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Stubborn: A Strong Baseline for Indoor Object Navigation*

Haokuan Luo! and Albert Yue.! and Zhang-Wei Hong' and Pulkit Agrawal'

Abstract— We present a strong baseline that surpasses the
performance of previously published methods on the Habitat
Challenge task of navigating to a target object in indoor
environments. Our method is motivated from primary failure
modes of prior state-of-the-art: poor exploration, inaccurate
object identification, and agent getting trapped due to imprecise
map construction. We make three contributions to mitigate
these issues: (i) First, we show that existing map-based methods
fail to effectively use semantic clues for exploration. We present
a semantic-agnostic exploration strategy (called STUBBORN)
without any learning that surprisingly outperforms prior work.
(ii) We propose a strategy for integrating temporal information
to improve object identification. (iii) Lastly, due to inaccurate
depth observation the agent often gets trapped in small regions.
We develop a multi-scale collision map for obstacle identifica-
tion that mitigates this issue.

Website: https://github.com/Improbable-Al/Stubborn

I. INTRODUCTION

The ability to efficiently explore and navigate to objects in
indoor environments is critical for many robotic applications.
The Habitat Object Navigation Challenge [1] was designed
to benchmark indoor object navigation ability of artificial
agents. While there are several variants of the Habitat chal-
lenge, we are interested in the version where the agent is
tasked to navigate to an object instance (e.g., a bed or a
refrigerator) in an unseen indoor environment. This task is
known as Object Goal Navigation (OBJECTNAV). In OB-
JECTNAV the agent only has access to RGBD observations
from first person view of the environment and its pose in
the global coordinate frame. Successfully solving the task
requires the agent to explore the environment to find the
target object and move close to it. The accuracy of state-of-
the-art method is 24% and the efficiency measured as Success
weighted by Path Length (SPL) [2] is 8.8% [1].

It is worth contrasting the performance of object navi-
gation against point navigation, where the agent is tasked
to reach target coordinates specified relative to agent’s start
location (e.g., Go 3m South and 2m East relative to start). In
point navigation the accuracy of state-of-the-art systems is
more than 90%. Because at every time step the agent is aware
of the distance and direction to the goal, efficiently solving
the point navigation task requires the agent to remember
previously visited locations (i.e., map) and plan a path to the
goal. This task is therefore entirely geometric — the agent
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can safely ignore scene semantics other than the knowledge
of free space and obstacles.

In OBJECTNAV, the agent must explore its environment to
discover the goal resulting in additional challenges compared
to point navigation: (i) identifying the target object from
visual observations; (ii) exploiting scene semantics to speed
up exploration (i.e., semantic exploration). For instance, if
the goal is to reach a refrigerator, the agent should not
explore bathrooms. Similarly, to locate beds the agent should
directly navigate to a bedroom instead of exploring other
parts of the house. The stark difference in performance
between the object and point navigation tasks indicates that
current methods are inadequate at either one or both of target
object identification and semantic exploration.

To understand shortcomings of state-of-the-art methods,
we analyzed winners of the 2020 and 2021 OBJECTNAV
challenge: Goal-Oriented Semantic Policy Agent (Sem-
Exp) [3] and End-to-End Auxiliary Task Agent (EEAUX) [4]
respectively. Given that image classification systems on the
Imagenet dataset have surpassed 90% accuracy [5], one
wouldn’t expect object identification to be a major bottleneck
in OBJECTNAV. However, even 90% per frame classification
accuracy is insufficient. To see why, consider a scenario
where the agent requires 100 actions to reach the goal. A
false detection in any of the first 99 steps will result in failure.
Our investigation reveals that false detection is the primary
failure mode for both SemExp and EEAUX agents.

We found the second prominent error mode to be failure
to explore. While a substantial fraction of mistakes are due
to the agent getting frapped or going around loops, quite
surprisingly we found that the SemExp agent is unable to
utilize scene semantics to guide exploration (see Fig [I).

Based on these analysis we present an agent called as
STUBBORN that surpasses the performance of previous win-
ners. STUBBORN makes improvements on three fronts:

1) Target Object Detection is improved by accumulating
detection scores across frames.

2) Exploration Given that SemExp agent isn’t able to utilize
semantics for exploration, we developed a much simpler and
semantics-agnostic exploration method that is both superior
and compute/memory efficient.

3) Trap Avoidance via multi-scale representation of colli-
sion map. It prevents the agent from getting trapped due to
errors in (i) agent’s location resulting from discretization [6]—
[8]; (ii) inaccurate depth observations [9]; (iii) and artifacts
in scans of indoor spaces used in OBJECTNAV challenge [1].

Since STUBBORN does not use semantics for exploration
and yet outperforms prior methods on OBJECTNAV chal-
lenge, it is a strong semantic-agnostic baseline for future
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TABLE I: Analyzing failure modes of previous winners of the
Habitat Object Navigation Challenge [10]. Each row reports the
percentage of failures attributed to a particular cause along with
95% confidence intervals. The primary cause of failure is false
detection followed by exploration related issues of loop, trapped
and explore. The last row reports the overall success rate.

Failure Mode SemExp % | EEAux % | EEAux GT % | STUBBORN %
False Detection 47.7£9.0 353+6.3 14+1.1 45.1+£8.8

Missed Detection | 27423 | 63332 | 14*11 | 5336
Loop 10.8+5.9 14.7+4.6 222469 09+0.9
Trapped 10.8+5.4 12.5+4.3 13.9+5.8 8.0+5.0

__ Explore | 81450 | 89437 | 125454 | 133%61
Stairs 12.6+5.9 04409 6.94+4.0 15.9+6.0
Misc 7.24+4.0 21.9+54 41.7+8.5 11.5+£5.7

Success Rate 17.9 237 40.4T 23.7

! Estimated based on results from [4]
works claiming to utilize semantics for exploration.

II. EXPERIMENTAL SETUP

OBIJECTNAV task requires the agent to navigate to an
instance of the given target object category, such as “bed”
or “table”, in an unseen indoor environment. The input to
the agent are first person observations from RGBD and
GPS+Compass sensors providing location and orientation
of the agent relative to its starting position. At each time
step, the agent predicts one out of the four actions: move
forward, turn left, turn right, and stop. The
maximum number of steps in an episode is 500.

We follow standard evaluation protocols used in the OB-
JECTNAV task of the Habitat Challenge [3], [4]. Performance
of various models is evaluated using 2000 episodes of the
validation split of the Matterport 3D dataset [11]. We test
final performance on the Habitat’s Challenge evaluation
server, the results of which are publically available. Success
Rate and SPL are the two primary performance metrics:

o Success Rate is the % of episodes in which the agent
stops within a pre-defined distance threshold (1 meter) from
an object belonging to the target category. The agent is not
required to face the goal when stopping.

o Success weighted by inverse Path Length (SPL) [2]:
Two agents that take paths of different lengths will have the
same success rate. The SPL metric can distinguish between
them by measuring agent’s efficiency as:

1Y I;
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where N is the number of episodes, S; is the indicator variable
for success, [; is the shortest path between the agent and
the closest object instance belonging to the goal category
(provided by an oracle for the purpose of evaluation only),
and p; is the agent’s path length.

We use the bootstrap method [12] to report the 95%
Confidence Intervals for results we collected.

III. ANALYZING PREVIOUS WINNERS

The winners of OBJECTNAV challenge in 2020 and 2021:
SemExp [3] and EEAUX [4] used substantially different
approaches. While SemExp explicitly builds the environment
map, EEAUX is an end-to-end architecture using recurrent
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Fig. 1: The success rate of SemExp [3] when using ground-truth
semantics (blue; 56.5% average accuracy) and two variants where
the (i) semantic channels are randomly shuffled (red; 54.7% average
accuracy) and (ii) the target goal of the planner is set to an incorrect
object category (yellow; 55.0% average accuracy). The small drop
in performance when semantic information is shuffled indicates that
SemExp is unable to utilize semantics to guide exploration.

neural networks for spatial memory. As such these methods
are representative of the state-of-the-art in both map-based
and map-free algorithms.

We grouped the failure modes to result from errors in
(i) target object detection (top-most group in Table [I); (ii)
exploration (second group) and other reasons. Our analysis
is inspired by categorization of failure modes presented in
EEAux [4] and have the following meaning:

« False Detection Detecting a wrong object as the goal.

o Missed Detection Failures to detect the object even though
it was in view.

o Loop Poor exploration due to looping over the same
locations.

o Trapped Repeated collisions with the same or nearby
objects cause the agent getting trapped in coverage. Includes
when the agent is trapped in spawn.

o Explore Generic failures to find the goal although the
agent explores new areas efficiently. Includes semantic fail-
ures e.g. going outdoors to find a bed.

« Stairs The goal is on a different floor and the agent is
unable to navigate up/down stairs.

o Misc. Other causes of failure irrelevant to this paper such
as mesh artifacts, agent randomly quitting the episode, etc.

A. Analysis of SemExp Agent

We analyzed failures of the the SemExp agent by eval-
uating performance on 200 validation episodes using pre-
trained models released by Chaplot et al. [3] (see Table E[)
Since the publically released model only supports 6 of the 21
goal categories used in the Habitat challenge, the validation
episodes only sample goals from these 6 object categories.

Results in Table [I| show that primary cause of failures are
false detections accounting for 48% of the mistakes. The
next ~ 30% of failures are due to exploration challenges
of the agent either going around in loops, getting trapped
or simply being unable to find the target object though it
was exploring the environment (i.e., explore). To probe the
reason behind exploration failures we constructed a version
of the SemExp agent using ground-truth semantics. The
success rate of this agent was 56.5%. However, we found that
the superior performance is results from mitigation of false
detections and not due to better exploration. To understand
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Fig. 2: Architecture of the STUBBORN agent. From sensory
observations, the Mapping module constructs a top-down 2D map
of size N x N x 7. The Exploration Planning module predicts the
exploration goal (geyp; green dot) in a local region around the agent.
The Path Planning module plans sequence of actions from agent’s
current location (red dot) to gxp. The target object detection module

if the agent is actually using semantics for exploration, we
ran two ablation studies where during evaluation we either:
(1) shuffled semantic channels or (ii) modified the input of
SemExp’s global planner that guides exploration to be an
object category different from the actual goal. With this
change, the agent will attempt to navigate to an incorrect
object (e.g., “toilet” instead of a “table”). Surprisingly we
found that both these ablations only lead to a 2% drop
in performance suggesting that SemExp agent is unable to
exploit semantics for exploration (see Figure [I)).

B. Analysis of EEAux Agent [4]

We evaluated the 6-action model with tethering with
the pre-trained weights released by Ye et al. [4] over the
validation split of the Matterport3D (MP3D) scenes [11].
We collected 300 trajectories with each ground truth and
predicted semantics. The dominant failure modes are similar
to the SemExp agent. It is worth noting that using ground-
truth (GT) semantics results in a much higher success rate
indicating that accurate semantic segmentation is a major
bottleneck in OBJECTNAV.

IV. METHOD

We propose a modular framework called STUBBORN
illustrated in Fig. 2] STUBBORN consists of 4 modules for
(i) mapping, (ii) exploration planner, (iii) path planner, and
a (iv) multi-frame target object detector. The map is a top-
down view of the environment discretized into a 2D grid.
Each grid indicates if the space is free or occupied by
an obstacle along with other meta-information used by the
object detector. The exploration planner takes the map as the
input and outputs a 2D grid coordinate indicating the goal
for agent’s exploration. The path planner outputs a sequence
of actions to move the agent from its current location to the
goal. The object detector runs at every step of the exploration
to determine if the agent has reached the target object.

A. Mapping Module

The agent maintains a map .# of size N X N x 7, where
N x N (7200 x 7200) denotes the number of mapping grid

Fig. 3: Our agent maintains a global map of size N x N, but plans
path using a local map of size K x K around the agent (the red
circle) to save computation time. The four green dots on the corners
of the local map are the four possible exploration goal locations.

TABLE II: A description of the 7-channel map we maintain. The
first three channels of the map are used to record obstacle-related
information, while the rest of the channels are used to record goal-
object-related information.

Channel Description
Obstacle 1 Obst.aclAe Map Using Depth I.nput _ ] i
Map 2 Pessm?lspc Obstacle Map using COl!l?lOn Intormapon
3 Optimistic Obstacle Map using Collision Information
Object 4 Total Numbef of Frames Appeared in Yiew
Identification 5 Sum‘of Confidence Score of Target Ob]ecF
Map 6 Maximum Confidence Score of Target Object
7 Maximum Confidence Score of Non-Target Object

units each of size 25¢m?. The first three out of seven channels
are binary, where 1 indicates obstacles and O represents free
space. Unexplored space is treated as free space. Following
the method proposed in SemExp, the first channel stores
occupancy computed using depth from a RGBD camera.

Due to several reasons such as inaccurate depth obser-
vations, mesh artifacts in the Habitat simulator producing
invisible obstacles, just relying on depth data to identify free
space is insufficient. To mitigate these concerns, we addition-
ally use agent’s collisions to identify obstacles. A collision
is defined as an event where the agent attempts to move
forward but its location remains unchanged. Unfortunately,
we cannot directly use collisions to construct an occupancy
map because the agent’s location is discretized and the the
exact location and size of the obstacle is unobserved. If an
obstacle is marked to occupy a size larger than its actual
size, it will prevent the planner from planning a path. On
the flip side, marking the obstacle to be smaller than actual
size will yield infeasible plans.

We tackle this problem by maintaining a multi-scale
obstacle map: a pessimistic map that marks larger areas
(25 x 25 ¢m?) and an optimistic map that marks smaller
areas (15 x 15 ¢m?) in front of the agent as obstacles. Given
uncertainty in obstacle size and location, a useful rule of
thumb we found was to always mark coordinates along
the visited path of the agent as free space. It reduces the
chances of an agent getting trapped due to incorrectly marked
obstacles. These two collisions maps are encoded in channels
2 and 3 of .# and are used by the path planner (see Sec.
[O). Channels 4-7 of .# (see Sec. [V-D).



Fig. 4: Tasked to go to a bed, the agent mistakes the sofa as a bed in the last frame and stops. Such a false detection results in failure.
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Fig. 5: Two stages of Goal Detection. After a candidate object
is detected, the agent enters the candidate approach stage. After
reaching the candidate object, the agent triggers the target detection
module to decide whether to stop or continue exploring.

B. Exploration Planning Module

For discovering the target object the agent must explore
its environment. Given we found that some state-of-the-
art systems are unable to utilize semantics for exploration
(Sec. ), we constructed a simple rule-based method for
exploration that does not rely on any semantic information.
Our intuition is that the agent will discover large areas of
the environment without wasteful to-and-fro between two
locations if it keeps moving along a particular direction until
it runs into a dead end. At the dead-end, the agent can pick
another direction and repeat the process.

Given the first three channels of the map as input (.Z:,:
,1:3]), the exploration planner outputs one out of the four
corners of a region of size K x K (local map; .#;) centered
around the agent as the exploration goal (gexp). Same as
in SemExp, we choose K = 1200 and the exploration goal
is predicted in a local map instead of the global map to
speedup computation. The agent is “stubborn” in the sense
that it continues exploring until the path planning module
(Sec. [V=C) can find no feasible path to the current goal.
When such a situation occurs, the agent chooses the next
corner in a clockwise direction as its exploration goal.
Collision Averse Exploration In order to pursue the explo-
ration goal, the path planner uses the depth obstacle map
and the pessimistic collision map (see Sec. [V-A). The use
of pessimistic map keeps the agent away from obstacles and
thereby reduces the chances of the agent getting trapped (see
results in Table and prematurely endings its exploration.

C. Path Planning Module

Given the local map of obstacles (Z[:,:,1:3]) and grid
coordinates of a goal (g), following the work of SemExp, we
use fast-marching method [13] to compute the shortest path

from agent’s current location to g. The path is a sequence
of 2D coordinates and subsequent coordinates are used infer
one out of the four agent actions. The path is recomputed
after every action (i.e., closed loop control).

Choice of Obstacle Map The path planner uses obstacle
map that is computed by the element-wise OR operation
between the depth obstacle map and the pessimistic collision
obstacle map (.#[:,:,1] V #.[:,:,2]). While the path
planned using the pessimistic map maybe sub-optimal, it
significantly decreases agent’s chance of getting stuck and
thereby improving the exploration efficiency.

If goal of the planner is g.xp, the pessimistic map is

always used. However, if the planner’s goal is the location
of target object, then if the pessimistic planner leads to
no feasible plan, the path is planned using the optimistic
collision obstacle map (AL[:,:,1] V #[:,:,3]).
Brute Force Untrap Mode Sometimes the free space is so
small that the path planner fails to find any feasible plan
due to discretization of the agent’s location to grid elements.
If the agent fails to move forward (i.e., it is stuck) for ten
consecutive steps, the path planner enters a brute force untrap
mode: the agent turns either left (L) or right (R) and then
attempts to move forward (F). Suppose it chose, left at the
first step, then the executed actions are L,F,L,F,L,F,L,F...,
until one of the forward action results in a forward motion.
In such a scenario, the untrap mode ends and the agent
resumes normal operation. However, if the agent never moves
forward, it stays in the untrap mode until the end of the
episode. The choice of left or right motion for untrapping
alternates each time the agent enters the untrap mode.

D. Target Object Detection Module

Prior approaches to target object detection such as the
one used by SemExp rely on single-frame confidence score.
Because the agent decides at every step whether it reached
the target object or not, relying on per-frame decisions leads
to a high false detection rate as discussed in Sec. [[lI-A] E.g.,
consider the sequence of four frames in Fig. [ encountered
by the agent trying to reach a “bed”. The agent successfully
identifies the sofa in the first three pictures, but mistakes the
sofa as a bed in the fourth frame. Consequently the agent
stops, believing it reached its target, but in reality it has
failed. Even to the human eye, in the fourth frame the sofa
looks a little like a bed. However, humans won’t mistake the
sofa as a bed due to the memory of “sofa” from previous
frames [14].



TABLE III: The four methods used to avoid collisions help the
STUBBORN Agent reduces the trap rate and improves exploration
efficiency measured by the GT exploration rate. The full definition
of abbreviated method names can be found in Sec.

Collision Avoidance Update Performance

TABLE IV: Comparing the exploration performance of Frontier,
SemExp, and STUBBORN agents measured as the GT Exploration
Rate (Sec. [V-A) with 95% Confidence Intervals. SemExp and
STUBBORN are both tested with and without the Collision Avoid-
ance Update described in Sec. [V-B]

To mitigate false detection we designed a two-stage ap-

proach that detects the target object based on sequence of
frames. Two stages illustrated in Fig. [5 are: (a) Similar to
SemExp, the first stage predicts for every grid location in
M, visible in the agent’s view (V) the confidence score
(c; € [0,1]:1 € [1,L]) for L object categories: {(x,y) —
(1,5, ...,c;”¥(x,y) € V}. Following EEAUX, we use a
RedNet [15] model finetuned on 100K randomly sampled
views from Matterport 3D [4] for these predictions. If the
presence of target object is detected at a particular grid loca-
tion (ggr: (x,y)s.t.c;zy >0.5), then agent starts approaching
the detected target object by setting the target object location
as the output of the exploration planning module. When the
agent is within a distance threshold (1 meter) to the target
object, it enters the verification stage to reduce the chances
of a false detection.
Verification Stage is a binary classifier using a manually
designed 4D feature representation that captures temporal
information about identity of the target object to decide if
its a false detection. The 4D feature vector is stored as 4
channels of the map that the agent builds as it explores the
environment. Concretely, given .7 [ge (y).81gr(x),4 : 71, the
binary classifier outputs 0/1 to indicate absence/presence of
target object. .#[:,:,4: 7] has the following information:

« Total View(.ZL[y,x,4]): Number of frames in the episode
that . [y,x,4] appeared in agent’s view.

o Cumulative Confidence (.Z[y,x,5]): cumulative confi-
dence scores of target object at location (x,y) until current
time step (f) computed as Y cyg (i).

« Max. Confidence (.7 [y,x,6]): max;c(; g (i)

o Max. Other Confidence(.7[y,x,7]): maximum score
among non-target categories, max;. | maxe(y ¢, (i)]

The verification system is a binary Naive Bayes Classifier
trained using data collected by running the agent on the
validation episodes of Matterport 3D to prevent overfitting
the classifier to the training episodes which were used to train
the base object segmentation model. A separate classifier
is trained for each target object category using trajectories
generated by the agent in pursuit of the same object category.
At test-time, if the output of classifier is 1, agent believes it
has reached the target and stops. Otherwise, the agent marks
8rgr under consideration as a false positive to prevent itself
from being tricked by the same location in future exploration.
If the first stage of object detection finds the target after
200 time steps (which we choose as a hyperparameter), the
verification system is not used. Instead the agent is stopped

Agent | BFUntrap ColObs ColAver VisPath | Trapped% GT Exploration Rate % Methods Collision Avoidance Update | chair | sofa | bed | plant | toilet | tv | average %
I 10.0 54 Frontier 7 75 | 65 | 24 | 56 | 29 | 100 | 58+6
I v 8.7 59 SemEx X 76 | 65 | 38 | 5l 2% | 83 57+7
it v v 6.7 64 P v 79 | 65 | 38| 57 | 26 | 83 5846
IV v v v 52 64 o X 74 | 58 | 38 | 50 | 36 | 66 5416
v 7 7 7 7 5.0 &7 STUBBORN v 80 | 72 |39 | 61 | 67 | 83| 676

once it reaches the detected target. The rationale is that close
to the end of an episode there is not enough time to search
other locations for the target. Therefore, the agent might as
well navigate to the detected target location.

V. RESULTS

Our main contributions are: (i) semantic-agnostic explo-
ration method that is competitive with state-of-the-art; (ii)
multi-scale collision maps for improving exploration and (iii)
multi-frame object detection system to reduce false positives.
The empirical evaluation presented in subsequent sections
supports the importance of these contributions.

A. Exploration Efficiency

The overall success rate of the agent entangles the perfor-
mance of target detection and exploration. To study explo-
ration efficiency in isolation, we use the following metrics:
e Ground Truth (GT) Exploration Rate To remove the
effect of target detection in evaluating exploration perfor-
mance, we consider the agent to be successful if target object
occupies at least 0.8% of the pixels in the ground truth
semantic mask in the agent’s view.

« Trapped Rate is the percentage of episodes the agent gets
trapped. If the agent moves less than 1 meter in 100 time
steps it is considered trapped. Lower trapped rate is better.

We compare exploration performance of STUBBORN
against SemExp [3] and the well known Frontier Based
Exploration baseline [16] where the agent explores by nav-
igating to the frontier of previously visited locations. We
used the publicly released pre-trained model of SemExp. The
global map size in the SemExp model is 2400 x 2400, which
we found to be small for Matterport 3D dataset and results
in poor exploration. We modified the global map size to
7200 x 7200 to match with STUBBORN. Since public version
of SemExp only supports 6 semantic categories, we evaluate
the performance on these categories, with and without the
Collision Avoidance method mentioned below.

B. Collision Avoidance Method

The STUBBORN Agent used 4 methods to prevent agent
from getting trapped: (i) Brute Force Untrap (BFUntrap;
Sec. [IV-C); (ii) Multi-Scale collision obstacle maps (ColObs;
Sec. [[V=C); (iii) collision aversion in exploration planner
(ColAver; Sec. [[V-B); and (iv) marking visited paths as free
space (VisPath; Sec.[IV-A). Results in Table [[TI] show that all
four factors are essential for improving exploration and re-
ducing trap frequency. The most significant performance gain
result from multi-scale collisions representation (ColObs).



TABLE V: Comparing success Rate of STUBBORN against the
baseline Single-Frame Agent on 15 semantic categories, with 95%
Confidence Intervals.

TABLE VI: We report the leaderboard entries on standard test
split of the 2021 Habitat Object Navigation Challenge Entries
with the superscript 2020 and 2021 indicate challenge winners in
the corresponding year. Our Method (named Yuumi_the_magic_cat)
is ranked second by a minute margin based on SPL and accuracy.
It substantially outperforms SemExp, the agent we have built upon.

Goal STUBBORN % | Single-Frame % | Improvement %
stool 16 9 77.78
toilet 43 35 22.86
sink 31 26 19.23
chest_of_drawers 19 16 18.75
plant 33 28 17.86
bed 51 44 1591
cabinet 34 30 13.33
table 61 56 8.93
counter 39 36 8.33
chair 47 46 2.17
sofa 31 31 0
seating 69 69 0
picture 27 30 -10
cushion 46 56 -17.86
towel 12 15 -20
Average 37 £3 35+3 6.55

Results in Table [[V|show that without collision avoidance,
SemExp and STUBBORN achieve comparable exploration
performance. With collision avoidance, SemExp is no better
than semantics-agnostic Frontier exploration strategy. STUB-
BORN with collision avoidance outperforms all baselines
by a large margin. One reason why STUBBORN benefits
from collision avoidance, but SemExp doesnot is that the
STUBBORN agent is prone to getting trapped. This is because
its exploration goals are chosen to be corners of a local map
which forces the agent to go to the corners of the rooms
more often, where it is more likely to be trapped. Collision
avoidance reduces the chances of the agent getting trapped
and therefore benefits STUBBORN. Note that the reported
results are using data from the validation set and experiments
are run with no constraint on execution time. However, for
the actual test on the Habitat Challenge evaluation server,
the total execution time is constrained.

C. Target Object Identification

Baseline We compare STUBBORN with a single frame base-
line (Single-Frame) that only uses the first stage of the target
object detection described in Sec. This baseline is akin
to the kind of object detection used in SemExp.

Results Table [V] compares the performance of the proposed
multi-frame object detector (STUBBORN) against the single
frame baseline on 15 object categories. We do not report
performance on 6 out of the 21 categories because these
target object categories were contained in 4 or less house en-
vironments. Results show that the proposed object detection
scheme improves performance on most object categories.
While the average performance of STUBBORN is higher
than the Single-Frame agent, it is not statistically significant
measured by 95% confidence intervals. At the same time,
we consistently noticed performance improvements from the
multi-frame object detector. On the official test set of Habitat
Challenge, the agent’s success rate increased from 22.2% to
23.7%, by switching from Single-frame to STUBBORN.

Models SPL Success Rate %
(1) Habitat on Web (IL-HD) 0.099 27.8

(2) yuumi_the_magic_cat(Our Method) 0.098 23.7

(3) TreasureHunt [17] 0.089 21.4

(4) PONI (PF) 0.088 20

(5) EmbCLIP [18] 0.078 18.1

(6) Arnold (SemExp)?°% [3] 0.0707 17.85

(7) OVRL (RGBD) 0.076 23.2

(8) Red Rabbit 6-Act Base (EEAux)??2! [4]  0.062 23.7

D. Performance on the Habitat Challenge

We evaluate STUBBORN on the 2021 Habitat Object
Navigation Challenge with the test-standard split. Re-
sults in Table show that our agent (with code name
yummi_the_magic_cat) has the second best performance in
SPL (trailing by a very small margin) and Success Rate.
These results convincingly show that our method that doesnot
uses semantics for exploration is a strong baseline for the
OBJECTNAV task.

VI. RELATED WORK

Object Navigation Reinforcement learning (RL) has been
employed to tackle object navigation in several recent
works [4], [17]-[19]. These methods take goal objects as the
policy’s inputs and reward the policy upon reaching goal. In
addition, Mousavian et al. [20] use imitation learning to learn
a policy matching the behaviors of the optimal path planner
with privileged information of the environment. In contrast,
other works build explicit spatial representations. Chaplot et
al. [3] maintains a semantic map for predicting locations of
goal objects. Gupta et al. [21] construct a belief map of goal
locations for planning. Yang et al. [22] construct an object-
to-object knowledge graph and using a graph convolutional
network to generate semantic priors for object locations.

Object Detection Recent works have drawn upon pre-
trained computer vision models [15], [23], [24]. As per-
frame predictions could produce inconsistent results across
time, prior works tried improving accuracy by temporal
relationships. David et al. [25] and Zhu et al. [26] use
optical flow networks to propagate predictions over time.
Liu et al. [27] use temporal consistency loss during training.
Wang et al. [28] employ attention to relate the current frame
and previous frames. While we leave incorporating such
techniques to future works, we try to improve temporal
consistency via an additional learned model that refines the
single-frame object detection system used in [3].

Exploration for Navigation Exploration is a critical
component for navigation tasks. Chen et al. [29] train an
exploration policy by RL with coverage rewards. Kollar et al.
[30] uses trajectory optimization to derive an efficient explo-
ration strategy. Pathak et al. [31] train an exploration policy
using prediction errors of the forward dynamics model. In



contrast, we use a rule-based exploration strategy alternating
among corners of the map.
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