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Unsupervised Domain Adaptation for Point Cloud Semantic
Segmentation via Graph Matching
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Abstract— Unsupervised domain adaptation for point cloud
semantic segmentation has attracted great attention due to its
effectiveness in learning with unlabeled data. Most of existing
methods use global-level feature alignment to transfer the
knowledge from the source domain to the target domain, which
may cause the semantic ambiguity of the feature space. In
this paper, we propose a graph-based framework to explore
the local-level feature alignment between the two domains,
which can reserve semantic discrimination during adaptation.
Specifically, in order to extract local-level features, we first
dynamically construct local feature graphs on both domains and
build a memory bank with the graphs from the source domain.
In particular, we use optimal transport to generate the graph
matching pairs. Then, based on the assignment matrix, we can
align the feature distributions between the two domains with
the graph-based local feature loss. Furthermore, we consider
the correlation between the features of different categories
and formulate a category-guided contrastive loss to guide the
segmentation model to learn discriminative features on the
target domain. Extensive experiments on different synthetic-to-
real and real-to-real domain adaptation scenarios demonstrate
that our method can achieve state-of-the-art performance. Our
code is available at https://github.com/BianYikai/
PointUDA.

I. INTRODUCTION

Deep learning methods [1], [2] for point cloud semantic
segmentation have shown dramatic success in recent years.
However, most of these methods focus on fully supervised
learning for point cloud segmentation with a large number
of manually annotated labels. Although there are several
public datasets providing large amounts of annotation data,
it is difficult to directly apply the model trained on a
labeled source domain to another unlabeled target domain.
The reason lies in that the data collected by different 3D
sensors have a huge discrepancy in appearance and sparsity,
which results in the domain shift problem. Therefore, how to
generalize a well-trained model to another unlabeled domain
is a challenging but valuable problem in point cloud semantic
segmentation.

Unsupervised domain adaptation can alleviate the domain
shift problem by transferring the knowledge from the labeled
source domain to the unlabeled target domain. Recent ad-
vances on unsupervised point cloud domain adaptation tasks
mainly focus on reducing the domain gap between the inputs.
For example, Yi et al. [3] build a point cloud completion
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network with sequences of point clouds to bridge the domain
gap between LiDAR sensors with different beams. ePointDA
[4] and SqueezeSegV2 [5] use auxiliary rendering networks
to render dropout noises or intensity on the synthetic dataset,
which translate the point clouds from the source domain
similar to the target domain. Furthermore, these methods
use a series of feature alignment methods to increase the
consistency of feature distributions, such as higher-order
moment matching [6], and geodesic correlation alignment
[7]. However, these methods mainly consider the overall
distributions of two domains to form the global-level feature
alignment, which ignores the local geometric differences
between the domains.

In this paper, we propose a domain adaptation framework
for unsupervised point cloud segmentation with the local-
level feature alignment. Compared with the global-level fea-
ture alignment, our framework can focus on the correlation
between the similar local structures of point from the two
domains, so that the reliable feature alignment can be per-
formed to guide the discriminative semantic feature learning
of the target domain. Specifically, through the farthest point
sampling, we select a set of centroid points and construct the
dynamic local feature graph for each centroid point to capture
its local geometry information. Then, in order to enrich the
graph of the source domain, we construct a feature graph
memory bank to store the generated source-domain feature
graphs during the training phase. After that, inspired by the
point cloud matching [8], we adopt the optimal-transport cost
to measure the graph similarities between the memory bank
and target domain, so that a reliable assignment matrix can
be obtained to guide the knowledge transferring from the
source domain to the target domain. Particularly, in order to
further extract the discriminative target-domain feature, we
consider the category-wise correlation between the source
domain and the target domain, and exploit the contrastive
learning to increase category-level discrimination of target
graphs. Such category-guided contrastive loss can effectively
help cluster and distinguish the feature-graph distributions of
different categories. Extensive experiments demonstrate the
effectiveness of our framework, where we not only focus on
the synthetic-to-real domain adaptation scenarios (VKITTI to
SemanticPOSS), but also pay attention to the indoor (S3DIS
to ScanNet) and the outdoor (SemanticKITTI to nuScenes)
real-to-real domain adaptation scenarios.

Our contributions can be summarized as follows:

« We propose a novel graph-based framework for local-

level feature alignment for unsupervised domain adap-
tive point cloud semantic segmentation.
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o We construct feature graphs to capture the local geom-
etry information of point clouds and use a local feature
loss based on an assignment matrix for the alignment
of feature graphs.

o We develop a category-guided contrastive loss to guide
the segmentation model to learn the discriminative
features on the target domain.

II. RELATED WORK

Point Cloud Semantic Segmentation. Recent progress
on point cloud semantic segmentation is mainly divided
into several categories according to different representations
of data. Volumetric-based methods require a preprocessing
stage to voxelize the original point cloud. SparseConvNet [9]
proposes a submanifold sparse convolution network to deal
with spatially-sparse voxel data. MinkowskiNet [10] creates
Minkowski space on sparse representation data and proposes
a powerful 4-dimensional convolutional neural network to
deal with 3D videos. Projection-based methods need to
project the point cloud into an image before feeding data into
the network. SqueezeSegV2 [5] uses a context aggregation
module to improve the robustness to dropout noise on
projected 2D LiDAR image. SqueezeSegV3 [11] proposes
an efficient spatially-adaptive convolution to deal with the
discrepancy of data distribution of different LiDAR image
locations. Point-based methods directly use unordered point
clouds for semantic segmentation. However, due to the heavy
computation, most of the methods first split the point cloud
into blocks before training and inferring. PointNet [1] uses
multi-layer perceptron and a mini-network (T-Net) to extract
features from unordered point clouds. In order to strengthen
the local information for point-level segmentation, GACNet
[2] and PointWeb [12] use different attention modules to
dynamically assign weight to local features. In this work,
we leverage PointWeb as our segmentation network because
of its efficiency in processing unordered point clouds.
Unsupervised Domain Adaptation. Unsupervised domain
adaptation (UDA) aims to train the model in the labeled
source domain and generalize the knowledge to the target
domain through the unsupervised methods. Recent advances
on domain adaptation for 3D point cloud mainly study
aligning the distributions by input-level and feature-level
alignment. Saleh et al. [13] use CycleGAN [14] to translate
the synthetic bird’s eye view point cloud image to the real
point cloud image for domain adaptive vehicle detection.
ePointDA [4] use a dropout noise rendering network to
achieve uniformity of data distribution between domains
and adopt a higher-order moment matching loss for feature-
level alignment. Yi et al. [3] use a completion network
to complete the point cloud with sequences data, so that
they can recover the 3D surfaces from different LIDAR data
and transfer knowledge between different LiDAR sensors.
However, the input-level adaptation methods lead to extra
challenges and training costs due to the variable geometric
structures in different domains. Besides, recent works on 2D
UDA [15], [16], [17] are also quite applicable to 3D UDA,
where they use the different losses to decrease the domain

shift problem, e.g. maximum squares loss, entropy loss,
and adversarial loss. Furthermore, self-training is also an
effective technique for UDA. [18] proposes a self-supervised
task for target domain to learn its useful representations.
ST3D [19] proposes a quality-aware triplet memory bank to
generate high-quality 3D detection pseudo labels for self-
training. XMUDA [20] and DsCML [21] propose cross-
modal constraint to retain the advantages of 2D images
and 3D point clouds for domain adaptation. In this paper,
considering the input-level methods cannot handle complex
domain adaptation scenarios, we develop a general uni-modal
3D UDA framework with feature-level alignment.

III. OUR METHOD
A. Overview

In unsupervised domain adaptive point cloud semantic
segmentation, we are able to access the source domain
X, = {x3}M] of M* point clouds with its segmentation
labels V, = {ys}M] and the unlabeled target domain
X = {x} j]\itl of M! point clouds, where x{ € RN:*3
is the set of N points and x € RNi*3 is the set of N}
points. Given data X, )y and A, our goal is to train a
model which can precisely categorize the point of target
data into one of the common semantic categories in the
source data, and to alleviate the performance drop problem
caused by the domain gap at the same time. As illustrated in
Fig.1, we first construct the local feature distributions of the
source and target domains with the proposed dynamic feature
graphs. Then, by building a source-domain feature graph
memory bank, we employ graph matching to obtain graph
pairs between the graphs in the memory bank and the target
graphs. Finally, with the obtained matching association, we

utilize the designed losses for local-level feature alignment.

B. Dynamic Feature Graph

Different from the global-level feature alignment methods
[6], [7], [15], [16], [17] roughly aligning two domains, we
consider the differences of local neighborhood context in the
target domain for the fine alignment. The main idea of our
method is to use the learned dynamic local feature graphs to
capture the multi-level features in different neighborhoods of
point clouds. Then, based on the local-graph similarity, the
correlation between local neighborhoods from two domains
can be viewed as the knowledge transferring from the labeled
source domain to the unlabeled target domain.

We leverage PointWeb [12] as our semantic segmentation
backbone, which contains a classifier and a feature extractor
with an encoder and a decoder. We use the feature extractor
to extract the multi-level features and then build dynamic
feature graphs on the sampled centroid points by the feature
similarity. Specifically, given a point cloud sample x &
RN X3 with N points, we first extract its local-context feature
using the feature extractor. Then, we select N/64 centroid
points using the farthest point sampling for three iterations,
where the centroid points are then as the kernel points of
graphs for feature aggregation at each level. In detail, for
each kernel point at different levels, we gather its k-nearest
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Ilustration of our framework. Point clouds in the source and target domains are fed into the model to construct dynamic feature graphs. The

source graphs are used to build a memory bank and the target graphs are aligned by our graph-based local feature alignment method.

neighbors in the feature space (k is different at each level).
Thereby, a feature graph can be constructed by setting the
k-NN features as its vertices {v**, fz , v vkil and the k-
NN feature distances as the edges {e kz ef3, e}, where
1 is the index of centroid points and {kj } j=1 s the different
values in k-NN. We obtain N/64 dynamically updated local
feature graphs to represent the local neighborhood context

of the given point cloud, which can be formulated as,

G={gl = ({E7 Ve = ({vi7 el Y e, (D

where N, denotes the number of N/64 centroid points, and
fl-k I represents the feature embedding containing the vertice
and the edge information. As a result, given a source sample

and a target sample, the generated graphs are represented as
= {g; }z “ and G = {gl}z 1

C. Graph-based Local Feature Alignment

In this section, based on the constructed dynamic graphs
above, we aim to find the intrinsic correlation between the
source domain and the target domain. We use the graphs from
the source domain to guide the model to extract semantic
discriminative features on the target domain. However, at
the training stage, the sample category in a batch is limited
and their graph patterns tend to present significant structure
differences, which may potentially introduce the alignment
bias. To address the issue above, we build up a feature
graph memory bank G® and store a graph gf into the bank
according to the corresponding category of the centroid point.
Therefore, benefiting from such memory bank mechanism,
we can sufficiently mine the rich source information from it
for reliable target-domain feature learning. The memory bank
provides the same capacity B for each category of graphs.
Once the number of graphs exceeds the capacity B of the
corresponding category, we will update the memory bank by
replacing the oldest graphs With the new ones.

Given the graphs G* = {gj} from target domain, we
consider finding the most s1m11ar graph from G’ to each
graph in G! for feature alignment. In particular, we use
optimal transport for graph matching. Specifically, the total

transport cost of optimal transport is used to measure the
similarity between two graphs, and the assignment matrix
A € REXK js used to find the point-level correspondences
for K nodes in graphs. In the graph matching formulation,
we first compute the distance matrix D € REXE where the
element D, ,,y indicates the distance between the point m in
one graph and the point n in the other graph. Here, we use the
squared Euclidean distance in the feature space to measure
the pairwise distance between points in graphs, where the
points are composed of the corresponding features with edge
and vertice information. Once we obtain the distance matrix
D, we apply the Sinkhorn algorithm [22] to obtain the final
assignment matrix A and the total transport cost through
solving the optimal transport problem. In this way, we can
measure the relevance between each target graph with all
the graphs in the memory bank. As a result, we can find
the most similar graph g?a’l) € Gb for the target graph
g;'- according to the sorting result of the transport cost for
knowledge transferring, where a indicates the category and
! indicates the index in the memory bank.

Based on the generated graph pairs, we formulate a local
feature loss based on the assignment matrix for the local-
level feature alignment. Given a target graph g;f-, we first
select the most similar graph gl(’ W) from the memory bank.
At the same time, we are able to access the corresponding
assignment matrix A; € RF*X which can decode the
point-level corresponding feature assignment between two
graphs. In detail, for each point in target graph g§-, we
can obtain the corresponding transport weights for every
point in graph gl(”avl) from the assignment matrix A ;. Then,
we perform a weighted sum of gé’a’l) € REXD (o guide
the learning of g’ € R**P, where D is the number of
feature channels. The key point is that the local neighborhood
areas with similar semantic contexts need to have similar
feature distributions. In this way, we can effectively align the
indiscriminate feature distributions of the unlabeled target
domain to the source domain. Therefore, we propose the
following assignment matrix based local feature loss for



feature graph learning in the target domain:
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Owing to a variety of feature graphs from different cat-
egories in our memory bank, we can further exploit the
contrastive learning for more discriminative target-domain
feature learning. Here, we select the category a of the
matched graph g’(’a’l) as the positive category and the other
categories as the negative categories. In order to obtain the
representative features of each category, all graphs in the
memory bank are used for calculating the feature represen-
tations. Although we have achieved the assignment matrix
for each positive or negative pair, it is meaningless for point-
level adaptation on unmatched pairs. Therefore, we use the
mean of all features in the graphs with the same category
to represent the feature representation of the corresponding
category. It is worth noting that our graph is composed
of multi-level features, so we calculate the mean features
of different levels separately and then concatenate them as
the final feature representation. The positive and negative
features for graph gé. can be formulated as,
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where C' is the number of categories and B is the capacity
size of each category. The indicator function I returns 1 if
the condition is satisfied or returns O if unsatisfied. We use
© to represent the mean and concatenation operators.

Then, with the generated positive and negative features, we
formulate the following contrastive loss for increasing the
intra-category compactness and inter-category separability
between the target graph g§ and the graphs in G.

1 & -
L= L1551 =18 =5, +e] .

where « is the margin of the contrastive loss and f; is the
mean feature of graph g;f-. Therefore, with the proposed local
feature loss and the contrastive loss, we consider the feature
alignment from two complementary perspectives, which can
significantly reduce the domain discrepancy in feature space.

D. Domain Adaptation Scheme

For the unsupervised domain adaptation, the core chal-
lenge is how to learn the discriminative target features
without labels. First of all, for the source domain, we use
the standard cross-entropy loss for supervised training:

N C
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where y* € RV*C is the semantic labels for N points with

C semantic categories and y*° is the outputs from the model.
In addition, in our framework, in order to identify the
relationship of local features between the source domain and

the target domain, we construct dynamic feature graphs and
the generated graph pairs based on the graph matching to
find correspondences between the two domains. With our
developed local feature loss based on the assignment matrix
and the category-guided contrastive loss, we can effectively
align the local features between the two domains. The overall
loss can be formulated as:

Eall = ACseg + )\l‘cloc + )\2£cona (7N

where A1 and )5 are hyperparameters balancing the proposed
losses with semantic segmentation loss.

Furthermore, our framework can be extended into a two-
stage method in a self-training manner, where we follow
Jaritz et al. [20] to use a pseudo-label training strategy. We
first use our framework to train a model with the loss in
Eq. 7, where the source data X, ); and the target data
X are available. Then we fix the parameters of the model
and generate pseudo labels Y, for target data. After that, the
supervised semantic segmentation loss with pseudo labels is
used on the target domain.

IV. EXPERIMENT

A. Datasets

VvKITTI to SemanticPOSS. The synthetic dataset vKITTI

[23] contains 6 sequences of outdoor scenes in urban settings,
where the point cloud are generated from the synthetic 2D
depth images. The SemanticPOSS [24] dataset was obtained
in dynamic driving scenarios. It is composed of 6 sequences
of scenes with a total of 2988 LiDAR scans. Therefore, there
is a large gap in data distribution between the vKITTI and
the real-world SemanticPOSS. For the domain adaptation
scenario from vKITTI to SemanticPOSS, we select 6 seman-
tic categories for domain adaptation: plants, building, road,
traffic sign, pole, and car. The point clouds are sampled into
blocks of 15mx15m, and each block contains 4096 points.
S3DIS to ScanNet. The S3DIS [25] dataset is an indoor
point cloud dataset containing 6 areas with 271 rooms and
the ScanNet [26] dataset contains 1513 indoor point cloud
scenes annotated. For the domain adaptation scenario from
S3DIS to ScanNet, we use 8 semantic categories for domain
adaptation: floor, wall, window, door, table, chair, sofa, and
bookshelf. Due to the sparsity and scene incompleteness of
ScanNet, there is a huge domain gap between the datasets.
We divide the point clouds into blocks of size 1.5mx1.5m,
and each block contains 8192 points.
SemanticKITTI to nuScenes. The SemanticKITTI [27]
dataset and the nuScenes [28] dataset are real-world datasets.
However, the SemanticKITTI dataset is obtained by the 64-
beam LiDAR scanner, while the nuScenes dataset is obtained
by the 32-beam LiDAR scanner. Thus, there is a large gap
of data sparsity in the SemanticKITTI-to-nuScenes domain
adaptation scenario. We focus on the 10 categories for
domain adaptation: car, bicycle, motorcycle, truck, other ve-
hicle, pedestrian, drivable, sidewalk, terrain, and vegetation.
The point clouds are sampled into blocks of 10mx 10m, and
each block contains 4096 points.



B. Implementation Details

We use the official PyTorch implementation for PointWeb
as our segmentation backbone. Stochastic Gradient Descent
(SGD) optimizer is selected for training with the momentum
0.9 and the weight decay 0.0001, respectively. Also, we apply
the weight decay to the learning rate, where the drop factor is
0.1 and the step size is 30. The initial learning rate for indoor
and outdoor scenarios are 0.05 and 0.005. The capacity size
B of the memory bank is set to 16. The parameters A; and
Ao are set to 1.0 and 0.1. The margin « of the contrastive
loss is set to 0.4. The values in k-NN for different levels are
set to 1, 4, 16 and 64. To train and test our model, we use
a single TITAN RTX GPU and the batch size is set to 4.

TABLE I
THE PERFORMANCE COMPARISON OF UNSUPERVISED DOMAIN
ADAPTATION METHODS. ALL THE RESULTS ARE REPORTED BY MIOU.

Model vKITTI to S3DIS to SemanticKITTI
SemanticPOSS ScanNet to nuScenes

Supervised | 65.8 | 66.4 | 46.8
Source Only 44.6 43.2 26.7
MinEnt 45.9 443 32.3
MaxSquare 46.3 43.6 32.8
ADDA 49.8 42.5 31.2
PL 51.0 46.4 29.8
3DGCA 47.1 43.1 33.7
SQSGV2 - - 10.1
C&L - - 31.6
Ours | 54.9 | 53.8 | 37.3

C. Performance Comparison

We report the performance of point cloud semantic seg-
mentation with mean Intersection-over-Union (mloU). Tab.I
shows the quantitative results of the comparison between our
method with other domain adaptation methods. As shown
in the table, our method achieves the highest performance,
which shows the effective domain transferability of our
method. Specifically, the Supervised means the model of
PointWeb is trained on the target domain with semantic
labels. The Source Only means the model trained with the
source domain and directly tested at the target domain. Due
to the domain gap, the performance of Source Only has a
significant drop compared to the Supervised, which shows
the necessity of unsupervised domain adaptation.

In order to verify the effectiveness of our method, we
compare our method with a series of general unsupervised
domain adaptation methods: MinEnt [16], MaxSquare [15],
and ADDA [17]. For a fair comparison, these methods
are reproduced with the same setting in our framework,
where the hyperparameters are adjusted to obtain the best
performance on all domain adaptation scenarios. The PL is
the same Pseudo-Label training strategy in the [20] with our
framework, which is a two-stage method with extra training
cost. Furthermore, we introduce the geodesic correlation
alignment used in [5] into our segmentation framework to
construct additional comparison method 3DGCA. It can be
observed from the Tab. I that although the above methods
can alleviate the domain discrepancy, they are not efficient
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Fig. 2. Visualization of point cloud semantic segmentation.
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for point cloud semantic segmentation. Especially with the
global-level feature alignment methods, the model produces
the confused semantic information in the feature space. In
the S3DIS to ScanNet scenario, these methods even produce
negative effects on domain adaptation.

Furthermore, we compare our method with the 3D
unsupervised domain adaptation methods: SqueezeSegV?2
(SQSGV2) [5] and Complete & Label (C&L) [3]. Because
these methods use different point cloud semantic segmenta-
tion backbones, we directly use the results of SQSGV2 and
C&L reported in [3] for comparison. Since SQSGV?2 requires
spherical projection and C&L requires sequences of point
cloud for the completion network, it is limited to reproduce in
the VKITTI to SemanticPOSS and S3DIS to ScanNet domain
adaptation scenarios. As shown in the Tab. I, compared
with the above methods, our method achieves state-of-the-art
performance on three domain adaptation scenarios.

D. Ablation Studies and Analysis

In order to further verify the effects of each module of
our method and the effectiveness of the proposed assignment
matrix based local feature loss, we conduct ablation studies
on the vKITTI to SemanticPOSS scenario.

As shown in Tab. II, we first report the performance
improvement brought by each proposed loss, where the
quantitative results of each loss can show its effective domain
transferability. Particularly, the integration of the two losses
can benefit the overall domain adaptation framework, and
further improve the domain adaptation performance. It can
be observed that our framework can benefit from a simple
pseudo-label training strategy with additional 3.0% improve-
ment, and they play a complementary role in unsupervised
domain adaptation.

Secondly, in order to verify that the feature distributions
of different categories has been separated, we draw t-SNE
[29] visualization with the features from the target domain
to show qualitative results. As shown in Fig. 3, our proposed
method can effectively enhance the discrimination of features
from the target domain.
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Thirdly, we conduct the ablation study without using the
assignment matrix named L;,. w/o A. In this case, we use the
mean features mentioned in Sec.IlI-C to represent the local
feature graphs, and directly select the nearest neighbor from
the memory bank to find the relationship between the graphs
from the source domain and the target domain. Instead of
using the assignment matrix for the alignment, we use the
mean features to directly align the two graph features. As
shown in Tab. II, the proposed assignment matrix based local
feature loss can achieve a better performance.

At last, we show the visualization of point cloud semantic
segmentation results to qualitatively illustrate the effective-
ness of our method. It can be clearly observed in Fig. 2,
compared with the Source Only, only a few noise predictions
are produced in our method, which shows the proposed
framework can effectively alleviate the domain gap problem
and significantly improve the segmentation performance.

TABLE 11
ABLATION STUDY OF ADAPTING VKITTI TO SEMANTICPOSS
0 5
» g 5]
E = 3 & &

Model | 3 e g g 8 | mloU
Source Only 574 582 753 165 177 42.5| 44.6
Lioe Wwlo A 61.5 71.3 769 10.7 18.1 41.5| 46.7

Lioe 62.1 73.6 799 9.7 251 44.2| 49.1

con 60.0 72.0 78.1 154 27.1 458| 49.7
Lioc+Leon 632 748 819 126 288 50.0| 51.9
Lioe+Leon+PL | 639 769 84.1 16.6 36.4 51.5| 54.9

V. CONCLUSION

In this paper, we proposed an unsupervised domain adap-
tive point cloud semantic segmentation framework based on
feature graph matching. With the proposed assignment ma-
trix based local feature loss and category-guided contrastive
loss, we can align the local-level feature distributions of
the source domain and the target domain more accurately
in a meticulous way and guide the segmentation model to
learn discriminative features on the target domain. Extensive
experiments on different synthetic-to-real and real-to-real do-
main adaptation scenarios have demonstrated the superiority
of our method.
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