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Abstract— Dynamic movements are ubiquitous in human
motor behavior as they tend to be more efficient and can
solve a broader range of skill domains than their quasi-
static counterparts. For decades, robotic juggling tasks have
been among the most frequently studied dynamic manipulation
problems since the required dynamic dexterity can be scaled
to arbitrarily high difficulty. However, successful approaches
have been limited to basic juggling skills, indicating a lack of
understanding of the required constraints for dexterous toss
juggling. We present a detailed analysis of the toss juggling
task, identifying the key challenges and formalizing it as a
trajectory optimization problem. Building on our state-of-the-
art, real-world toss juggling platform, we reach the theoretical
limits of toss juggling in simulation, evaluate a resulting real-
time controller in environments of varying difficulty and achieve
robust toss juggling of up to 17 balls on two anthropomorphic
manipulators.

I. INTRODUCTION

The task of juggling pushes the boundary of control perfor-
mance of robotic manipulators, testing both their speed and
dexterity. In this paper, we consider the task of toss juggling
to investigate the feasibility of achieving N-ball juggling in
the intricate cascade patterns achieved by skilled humans. By
pushing the boundary of dynamic robotic manipulation with
juggling, we aim to stimulate research for faster and more
dexterous robot control, as juggling requires consideration of
both mechanical design and control strategy. By opening up
the solution space of possible control strategies away from
popular static approaches to more dynamic alternatives [1],
[2], [3], we gain potential benefits in overcoming torque
constraints and under-actuation, energy efficiency, speed,
simpler movements, and simpler hardware requirements.

A. Problem Statement

The definition of juggling is controversial both in the jug-
gling and in the scientific community. We restrict our study
to single person toss juggling of balls by four assumptions.

Definition I.1 (Toss Juggling).
a) Balls are held in hand for a non-zero duration;
b) Balls are thrown to the same height;
c) Balls are thrown from and aimed at defined locations;
d) Balls are thrown and caught to a constant rhythm.

While Definition I.1 is a simplification compared to most
definitions of toss juggling, it does not make the task easy.
On the contrary, instead of just requiring no ball to drop to
the ground, it is our goal to closely track ball trajectories that
are well defined through take-off and touch-down location as
well as flight time.
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Fig. 1. Stable juggling of seven and more balls in a cascade pattern on
an anthropomorphic two-arm robotic setup. Trajectories are planned in real-
time and adapted to disturbances.

Given Definition I.1, two distinct juggling patterns arise:
For odd numbers of balls, they always cross from one hand to
the other following the cascade pattern, and for even numbers
of balls, they always return to the same hand following the
fountains pattern illustrated in figure 2. Juggling a cascade
pattern with an even number of balls or a fountain pattern
with an odd number of balls is not possible without breaking
the symmetry of the movement. As recognizable in Figure 2,
in both cases, balls have to be caught at and thrown from
sufficiently distant locations to avoid ball collisions.

Juggling is an infinite horizon problem but can be divided
into a sequence of finite-horizon problems alternating be-
tween catching and throwing. The main problem in catching
is to decide where to catch the object. In juggling, the
search space is reduced by aiming balls to intercept a desired
touch-down location. Also, the difficulty of the throwing
task is reduced by aiming each throw at the same target.
Why is juggling more challenging than either of its parts?
Because each sub-task in the sequence complicates the ones
before and after, leading to quickly compounding errors. The
catching phase can only start after clearing the previous ball
from the hand, leaving just the last fraction of a ball’s flight
time to execute the catch. The limited time a ball spends
in-hand leaves little time to recover from the distribution
of catching positions and requires a distribution of throwing
movements. As these time constraints can be changed arbi-
trarily by adjusting the targeted pattern, toss juggling is an
excellent subject to explore dynamic manipulation.
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Fig. 2. (Left) Crossing throws in a five ball cascade (Middle) Non-crossing
throws in a four-ball fountains pattern (Right) The handcycle with dwell
time Td and vacant time Tv and carry distance dd .

B. Juggling Theory
Each hands cycle time Tc = Tv +Td is split into a vacant

time Tv that it spends empty and a dwell time Td holding
a ball. The catching movement is executed during Tv and
the throwing movement during Td . Both can be related to
the flight time Tf that each ball spends in the air by Claude
Shannon’s juggling theorem [4], [5]

Tf +Td

Nb
=

Tv +Td

Nh
,

where Nb is the number of juggled balls, and Nh is the
number of hands. The dwell ratio R = Td/Tc, R ∈ (0,1)
describes how long balls stay in a hand, with typical values
for humans around R ≈ 2/3. Increasing the dwell ratio
reduces the average amount of balls in the air per hand

W =
Tf

Tc
=

Nb

Nh
−R.

Since the horizontal velocity of all balls can be assumed
constant and identical without air friction, we can relate the
horizontal distance between balls

db =
d f

W
−2rb

to the distance d f between take-off and touch-down locations
and the ball radii rb. The horizontal distance between balls
is also their minimal distance reached near the top of the
pattern. Requiring the minimal distance db to be positive
results in a kinematic upper bound on Nb that is independent
of the throw height.

Nb <

⌊
d f

rb
+2R

⌋
(1)

As d f only depends on the carry distance dd for fountain
patterns and can not be increased by moving the hands
further apart from each other, fountain patterns are generally
considered more difficult than cascade patterns.

Contributions: We propose a novel decomposition of the
infinite-horizon toss juggling movement into a sequential
short-horizon trajectory optimization problem, identifying
the critical constraints necessary for dexterous dynamic
manipulation with switching contacts. To the best of our
knowledge, this formulation is the first to demonstrate sta-
ble juggling of five and more balls with anthropomorphic
manipulators.

II. RELATED WORK

From a mathematic perspective, toss juggling has been
studied exhaustively [4], [6], [7], [5], [8], [9], while roboti-
cists focused mostly on the related task of paddle juggling
that has no dwell time. The robot-ball interactions can then
be modeled as impulse exchanges [10], [11] leading to a
class of mirror algorithms [12], [13] that were extended to
two balls on a spatial robot [14], [15]. Open-loop stability
of paddle juggling has been achieved by decelerating during
the upward stroke [16], [17] and a parabolic paddle [18].

The two components of toss juggling, throwing and catch-
ing, have been studied individually. While throwing, dynamic
effects such as dynamic closure [1] and whipping in the
kinematic chain [19] are at play. Most approaches capable
of reliably hitting targets have been data-driven, by iterative
adapting the aiming [20] or by optimizing a movement
primitive through trial and error [21].

The necessary complexity of approaches for the ball-
catching task depends on the mechanical setup. In case of
contacts with low restitution—balls not bouncing off the
hand—it is sufficient to intercept the ball trajectory. Online
trajectory optimization was successfully applied minimiz-
ing the mechanical energy [22] or various kinematic cost
functions [23]. A common simplification to the catching
problem is the introduction of a catching plane [21]. In
case of higher restitution, it is necessary to reduce impact
velocities to prevent the ball from bouncing off. Addition-
ally, matching the accelerations [24], [25] widens the time
interval of low relative velocity, increasing robustness to
disturbances. To solve the more complex task of catching
non-spherical objects, distributions over grasp positions and
catching behaviors were learned from demonstrations [26].

Claude Shannen did the first investigations in robotic
toss juggling in the form of juggling mechanisms solving
a particular case of toss juggling, where balls are bounced
off a drum on the floor. While mechanisms of this kind [16],
[27] implemented the carry distance dd necessary to avoid
collisions by rolling the balls in the hand, later juggling
mechanisms [28] also implemented an active carry phase.
All juggling mechanisms relied on funnel-shaped hands
dissipating excess energy for passive stability.

Most throwing strategies in robotic juggling are open-
loop as well. An elliptic trajectory [29] was executed on
a robot with two degrees of freedom (DoF). Initializing and
improving the trajectory parameterization through a ballistic
model led to stable one-handed two-ball juggling. The addi-
tion of a hand-tuned throwing motion to a previous catching
approach [21] resulted in a shared tree ball cascade with
a human partner. Another approach also used a hand-tuned
throwing motion [30], but in this case, the ball was caught by
the same articulated hand-arm system that threw the ball to
juggle two balls in one hand. In our previous work [31] used
model-free episodic reinforcement learning on the physical
system to optimize a parameterized movement primitive and
achieved stable one-handed two-ball toss juggling for up to
33 minutes on an anthropomorphic manipulator.



III. JUGGLING IN TASK SPACE

Dexterous toss juggling can be formulated as a trajectory
optimization problem. Since hands do not interact directly,
the movements of each hand can be planned individually but
need to be conditioned on the states of the balls.

A. Throwing

For precise throwing, a set of take-off constraints has
to hold. The take-off hand position x(tTO) and hand ve-
locity ẋ(tTO) at tTO have to result in a target touch-
down ball location b(tTD+1) = bTD,des after the flight time
Tf = tTD+1− tTO. According to the parabolic ballistic model
b(t) = bTO(t)+ ḃTO(t)t + 1

2 gt2 we define our take-off con-
straints similar to [1] as

0 = x(tTO)−bTO,des, (2)

0 = x(tTO)+α ẋ(tTO)Tf +
1
2

gT 2
f −bTD,des, (3)

0 = ẍ(tTO)−g, (4)

assuming bTO = xTO and ḃTO = α ẋTO. The moment of take-
off is defined as the point at which the contact forces vanish
and constraint (4) holds. The scalar α ≈ 1 compensates
for the small amount of potential energy that is stored
in the ball-hand contacts and leads to slight excess ball
take-off velocity ‖ḃTO‖> ‖ẋTO‖. To prevent post-take-off
ball contact with parts of the hand by premature lateral
movement, we require the relative acceleration between ball
and hand to be collinear with the hand normal vector eh on
a short interval τ ∈ (0,TPTO] after take-off by

0 = (ẍ(τ)−g)× eh. (5)

Since planned cycles end at tTO, this constraint acts on the
initial interval of the planned movement.

B. Catching

To catch a ball, we predict the time t̃TD and location b̃TD
of touch-down on a fixed horizontal plane and match the
hand position x(t̃TD) accordingly

0 = x(t̃TD)− b̃TD. (6)

To prevent pre-touch-down contact between the ball and the
outer side of the hand, the relative velocity between ball and
hand should be collinear with the hand normal vector on a
short interval τ ∈ [0,TPTO] before touch-down by

0 = (ẋ(t̃TD− τ)− ˜̇b(t̃TD− τ))× eh,

analogous to constraint (4) but in velocities, not in accelera-
tions. Since we found this constraint challenging to optimize,
we approximate it efficiently through

0 = ẋ(t̃TD− τ)× ˜̇b(t̃TD− τ), (7)

choosing a hand normal eh near collinear to the ball’s
predicted touch down velocity ˜̇bTD.

eh

g

gx-g

x

x

b

Fig. 3. Pre-touch-down and post-take-off constraints: (Left) After
take-off, the relative hand acceleration ẍ− g and the hand normal eh are
constrained to be collinear. (Right) Before touch-down, the hand velocity ẋ
and the ball velocity ḃ are constrained to be collinear.

C. Trajectory Optimization

Given a desired take-off location bTO,des, position, veloc-
ity, and acceleration are fully constrained such that subse-
quent cycles of the juggling motion are independent of each
other. Therefore, we formulate the mathematical program as
a discrete-time trajectory optimization problem with piece-
wise constant jerk ...xk ∈ {

...x0, . . . ,
...xKc−1} over one cycle, start-

ing at the moment of take-off tTO−1 of the previous cycle,
while complying with constraints h (2-7).

min
{...x0,...,

...xKc−1}

Kc

∑
k=0

ẍT
k ẍk s.t. (8)

(x0, ẋ0, ẍ0) = (xTO−1, ẋTO−1, ẍTO−1)

h(xk, ẋk, ẍk,xk) = 0
−...xi,max ≤ ...xk,i ≤

...xi,max

To avoid unattainable peak accelerations, we penalize the
sum of squared accelerations and box-constrain the jerk ...xk
at each support point k and each dimension i. Planning
in piece-wise constant jerk instead of piece-wise constant
accelerations results in piece-wise linear accelerations. This
allows us to define a precise time for the acceleration
constraint (4) to hold despite discretization. Additionally, it
allows us to increase the discretization time step ∆t, reducing
the number of decision variables. We solve the problem in
CasADi [32] by direct shooting with interior point methods
and the explicit Euler integration scheme

xk+1 = xk + ẋk∆t +
1
2

ẍk∆t2 +
1
6

...xk∆t3,

ẋk+1 = ẋk + ẍk∆t +
1
2

...xk∆t2, (9)

ẍk+1 = ẍk +
...xk∆t.

Since we integrate the kinematics, not the system dy-
namics, symplectic integration is unnecessary. The re-
sulting piece-wise linear acceleration allows us to plan
smooth trajectories despite a low number of support points
Kc < 30. Additionally—in contrast to piece-wise constant
accelerations—the take-off acceleration constraint (4) is only
fulfilled exactly at tTO, cleanly defining from which position
xTO, the ball takes off and with which velocity ẋTO.



IV. JUGGLING IN JOINT SPACE

A. Planning

To plan juggling movements in joint space, we formu-
late the trajectory optimization problem similar as in task
space (8) and solve for a cycle of piece-wise constant
joint space jerks ...qk ∈ {

...q0, . . . ,
...qKc−1}, integrating analogous

to (9).
min

{...q0,...,
...qKc−1}

Kc

∑
k=0

q̈T
k q̈k s.t.

(q0, q̇0, q̈0) = (qTO−1, q̇TO−1, q̈TO−1)

h(qk, q̇k, q̈k,qk) = 0
−...qi,max ≤

...qk,i ≤
...qi,max

Before, the robot and ball states were defined in a shared
euclidean space. Now the robot state is defined in the joint
space. Therefore we need to reformulate constraints h (2-7),
which condition the robot’s movement on the predicted and
desired ball trajectories. First, we match the balls predicted
touch-down location xTD = b̃TD and desired take-off location
xTO = bTO as well as compute a desired take-off hand
velocity by solving equation (3) for

ẋTO =
bTD+1,des−bTO

αTf
−

gTf

2α
.

Since xTO, ẋTO, g, and xTD are independent of the decision
variables, we can solve the inverse kinematics problems

(qTO, q̇TO, q̈TO) = f−1
kin(xTO, ẋTO,g),

qTD = f−1
kin(xTD),

a priori. Now constraints (2-4) and (7) can be replaced by

(qkTO , q̇kTO , q̈kTO) = (qTO, q̇TO, q̈TO),

qkTD = qTD.

Finally, we extend the post-take-off constraints (4) and
the pre-touch-down constraints (7) by solving the forward
kinematics at optimization time,

0 = ẋkTD−i× ḃkTD−i, (10)
ẋkTD−i = J(qkTD−i)q̇kTD−i , (11)

0 = (ẍ j−g)× ehand(q j), (12)

ẍ j = J(q j)q̈ j + J̇(q j, q̇ j)q̇ j, (13)

with hand Jacobian J at support points i ∈ {1, . . . ,NTD}
before touch-down and support points j ∈ {1, . . . ,NTO} after
the previous take-off. The previous take-off is at k = 0, so the
post-take-off constraints apply to the start of the movement.

B. Control

To execute the planned trajectories, a tracking controller
is necessary. We consider a simple proportional deriva-
tive (PD) controller (14) with the options to add either
compensate gravity (PD+G) (14) or add a feed-forward
torque (PD+FF) (17) that is pre-computed from the planned
trajectory through the inverse dynamics model f−1

dyn. Lastly,
we test a joint space inverse dynamics controller (ID) (17)
that also uses the same inverse dynamics model for error
correction through a corrected reference acceleration.

τPD = KP(qd−q)+KD(q̇d− q̇) (14)
τPDG = KP(qd−q)+KD(q̇d− q̇)+g(q) (15)

τPDFF = KP(qd−q)+KD(q̇d− q̇)+ f−1
dyn(qd, q̇d, q̈d) (16)

τID = f−1
dyn(q, q̇,KP(qd−q)+KD(q̇d− q̇)) (17)

V. EXPERIMENTS

As in previous work, we use low restitution balls and
cone-shaped unactuated hands, with all contacts modeled as
spring-damper systems in MuJoCo [33]. While this choice of
a cone-shaped hand with 0.17m diameter provides advanta-
geous passive stability [31], an actuated hand that fully opens
at take-off can start moving sideways towards the following
touch-down location earlier. This decreases the required
vacant time Tv and average number of balls in air per hand
W . In a simplified setup, we assume complete state control
over two free-floating hands to verify the planned trajectories
in task space independent of additional sources of errors
like the inverse kinematics and tracking controllers. In the
setup depicted in figure 1, the hands are attached to 4-DoF
Barrett WAM arms which are torque controlled at 500Hz
using the inverse dynamics controller (17) unless stated
otherwise. The robot bases are mounted jointly, shaping a
torso with a shoulder width of 0.76m. This configuration
allows the elbows to drop down naturally and juggle in a
human-typical pose, which is especially suitable for juggling
since adaptations of the hand position in the horizontal
catching plane only cause slight hand rotation.

While our method generalizes to fountain juggling, and we
achieve stable juggling of six balls, the described unactuated
hands are not suited for juggling even ball numbers requiring
large carry distances dd . Therefore we restrict the presented
experiments to cascade juggling patterns with odd numbers
of balls.

In the following sections, we conduct several experiments
to measure the performance of our approach and test the
relevancy of individual components of planner and controller.
Runs are started in running patterns for each experiment,
with most balls already in the air. Our primary metric to
evaluate the stability of a juggling patter are the number of
catches before the first ball drops, counting only balls that
were thrown by the robot. As we do not count balls that
were initialized in air, this metric is comparable to human
juggling, typically starting with all balls held in hands.

A. Verifying Theoretical Limits

Even with total dexterity, the maximum amount of balls
that can be juggled is limited by the distance between take-
off and touch-down locations d f through the kinematic upper
bound (1). We validate this upper bound empirically in
cascade patterns at dwell ratio R = 0.5 using the simplified
setup with floating hands. As shown in figure 4, we achieve
stable juggling for high amounts of balls up to 19 balls
at the kinematic upper bound, defining stable as reaching
500 catches. For 21 and more balls at throw heights greater



Fig. 4. Theoretical limit vs. achieved patterns: The maximum number of
balls is limited by the horizontal distance they travel. Stable juggling close
to the upper bound was achieved in task space for more than 500 catches.

Fig. 5. Robustness to disturbances: Ball trajectories in cascade patterns
were disturbed by isotropic white noise on the take-off velocity. Catches
counted until 100 averaged over 50 runs, with and without ball collisions.

than 15m, throwing precision decreases due to unmodeled
contact dynamics, and extra lateral travel d f is required. On
the anthropomorphic two-arm setup, we maximally achieve
50.000 catches with the maximum possible 17 balls at
d f = 0.62m, requiring balls to pass each other within a
distance of 2.5mm.

B. Robustness to Disturbances

We disturbed each ball trajectory immediately after take-
off by adding isotropic white noise to the velocity to evaluate
the robustness of cascade patterns achieved with the two-arm
setup. For each data point in figure 5, we counted the number
of catches up to a maximum of 100 and averaged over 50
trials. As expected, higher numbers of balls are more suscep-
tible to disturbances. To identify what causes balls to drop,
we reran the entire experiment with all inter ball collisions
turned off—balls tunneling through each other—indicated
by the dashed lines. It is apparent that the importance of
ball collisions increases with the number of balls, but their
overall contribution to the degradation of robustness is only
minor compared to the compounding turbulence caused by
insufficiently dissipated kinetic energy.

C. Necessity of Trajectory Constraints

The additional constraints (10-13) are enforced on short
intervals after take-off and before touch-down to ensure the
successful execution of throws and catches. In the time-
discrete case, these constraints are only implemented on

Fig. 6. Necessity of trajectory constraints: Alternating the number of
constrained support points NTO and NTO for three different carry distances
dd in a five-ball cascade pattern shows the indispensability of the pre-touch-
down and post-take-off constraints. The achieved catches were capped at 100
averaged over 50 runs with take-off ball disturbance of σ = 0.01m/s.

Fig. 7. Evaluating tracking performance: Evaluating the average error
of touch-down locations in undisturbed five-ball cascade patterns (Left)
Comparison of different tracking controllers show the need for inverse
dynamics control. (Right) While ID control tracks closer, PD+FF control is
less susceptible to varying uncertainties in the dynamics model.

the NTO and NTD support points within these intervals. To
evaluate if these additional constraints are necessary and on
which interval they need to hold, we again count catches
until a maximum of 100, average over 50 trials, and disturb
ball velocities by the isotropic white noise σ = 0.01m/s
immediately after take-off. We vary NTO and NTD between
0 and 2 while keeping the other constant at 2. Figure 6 shows
that juggling a five-ball cascade pattern is infeasible without
these additional constraints and that they become more
critical at more considerable carry distances. Juggling with
minimal carry distances, to avoid the additional constraints,
would render the pattern susceptible to disturbances.

D. Tracking Control

We compared the tracking controllers (14-17) by evaluat-
ing them on the throwing accuracy, averaging the distance
between planned and achieved touch-down locations. For the
task of juggling five balls in an undisturbed cascade pattern,
this average touch-down error is shown for each controller
on the left side of figure 7. We show that the simple PD and
PD+G controllers are at a significant disadvantage by not
taking the robot’s inertia into account. Juggling more than
five balls with either of them was infeasible. While adding a
feed-forward torque, the PD+FF controller halves the touch-
down error, the ID controller nearly eliminates it.



Since the ground truth dynamics model of a physical
system is never known, we tested the touch-down error of
the PD+FF and the ID controller with respect to model
errors juggling five and seven balls. We averaged the touch-
down error of the first 20 catches over 50 different models
with masses varied by standard deviations relative to the
ground truth masses. The right side of figure 7 shows that
the overall average touch-down error of ID-controlled throws
is substantially lower but significantly more susceptible to
model errors.

VI. CONCLUSIONS

We presented a novel decomposition of the infinite-horizon
toss juggling movement into a sequential short-horizon
trajectory optimization problem. Moreover, we identified
several critical constraints necessary for dexterous dynamic
manipulation with switching contacts. To the best of our
knowledge, this formulation is the first to demonstrate sta-
ble juggling for five and more balls with anthropomorphic
manipulators, reaching a kinematic upper bound of 17 balls.

We plan to evaluate our approach on a real-world physical
robot. In prior work on a physical platform, we reached stable
juggling of two balls in one hand, equivalent to juggling
four balls in a fountains pattern. Since we did not reach the
robot’s torque limit, a five-ball cascade pattern appears to
be a realistic goal given the current hardware constraints.
Our current choice of end-effector design restricts possible
lateral movements with an object, and the possible types
of object. Therefore, it may also be worthwhile to inves-
tigate different hand choices further. While we focused on
the stationary infinite-horizon control problem of running
a juggling pattern, experiments on a physical system will
additionally require a solution to the transient short-horizon
control problem of starting a juggling pattern.

Our approach is limited by the assumptions in Defi-
nition I.1. The restriction to non-zero dwell times in a)
separates toss juggling from the different skill of paddle jug-
gling. However, the three other assumptions lead to exciting
directions for future work. Firstly, relaxing assumption b) and
accounting for throws of different heights grants access to
various juggling patterns mixing crossing and non-crossing
throws. Secondly, by relaxing assumption c) and adapting
take-off and touch-down positions, online collision avoidance
between ball trajectories can be taken into account in real-
time. Finally, breaking the constant juggling rhythm required
in assumption d) and adapting the phase of the juggling pat-
tern to one or more partners allows for interactive juggling—
either by sharing a joint pattern with skilled partners or by
having a novice partner add a ball to a running pattern by
throwing it in, or removing a ball by snatching it out.

REFERENCES

[1] M. T. Mason and K. M. Lynch, “Dynamic manipulation,” in IROS
1993, vol. 1. IEEE, 1993, pp. 152–159.

[2] N. Furukawa, A. Namiki, S. Taku, and M. Ishikawa, “Dynamic
regrasping using a high-speed multifingered hand and a high-speed
vision system,” in ICRA 2006. IEEE, 2006, pp. 181–187.

[3] H. Ha and S. Song, “Flingbot: The unreasonable effectiveness of
dynamic manipulation for cloth unfolding,” in CoRL 2022. PMLR,
2022, pp. 24–33.

[4] C. E. Shannon, “Scientific aspects of juggling,” p. 924, 1993.
[5] Y. Yam and J. Song, “Extending shannon’s theorem to a general

juggling pattern,” Studies in Applied Mathematics, vol. 100, no. 1,
pp. 53–66, 1998.

[6] J. Buhler, D. Eisenbud, R. Graham, and C. Wright, “Juggling drops
and descents,” The American Mathematical Monthly, vol. 101, no. 6,
pp. 507–519, 1994.

[7] P. J. Beek and A. Lewbel, “The science of juggling,” Scientific
American, vol. 273, no. 5, pp. 92–97, 1995.

[8] B. Polster, The mathematics of juggling. Springer, 2003.
[9] A. Mays, “Combinatorial aspects of juggling,” Praca magisterska,

University of Melbourne, 2006.
[10] M. Buehler and D. E. Koditschek, “Robotics in an intermittent

dynamical environment: A prelude to juggling,” Departmental Papers,
1987.

[11] E. W. Aboaf, C. G. Atkeson, and D. J. Reinkensmeyer, “Task-level
robot learning: Ball throwing,” AI Memo 1006, 1987.

[12] M. Buhler, D. E. Koditschek, and P. J. Kindlmann, “A family of robot
control strategies for intermittent dynamical environments,” Control
Systems Magazine, vol. 10, no. 2, pp. 16–22, 1990.

[13] M. Buehler, D. E. Koditschek, and P. J. Kindlmann, “Planning and
control of robotic juggling and catching tasks,” IJRR, vol. 13, no. 2,
pp. 101–118, 1994.

[14] A. A. Rizzi and D. E. Koditschek, “Progress in spatial robot juggling,”
in ICRA 1992. IEEE, 1992, pp. 775–780.

[15] ——, “Further progress in robot juggling: The spatial two-juggle,” in
ICRA 1993. IEEE, 1993, pp. 919–924.

[16] S. Schaal and C. G. Atkeson, “Open loop stable control strategies for
robot juggling,” in ICRA 1993. IEEE, 1993, pp. 913–918.

[17] S. Schaal, C. G. Atkeson, and D. Sternad, “One-handed juggling: A
dynamical approach to a rhythmic movement task,” Journal of Motor
Behavior, vol. 28, no. 2, pp. 165–183, 1996.

[18] P. Reist and R. D’Andrea, “Design and analysis of a blind juggling
robot,” Transactions on Robotics, vol. 28, no. 6, pp. 1228–1243, 2012.

[19] T. Senoo, A. Namiki, and M. Ishikawa, “High-speed throwing motion
based on kinetic chain approach,” in IROS 2008. IEEE, 2008, pp.
3206–3211.

[20] E. W. Aboaf, C. G. Atkeson, and D. J. Reinkensmeyer, “Task-level
robot learning,” in ICRA 1988. IEEE, 1988, pp. 1309–1310.

[21] J. Kober, M. Glisson, and M. Mistry, “Playing catch and juggling with
a humanoid robot,” in Humanoids 2012. IEEE, 2012, pp. 875–881.

[22] R. Lampariello, D. Nguyen-Tuong, C. Castellini, G. Hirzinger, and
J. Peters, “Trajectory planning for optimal robot catching in real-time,”
in ICRA 2011. IEEE, 2011, pp. 3719–3726.
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