compute results very quickly and consistently. The initial
solution quality is very high, but due to the limited number
of primitives, the solution does not improve much over time
(rows 1 – 3, Table I). The approach is not as general as
the other ones, and we were unable to use it for all of
our dynamical systems. SST* can find an initial solution
very quickly; however the solution quality is initially poor,
especially with higher-dimensional systems (rows 6–11). The
convergence is slow – our 5 min timeout was not sufficient
for SST* to fully converge in any of the cases. Geometric
RRT*+KOMO can find near-optimal initial solutions, but
does not work well in instances that require long trajectories
and fails if the geometric initial guess is not close to a
dynamically feasible motion. For example, finding an initial
solution in the kink and bugtrap examples (rows 7, 8) took
significantly longer than parallelpark. Another drawback is
that this approach is incomplete, as visible for the v1 and
v2 unicycle systems (row 4 and 5) and not globally optimal,
e.g., row 10 and 11 show a very poor solution quality after
5 min. kMP-db-A* converged to the lowest-cost solution
during the time limit in all cases. At the same time, it
found the highest-quality first solution in all cases, although

4https://github.com/IMRCLab/kinodynamic-motion-planning-benchmark
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Fig. 3. Success rate and solution cost over runtime (log-scale) for the
unicycle (1st order) dynamical system in the kink environment (row 2 in
Table I). The line is the median and the shaded region shows the first/third
quartile over all trials that found a solution so far (up to 10 in total).

it often took more time to compute an initial solution than the
other algorithms. We found that this is mostly caused by the
challenging scenario of time-optimal planning: most motion
primitives are time-optimal, i.e., result in bang-bang control.
When allowing discontinuities, the estimated time horizon is
often too short for the optimizer to find a solution, requiring
multiple iterations in Algorithm 1 to report the first solution.

For brevity, Table I does not include any standard devia-
tion. In general, we found that SBPL has almost no variance,
SST* has a very high variance, and KOMO and kMP-db-A*
are somewhere in between the two extremes. One example
that includes the convergence behavior as well as the variance
is shown in Fig. 3.

The runtime of the individual components of kMP-db-A*
can vary widely, depending on δ. For example, in the bugtrap
example for the trailer (row 11) it takes around 2 s for db-A*
to find a solution with δ = 0.33 and 14 s for the optimization,
while during later iterations db-A* requires 46 s (δ = 0.12)
and the optimization only 6 s.

https://github.com/IMRCLab/kinodynamic-motion-planning-benchmark


VI. CONCLUSION

We present a new kinodynamic motion planning tech-
nique, kMP-db-A*, that uses a novel graph-search method
with trajectory optimization in an iterative fashion. For
the graph search, we introduce db-A*, a generalization of
A* that reuses motion primitives to compute trajectories
with a bounded discontinuity. Then, we warm-start tra-
jectory optimization using the output of the graph search
and compute new motion primitives online. KMP-db-A*
combines ideas and advantages of sampling-based, search-
based, and optimization-based kinodynamic motion planners:
it converges asymptotically to the optimal solution, directly
solves for the time horizon, finds a near-optimal solution
quickly, and does not require any additional post-processing.

The major limitation of kMP-db-A* is that it sometimes
requires a long time to compute an initial solution. We
believe that this is not a fundamental issue and that it can
be improved using the following techniques in the future.
First, we are interested in using stronger heuristics and
bounded suboptimal and incremental graph search techniques
to reuse information between iterations. Second, we plan to
investigate the use of optimizers that do not operate over the
full trajectory time horizon. Finally, we believe that our work
also lays the foundation for novel kinodynamic multi-robot
motion planners.

REFERENCES

[1] M. Pivtoraiko and A. Kelly, “Kinodynamic motion planning with state
lattice motion primitives,” in Proc. IEEE Int. Conf. Robot. Autom.,
2011, pp. 2172–2179.

[2] M. Pivtoraiko, “Differentially constrained motion planning with state
lattice motion primitives,” Ph.D. dissertation, Carnegie Mellon Uni-
versity, 2012.

[3] L. Jarin-Lipschitz, J. Paulos, R. Bjorkman, and V. Kumar, “Dispersion-
minimizing motion primitives for search-based motion planning,” in
Proc. IEEE Int. Conf. Robot. Autom., 2021, pp. 12 625–12 631.

[4] S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic planning,”
I. J. Robotics Res., vol. 20, no. 5, pp. 378–400, 2001.

[5] T. Kunz and M. Stilman, “Kinodynamic RRTs with fixed time step
and best-input extension are not probabilistically complete,” in Int.
Worksh. on Alg. Found., 2015, pp. 233–244.

[6] K. Hauser and Y. Zhou, “Asymptotically optimal planning by feasible
kinodynamic planning in a state-cost space,” IEEE Trans. Robot.,
vol. 32, no. 6, pp. 1431–1443, 2016.

[7] M. Kleinbort, E. Granados, K. Solovey, R. Bonalli, K. E. Bekris, and
D. Halperin, “Refined analysis of asymptotically-optimal kinodynamic
planning in the state-cost space,” in Proc. IEEE Int. Conf. Robot.
Autom., 2020, pp. 6344–6350.

[8] F. Grothe, V. N. Hartmann, A. Orthey, and M. Toussaint,
“ST-RRT*: Asymptotically-Optimal Bidirectional Motion Planning
through Space-Time,” in Proc. IEEE Int. Conf. Robot. Autom., 2022.

[9] Y. Li, Z. Littlefield, and K. E. Bekris, “Asymptotically optimal
sampling-based kinodynamic planning,” I. J. Robotics Res., vol. 35,
no. 5, pp. 528–564, 2016.

[10] M. Zucker, N. D. Ratliff, A. D. Dragan, M. Pivtoraiko, M. Klingen-
smith, C. M. Dellin, J. A. Bagnell, and S. S. Srinivasa, “CHOMP: Co-
variant hamiltonian optimization for motion planning,” I. J. Robotics
Res., vol. 32, no. 9-10, pp. 1164–1193, 2013.

[11] J. Schulman, Y. Duan, J. Ho, A. X. Lee, I. Awwal, H. Bradlow, J. Pan,
S. Patil, K. Goldberg, and P. Abbeel, “Motion planning with sequential
convex optimization and convex collision checking,” I. J. Robotics
Res., vol. 33, no. 9, pp. 1251–1270, 2014.

[13] D. Malyuta, T. P. Reynolds, M. Szmuk, T. Lew, R. Bonalli, M. Pavone,
and B. Acikmese. Convex optimization for trajectory generation.

[12] R. Bonalli, A. Cauligi, A. Bylard, and M. Pavone, “GuSTO: Guaran-
teed sequential trajectory optimization via sequential convex program-
ming,” in Proc. IEEE Int. Conf. Robot. Autom., 2019, pp. 6741–6747.

[14] C. Mastalli, R. Budhiraja, W. Merkt, G. Saurel, B. Hammoud,
M. Naveau, J. Carpentier, L. Righetti, S. Vijayakumar, and
N. Mansard, “Crocoddyl: An efficient and versatile framework for
multi-contact optimal control,” in Proc. IEEE Int. Conf. Robot. Autom.,
pp. 2536–2542.

[15] W. Li and E. Todorov, “Iterative linear quadratic regulator design for
nonlinear biological movement systems,” in ICINCO, 2004, pp. 222–
229.

[16] M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and S. Schaal,
“STOMP: Stochastic trajectory optimization for motion planning,” in
Proc. IEEE Int. Conf. Robot. Autom., 2011, pp. 4569–4574.

[17] M. Toussaint, “A tutorial on newton methods for constrained trajectory
optimization and relations to slam, gaussian process smoothing, opti-
mal control, and probabilistic inference,” in Geometric and Numerical
Foundations of Movements, 2017, vol. 117, pp. 361–392.

[18] R. Natarajan, H. Choset, and M. Likhachev, “Interleaving graph search
and trajectory optimization for aggressive quadrotor flight,” IEEE
Trans. Robot. Autom. Lett., vol. 6, no. 3, pp. 5357–5364, 2021.

[19] B. Sakcak, L. Bascetta, G. Ferretti, and M. Prandini, “Sampling-based
optimal kinodynamic planning with motion primitives,” Auton. Robots,
vol. 43, no. 7, pp. 1715–1732, 2019.

[20] Z. Littlefield and K. E. Bekris, “Efficient and asymptotically optimal
kinodynamic motion planning via dominance-informed regions,” in
Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2018, pp. 1–9.

[21] R. Shome and L. E. Kavraki, “Asymptotically optimal kinodynamic
planning using bundles of edges,” in Proc. IEEE Int. Conf. Robot.
Autom., 2021, pp. 9988–9994.

[22] S. Choudhury, J. D. Gammell, T. D. Barfoot, S. S. Srinivasa, and
S. Scherer, “Regionally accelerated batch informed trees (RABIT*): A
framework to integrate local information into optimal path planning,”
in Proc. IEEE Int. Conf. Robot. Autom., 2016, pp. 4207–4214.

[23] A. Perez, R. P. Jr, G. D. Konidaris, L. P. Kaelbling, and T. Lozano-
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