
Hierarchical Model-Based Imitation Learning
for Planning in Autonomous Driving

Eli Bronstein Mark Palatucci1 Dominik Notz Brandyn White Alex Kuefler Yiren Lu Supratik Paul
Payam Nikdel1 Paul Mougin Hongge Chen Justin Fu Austin Abrams Punit Shah Evan Racah1

Benjamin Frenkel Shimon Whiteson Dragomir Anguelov

Abstract— We demonstrate the first large-scale application
of model-based generative adversarial imitation learning
(MGAIL) to the task of dense urban self-driving. We
augment standard MGAIL using a hierarchical model to
enable generalization to arbitrary goal routes, and measure
performance using a closed-loop evaluation framework with
simulated interactive agents. We train policies from expert
trajectories collected from real vehicles driving over 100,000
miles in San Francisco, and demonstrate a steerable policy that
can navigate robustly even in a zero-shot setting, generalizing
to synthetic scenarios with novel goals that never occurred
in real-world driving. We also demonstrate the importance
of mixing closed-loop MGAIL losses with open-loop behavior
cloning losses, and show our best policy approaches the
performance of the expert. We evaluate our imitative model in
both average and challenging scenarios, and show how it can
serve as a useful prior to plan successful trajectories.

I. INTRODUCTION

Driving at scale in dense urban environments remains
difficult due to the complexity of interactions between large
numbers of diverse actors. In these scenarios, it is difficult
to apply classic motion planning methods that require defining
cost functions such that the emergent behavior fully aligns
with human expectations [1]. This motivates imitation learning
(IL), which uses expert demonstrations to learn either a cost
function or a policy directly over actions [2]–[4].

In practice, any imitation model used for motion planning
needs additional safety considerations to enforce hard
constraints such as collision avoidance and kinematic
feasibility. Nonetheless, studying the driving ability of an
imitative model in isolation gives an indication of when and
where it produces a feasible prior that could be used in an
AV stack to plan successful trajectories. In these situations,
motion planning could reduce to verifying trajectories from
a model instead of generating them with bespoke solutions.

A common challenge with IL is covariate shift, also known
as the “DAgger problem” [5]. This occurs when the policy
makes small errors that cause it to visit states outside of
its training distribution, resulting in compounding error and
divergent behavior. Intuitively, this occurs when the policy
encounters unfamiliar states, and is similar to challenges in
offline reinforcement learning [6].

State-of-the-art imitation methods like model-based
generative adversarial imitation learning (MGAIL) [7] address
covariate shift through closed-loop training, where dynamics
are simulated and losses are backed up over the time horizon.
Hence, the value of a decision depends on its long-term

All authors with Waymo Research. Contact: shimonw@waymo.com
1Work performed while employed at Waymo.

consequences, in contrast to open-loop behavior cloning, which
treats each timestep independently. While theory predicts the
importance of closed-loop training [8], empirical evidence
in the self-driving literature is limited [9]. This work affirms
the benefit of closed-loop training on a practical, large-scale,
and difficult motion planning task.

In autonomous driving, a learned motion policy must not
only realistically imitate the expert, but also be goal-directed.
Such a policy can be challenging to develop due to the
confounding of high-level task planning and low-level motion
planning [10]: often a trajectory is observed from the expert,
but the high-level intents or goals that affect lane choice,
future route, or final destination are hidden, making it difficult
to recover the causal factors that led to the observed trajectory.
One promising solution is the use of hierarchical methods,
which decompose the problem into a high-level goal generation
module and a low-level goal-conditioned motion policy [11],
[12]. During training, this allows the motion policy to associate
the goal with the expert’s intent-driven behavior. At inference
time, this approach offers the flexibility to specify novel goals
and generalize beyond the observed expert trajectories.

Ultimately, we aim to develop a policy that can safely
navigate a diversity of driving situations and accomplish novel
goals, including those not demonstrated by the expert. While
we show that employing closed-loop training with respect to the
ego vehicle’s dynamics is instrumental in creating such a policy,
an important question is how to properly evaluate it. Given
a dataset of driving scenes with logged vehicle trajectories,
evaluating an imitative policy on the same goals achieved by
the expert can lead to an overly optimistic performance estimate
due to spurious correlations between input features [13]. For
example, other vehicles’ logged trajectories can influence the
policy to follow the expert’s goal, rather than actively interacting
with other actors to reach its own goal. For this reason, it is
critical to evaluate the policy’s ability to follow novel goals.
This poses a challenge when simulating driving because, as the
autonomous vehicle (AV) diverges from its logged trajectory
to achieve a new goal, other actors’ logged trajectories may
become unrealistic. To address this issue, we introduce the
combination of goal generalization with closed-loop evaluation,
in which the policy attempts to reach novel goals in the presence
of realistic actors that react to the AV’s new actions [9].

Even with the simulation of other interactive actors, it is
also important to measure performance in challenging and rare
scenarios. Aggregating over a large dataset can mask the perfor-
mance on difficult but uncommon situations, misrepresenting
the model’s ability to handle the “long-tail” [14].

The key ingredients for closed-loop, machine-learned planner

ar
X

iv
:2

21
0.

09
53

9v
1 

 [
cs

.R
O

] 
 1

8 
O

ct
 2

02
2



development are, now for the first time, readily available: closed-
loop imitation learning with MGAIL, hierarchical goal-based
policies, and realistic interactive agents. In this work, we show
how to train and evaluate such a system by demonstrating the
first application of MGAIL on a large and practical self-driving
task of ego vehicle motion planning for dense urban driving.
Our method outperforms prior imitation approaches based on
pure open-loop optimization like behavior cloning, and achieves
aggregate performance similar to the expert demonstrator. We re-
port several key design choices and experimental contributions:
• We introduce a hierarchical model that combines a high-level

graph-based search with a low-level transformer-based
MGAIL policy, adding an intermediate set of route features
to help the model generalize and follow arbitrary goal routes.

• We evaluate our policy’s ability to follow novel goal routes
alongside simulated reactive agents in closed-loop in order
to obtain more realistic estimates of zero-shot generalization
and allow for interaction between the policy and other actors.

• We run experiments on both average driving and challenging
scenarios to estimate “long-tail” performance and highlight
the best opportunities for hill-climbing.

• We run several ablations and show that augmenting
MGAIL’s closed-loop adversarial losses with an open-loop
behavior cloning loss leads to better performance.

II. RELATED WORK

Imitation learning (IL) has a long history in the robotics
and machine learning literature, often appearing under names
such as learning from demonstration, apprenticeship learning,
inverse reinforcement learning, and inverse optimal control
[15]–[20]. For an overview see [21], [22]. IL is also closely
related to offline reinforcement learning [6]. Theoretical
understanding of IL continues to improve with the seminal
work of [5] and more recently [8], [23]. Modern approaches
to IL use techniques from generative adversarial networks
[7], [24]–[26] and include goal-conditioning [12].

IL has been applied to autonomous driving dating to the early
success of ALVINN [2], and more recently [3], [4], [27]–[29].
Combining expert demonstrations and reinforcement learning
(RL) offers promising new approaches to scalable self-driving
[14], [30]. Despite the excitement of machine learning as a path
towards large-scale deployment of AVs, many AV companies
still rely heavily on classic search-based planning and trajectory
optimization. For a survey of classic approaches, see [31].

While motion forecasting models [32] have had a long
history in AV stacks to predict other agent behavior, recent
work has applied these models to the ego agent to predict
feasible trajectories for direct planning, and can be viewed
in the context of open-loop imitation [33]–[39].

Closed-loop simulation continues to advance, both for the
purposes of evaluating driving performance through realistic
world models [9], [40]–[44], and to train driving policies that
could transfer to the real world [45], [46].

The work most similar to ours is [9], which applies
model-based imitation and parallel beam search to train
simulated agents for testing an AV. By contrast, we focus
on the ego AV motion planning problem, where following
arbitrary goal routes is critical. We avoid beam search as
done by [9], which requires future information from reference

trajectories not available in the context of ego agent motion
planning [47], [48]. We also focus on dense urban driving.

III. BACKGROUND

A. Markov Decision Processes

We formulate the planning problem as a Markov Decision
Process, defined by the tuple (S,A, T ,R, γ, p0). S represents
the state space, which encapsulates quantities such as the
positions and velocities of cars, road features, and dynamic
objects within the scenario. A represents the action space,
R the reward function, γ the discount factor, T the transition
distribution, and p0 the initial state distribution. A policy,
or decision making agent, with parameters θ is denoted
by πθ. A typical goal is to find a policy that maximizes
the expected return, Eτ∼πθ

[∑T
t=0 γ

tr(st, at)
]
, where

τ = {s0, a0, . . . , sT , aT } denotes a trajectory.
Many classes of techniques have been proposed to find good

policies. Methods such as reinforcement learning and optimal
control can be used to directly find a strong policy when the
reward function is available [49]. However, it can be difficult
to design a suitable reward function in many application areas,
including autonomous driving [1]. An alternative approach
is imitation learning (IL), in which we assume access to a
dataset of trajectories D = {τi}Ni=0 [21] demonstrated by an
expert, denoted as πE . The objective is then to train a policy
to imitate the demonstrations.

B. Model-based Generative Adversarial Imitation Learning

The naive approach to imitation learning is to perform
supervised learning directly on the expert demonstrations, an
approach commonly known as behavior cloning (BC) [2], [50]:

arg max
θ

Es,a∼πE [log πθ(a|s)].

However, a policy trained in this way is susceptible to
covariate shift at test time, resulting in accumulating error.
This means that most BC methods suffer from a quadratic worst-
case error scaling with respect to the length of the episode [5].

Generative adversarial imitation learning (GAIL) [24] is
an alternative that treats imitation learning as an adversarial
game. GAIL samples trajectories using the current policy,
trains a discriminator to classify these trajectories against the
demonstrations (where the demonstrations are labeled as 1 and
sampled trajectories as 0), and then optimizes the policy to
make its trajectories indistinguishable from the demonstrations.
This can be formalized as finding a Nash equilibrium in
the following minimax game between the policy πθ and the
discriminator Dω (parameterized by ω):

arg max
θ

arg min
ω

Es,a∼πθ [log Dω(s, a)]+

Es,a∼πE [log(1−Dω(s, a))].

Theoretically, rather than minimizing the error in the
conditional distribution πθ(a|s) as in BC, GAIL minimizes
the gap in the occupancy measures (the joint distribution of
states and actions p(s, a)) between the policy and the expert.
This allows GAIL to achieve linear error scaling [8] in the
time horizon, greatly reducing the effect of compounding error
at the cost of requiring online rollouts through a simulator.



Model-based generative adversarial imitation learning
(MGAIL) [7] utilizes a differentiable dynamics model to
improve training. GAIL requires the use of high-variance
policy gradient estimates or other zero-order optimization
methods to optimize the policy because its training objective
is not differentiable due to sampling through an unknown
transition model. With a differentiable model, gradient
estimators such as the reparametrization trick [51] can be used
to reduce the variance of the policy update. We leverage the
fact that our driving simulator is differentiable, as described
in section IV-C, in order to apply MGAIL to our method.

IV. METHOD

In this section, we first provide an overview of our planning
agent’s system architecture, including the high-level route
generation module and low-level continuous motion policy.
We then explain how to evaluate the policy in a data-driven,
closed-loop simulation with realistic, interactive agents in order
to test generalization to novel goals. Finally, we describe an
approach to scalably test the policy’s robustness to challenging
and rare driving situations.

A. Route Generation

In the high-level module, we generate routes across
waypoints on a premapped lane-level roadgraph, where nodes
are discretized lane waypoints, and edges are maneuvers
between them: stay in the lane, take a turn/merge/fork, or
execute a lane change (Figure 1).

Fig. 1: The routing graph built on a lane-level map. Nodes are
fixed lane waypoints, and edges are maneuvers between them
(not all lane changes are shown for clarity).

Our primary routing cost is proportional to historical traversal
time for each maneuver, so as to minimize ETA. Using a
bidirectional A* search with the ALT heuristic [52], we generate
one or more routes, depending on the roadgraph. During data
collection, the expert is tasked with following the lowest cost
route. For training, we condition the low-level motion policy
on this same route. However, for evaluation, other routes may
be chosen to test the policy’s generalization capabilities.

B. Observation Encoding

Transformer architectures [53] have been shown to be effec-
tive for modeling high-dimensional sequences. We use stacked
transformer-based models [47], [54] to encode multimodal
observations for the MGAIL policy and discriminator.

We divide the input features into five groups: the AV’s own
trajectories (e.g., position, heading), other context objects’ tra-
jectories (e.g., other vehicles and pedestrians), roadgraph points

(positions and types of points sampled from continuous road net-
work features), traffic light signals, and the goal route generated
by the high-level module (represented as a sequence of points).

The computational complexity and memory usage of con-
ventional transformer models’ cross-attention stages grow
quadratically with the features’ input dimension. Instead, we use
cross-attention with linear computational complexity in terms
of the input dimension. Inspired by Set-Transformer [55] and
Perceiver [48] approaches, we use learned arrays as queries to
fuse the multimodal inputs. This design is flexible since we can
fuse the inputs in any order, which is chosen as a hyperparam-
eter based on empirical results. As shown in Figure 2, we first
concatenate features in each group and encode them separately
using dense layers (size (32, 32), L2 regularization with weight
0.01, and layer normalization [56]). The dimensions of each
group’s output embeddings are the same. The model is a stack
of cross-attention blocks that iteratively attend to each group
of features with a fixed-dimensional learnable latent bottleneck
(sizes 128 and 64 for the policy and discriminator) . Each
cross-attention block has a residual attention layer followed by
a dense layer. The output policy and discriminator observation
embeddings are then used as inputs to the MGAIL policy and
discriminator heads, respectively. For the policy head only,
we employ a gated recurrent unit (GRU) [57] to integrate the
output policy observation embeddings over time.

C. Delta Actions Model

While the trajectories of other vehicles observed during
data collection are given, we must choose a dynamics model
for the AV. We utilize the delta actions model, which uses
offsets to the current state s as actions a to compute the next
state s′ = s+ a. Demonstrated actions can be easily obtained
by differentiating consecutive demonstrated trajectory states:
a = s′− s. This model is fully differentiable but is not learned
from data. Unlike traditional vehicle dynamics models, this
model does not enforce constraints on the behavior space. This
characteristic makes it flexible enough to cover a diverse set
of driving behaviors, and it could even be used for non-vehicle
agents, such as pedestrians. In practice, an AV stack would
include a local controller that attempts to realize the next state
generated by the dynamics model.

For the policy, we use a Gaussian Mixture Model (GMM)
to parameterize the delta actions, where the GMM parameters
are predicted by a neural network. The distribution over
actions a given a state s is given by:

πθ(a|s) =

K∑
i=1

φiθ(s)N (a|µiθ(s),Σiθ(s)),

where N (·) denotes a Gaussian distribution, K (set to 8) is the
number of Gaussians, and φiθ , µiθ , and Σiθ for i ∈ {1, . . . ,K}
are the weights, means, and covariances predicted by the
policy network given a state s (see Figure 2). During inference,
actions are sampled from the predicted GMM.

A common alternative approach is to directly predict
the action values and to minimize the mean squared error
(MSE) between the predicted and demonstrated actions. This
approach is equivalent to maximizing the log likelihood of the
demonstrated action assuming it is sampled from a unimodal
Gaussian distribution. However, in our setting multiple actions



learnable 
latent array embedding

AV’s own trajectories roadgraph points traffic light signals other objects’ trajectoriesroute goal

cross
attention

block
Q

K, V

dense 
layers

cross
attention

block
Q

K, V

dense 
layers

cross
attention

block
Q

K, V

dense 
layers

cross
attention

block
Q

K, V

dense 
layers

cross
attention

block
Q

K, V

dense 
layers

policy observation 
encoder

(result augmented by GRU with history)

policy
head

discriminator 
observation encoder

(same architecture as policy observation 
encoder, hyper-parameters may differ)

discriminator
head

AV’s own trajectories
roadgraph points

traffic light signals
route goal

other objects’ trajectories

discriminator score

action

discriminator 
input embedding

policy input 
embedding

GMM

GMM
parameters sampling

Fig. 2: System diagram of the MGAIL planning agent and its transformer-based observation encoder. “K”, “V”, and “Q”
represent the keys, values, and queries, respectively.

may be appropriate for a given state, which motivates using
a GMM to represent different modes.

D. Training Losses

For the low-level continuous motion policy, we combine
MGAIL with behavior cloning (BC). The total loss consists
of three main components: the discriminator loss LD, the
MGAIL policy loss LP , and the BC loss LBC :

L = λDLD + λPLP + λBCLBC , (1)

where λD , λP and λBC are the coefficients for each loss com-
ponent. To assess the individual impacts of the MGAIL and BC
policy losses, we can adjust the contribution of loss components
by reducing or zeroing their coefficients. The BC loss is:

LBC =− Es,a∼πE [log πθ(a|s)]. (2)

The MGAIL discriminator loss is:

LD =Es∼πθ [log Dω(s)] + Es∼πE [log(1−Dω(s))]. (3)

Here we only provide the state s to the discriminator as input
similar to [58]. When performing backpropagation, only the
discriminator parameters ω are updated. The MGAIL policy
loss is:

LP =− Es∼πθ [log Dω(s)]. (4)

During backpropagation, only the policy parameters θ are
updated for this loss term. Since our dynamics model is
differentiable, the gradients are propagated back in time and
influence the actions of the policy in earlier timesteps [7]. We
use the reparametrization trick [51] to differentiate through
the stochastic GMM policy. We minimize these losses using
Adam [59] (default parameters), a learning rate of 0.0003,
and gradient clipping (max L2 norm of 10).

E. Closed-Loop Evaluation with Interactive Agents

We evaluate the policy by having it control the AV in driving
situations recorded during data collection. To test the policy’s
ability to reproduce expert behavior, we can condition it on the
expert’s goal route, while having other road users (RUs) follow
their logged trajectories. However, an ideal AV policy should be
able to generalize to novel routes that differ from those followed
by the expert. In this situation, if other RUs simply follow
their logged trajectories, the simulation is likely to become
unrealistic due to the lack of interaction between the AV and
other RUs. As the AV diverges from its logged trajectory, RUs
should be able to diverge in response. If they do not, following a
novel route may be infeasible without causing a traffic conflict.

We therefore study the performance of our policy’s zero-shot
generalization to novel routes in the presence of an interactive
Symphony agent [9] that governs the behavior of RUs near
the AV. The Symphony agent is trained separately using a
transformer observation encoder and delta actions model using
a combination of MGAIL and BC losses, similar to the AV
policy. However, it is not goal-conditioned because its objective
is simply to drive realistically rather than achieve a specific
goal. This allows us to evaluate the goal-directed planning
agent in a realistic, closed-loop simulation that more accurately
reproduces the complex interactions of real-world driving.

F. Challenge Classifier

While evaluating on randomly sampled segments yields
an unbiased estimate of the policy’s performance, it is not
very informative of how it handles difficult scenarios. Since
driving is a safety-critical task, it is crucial to understand our
model’s failure modes in rare and challenging settings.

With this in mind, we develop a ML classifier to score
segments on their potential for producing a realistic collision
or “close call” when simulated with a planning agent. The
classifier takes as input the segment and outputs a score in [0, 1]
with higher values indicating higher likelihood of a simulated
collision or close call. We collect training data by simulating
a planning agent on logged data and asking human labelers



to identify when a realistic collision or close call occurred, if
at all. Timesteps at a ±3 second offset are positive examples
(label 1) and the remaining timesteps are negative examples
(label 0). Since collisions and close calls are rare, during
training we upsample segments that contain positive examples.
We use a fully connected multi-layer perceptron with (1024,
1024, 512, 32) hidden layers. To prevent train-test leakage,
we train this classifier on a dataset collected at least 3 months
prior to those used for the experiments below. This dataset
consists of 145k trajectories, 5.6k of which were deemed to
have realistic collisions or close calls by human labelers. The
remaining negative trajectories do not require human labels.
Using the classifier’s scores for the entire test set, we can
evaluate the policy on subsets of varying challenge levels.

V. EXPERIMENTS

A. Dataset
We collected a large sample of 10 million expert trajectories,

each a segment of 10 seconds, from a fleet of our vehicles
operating in San Francisco. During data collection, the
high-level module generates one or more routes toward a
destination, and the expert attempts to follow the best route.
These trajectories represent over 100,000 miles of expert
driving, which we split into 80% train, 10% validation, and
10% test sets. Each set contains disjoint runs, meaning that
trajectories from the same vehicle operating on the same day
exist only within one set. The trajectories are sampled at 15 Hz,
and represent ego vehicle state (e.g., pose) and exteroceptive
state from a robotic perception system (e.g., other actors’
bounding boxes, traffic light state). These trajectories are
aligned with the coordinate frame of a high-definition map [37].

B. Metrics
We measure driving performance using three key metrics,

each of which reports a success/failure indicator for the
segment. Specifically, we compute each metric per timestep,
and a failure at any timestep indicates a failure for the segment.
• Road-Route Failure: If the trajectory deviates from the goal

road-route, which is a traversal through a road network that
allows the vehicle to be in any valid lane along the route,
similar to a Google Maps style route.

• Collision: If the bounding box of the ego vehicle intersects
with a bounding box of another object.

• Off-road: If the bounding box of the ego vehicle deviates
from the drivable surface according to the map.

We combine these metrics to generate an overall success
metric for a segment (i.e., a segment is marked successful
if it follows the road-route without any collisions or off-road
driving). We report the average of each metric, and the overall
success rate for the given test set. We also report the Route
Progress Ratio, which is the ratio of the distance traveled
along the route by the policy vs. the expert, given that both
followed the route. We use this metric to ensure that the policy
makes comparable progress to the expert (higher is better).
For each experiment, we specify the number of test segments
used and report results with 95% confidence sets using the
normal approximation. Finally, in the spirit of Goodhart’s
law, none of these metrics are visible to the model in our
experiments, although loss or reward shaping for safety and to
enforce constraints is a natural area for future work [28], [60].

We simulate the policy trajectories, play back the expert tra-
jectories, and compute metrics in our simulator using bounding
box approximations for vehicle geometry. References to the
expert performance are labeled in the results tables as Playback.

C. Results

In this section, we present results of several model variants
and ablate key modeling and evaluation decisions, using BC
and vanilla MGAIL as baselines. We assess the utility of
goal route conditioning, compare the performance on logged
routes and novel routes to evaluate the policy’s generalization
capability, and highlight the importance of closed-loop
evaluation with interactive agents. We also demonstrate the
policy’s performance on more challenging test subsets, as well
as the best mixture of MGAIL and BC training losses.

1) Can the model safely follow logged routes? What is
the impact of route conditioning? In Table I we compare
six model variants to the expert on the Unbiased Test Set - an
unbiased sample of dense urban driving consisting of 82,198
segments. We initialize the simulator to the initial state of
a scene and compute the route once at the beginning of the
segment, keeping it fixed for the duration of the rollout. In
this setup, we test the model’s ability to successfully follow
the logged route, which is provided as a conditioning feature.
In other words, we ask the model to drive the same route that
the expert attempted to follow during the test segment, which
is the best route produced by the high-level route generation
module. In these experiments, the model only controls the
AV, while other vehicles follow their logged trajectories.

“BC” indicates behavior cloning loss (LBC) only, “MGAIL”
means adversarial losses (LD and LP ) only, and “MGAIL
+ BC” indicates a mixture of adversarial and BC losses, where
the relative weight of each adversarial loss to the BC loss is
2:1. The weights of both MGAIL adversarial losses are equal.

Without the route conditioning features all model variants
struggle to follow the route, even if their overall collision
and off-road rates are low. The route conditioning features
significantly improve performance of all models, with our best
MGAIL + BC variant achieving 99.6% of the expert’s success
rate. The route features also decrease off-road violations
for all variants, and they reduce collisions for the MGAIL
and MGAIL + BC variants. We also observe that for the
segments where both the policy and the expert followed the
road-route, each policy variant makes comparable or slightly
more progress along the route compared to the expert.

2) Can the model generalize to novel routes? One
danger of conditioning on logged routes is spurious correlation,
where the model may not properly learn the causal relationship
of the route. In essence, giving the model the same goal route
as the expert overestimates its ability to generalize, since other
features may correlate with the original route.

To test the model’s generalization to arbitrary routes, we cre-
ated the Route Generalization Test Set - a subset of the Unbiased
Test Set with 18,593 segments where the high-level route gen-
eration module produced multiple, distinct routes. For example,
one route may go straight through an intersection while another
route may be a right turn. This subset is more challenging than
the entire test set because segments with multiple routes are
likely to have more complex road networks and potentially more



TABLE I: Logged Route on the Unbiased Test Set.

Method
Success
rate (%)

Route Failure
rate (%)

Collision
rate (%)

Off-road
rate (%)

Route Progress
ratio (%)

Playback 98.62±0.08 1.07±0.07 0.05±0.02 0.26±0.03 100.00±0.00

BC 86.07±0.24 9.63±0.20 4.53±0.14 2.21±0.10 105.59±0.40

BC + Route 94.18±0.16 0.69±0.06 4.60±0.14 0.75±0.06 98.10±0.33

MGAIL 88.90±0.21 9.73±0.20 1.28±0.08 1.00±0.07 101.22±0.32

MGAIL + Route 97.45±0.11 0.74±0.06 1.20±0.07 0.77±0.06 100.85±0.29

MGAIL + BC 89.84±0.21 8.93±0.19 1.25±0.08 0.73±0.06 105.58±0.36

MGAIL + BC + Route 98.22±0.09 0.69±0.06 0.77±0.06 0.37±0.04 105.30±0.32

interactions with other vehicles. In Table II, we show the pol-
icy’s ability to follow novel routes, where we select a goal route
that differs from the one the expert attempted to follow (i.e.,
the logged route). In both the logged and novel route sections
of the table, the initial conditions of the segments are identical.

As in our previous experiments, the route conditioned
features are critical to overall success and route following.
For the model variants without these features, performance
drops considerably compared to following logged routes. This
shows the danger of correlated features (e.g., other vehicles’
trajectories), where the model tends to follow the logged
trajectory despite not observing it.

We notice a generalization gap for the route conditioned
variants, whose overall success rate drops by as much as
12% compared to when following the logged route. However,
the performance of the route conditioned MGAIL variants
drops less than that of BC, suggesting that MGAIL helps with
generalization. We also see that MGAIL + BC continues to
perform the best, but on novel routes the value of adding the BC
loss is within the margin of error of MGAIL’s purely adversarial
losses, in terms of the route failure and collision metrics.

As none of our metrics are included in the training
losses, these results suggest that purely associative feature
conditioning may be insufficient to achieve robust route
generalization necessary for driving that is on par with the
expert’s performance. Constrained optimization and reward
shaping may be required, or refinement through reinforcement
learning, which we leave for future work.

We also see that on novel routes, the route-conditioned
variants have higher collision and off-road rates compared
to logged routes. This is unsurprising, since the other vehicles
simply follow their logged trajectories and do not react
realistically when the policy attempts to follow the novel
route, making it challenging or infeasible for it to do so. For
the same reason, collision and off-road rates rise when the
model is route-conditioned, compared to its unconditioned
counterpart. The unconditioned variants do not explicitly
attempt to follow the novel route since they do not observe
it, so they are more likely to drive in a generally realistic way
that does not require other actors to be interactive.

3) What is the impact of closed-loop evaluation with in-
teractive agents? In order to preserve simulation realism while
the AV deviates from its logged trajectory, we introduce inter-
active agents to represent other RUs (section IV-E). We create
the Interactive Agent Test Set by assigning the top 8 RUs to the
interactive agent at the beginning of each segment based on their
proximity to the AV’s logged trajectory. We only replace RUs

that were fully observed by the AV’s perception system during
data collection and reject scenarios with fewer than 8 fully
observed RUs, yielding 4,406 segments. Due to the constraint
that 8 objects must be fully observed, this dataset overrepresents
busy or congested scenes. These scenarios may still contain
partially observed RUs, but they follow their logged trajectories.

Table III shows the zero-shot performance on novel routes
with reactive agents absent and present. Because of the rejection
sampling used to obtain denser scenes, this problem setting
is more difficult than the Unbiased Test Set presented in table
II. However, for a fixed AV policy, including reactive agents
reduces the collision rate and route failure rate, and increases the
success rate. The reduction in collision rate may be explained
by reactive agents avoiding conflicts with the AV. However,
the fact that the AV policy improves on the route failure
metrics indicates that a significant number of failures were
due to routes being infeasible without initiating an interaction
with another RU. In some cases, the reactive agents may be
responsible for collisions with the AV, but it is challenging to
determine which agent is at fault. There is still a gap between
logged route performance and zero shot generalization to
novel routes, even with reactive agents. Performance may
be improved by retraining the AV policy alongside reactive
agents, but we leave these experiments for future work.

4) What is the performance on challenging scenarios?
To better understand how the model performs in more
challenging scenarios, we evaluate it on test subsets of varying
difficulty levels. We first compute a score for each segment
in the test set using the challenge classifier (section IV-F).
We then create four subsets of increasing levels of predicted
collisions and close-calls (number of segments for logged
and novel routes in parentheses): Low (8,436 and 2,442), All
(82,198 and 18,593), Medium (7,148 and 954), and High (2,401
and 302), where All refers to the entire Unbiased Test Set and
Route Generalization Test Set for logged and novel routes.

We evaluate the model variants on each of these subsets,
both for logged routes and novel routes. As shown in Figure
3, the overall success rate of the expert and all model
variants is lower on more challenging subsets, and the model
performs worse on novel routes than on logged routes, as
expected. Variants that use MGAIL outperform BC across
all challenge levels, but most acutely on the more difficult
subsets, highlighting the importance of MGAIL in providing
robustness to harder driving situations. While MGAIL alone
performs comparably to, if not better than, MGAIL + BC on
the least challenging subset, MGAIL + BC achieves a higher
success rate on the average and more difficult subsets for both



TABLE II: Logged Route vs. Novel Route on the Route Generalization Test Set.

Method
Logged Route Novel Route

Success
rate(%)

Route Failure
rate(%)

Collision
rate (%)

Off-road
rate (%)

Success
rate(%)

Route Failure
rate(%)

Collision
rate (%)

Off-road
rate (%)

Playback 95.73±0.29 3.97±0.28 0.01±0.01 0.31±0.08 - - - -
BC 68.97±0.66 26.63±0.64 5.62±0.33 3.51±0.26 20.22±0.58 76.67±0.61 5.72±0.33 3.77±0.27
BC + Route 92.22±0.38 1.90±0.20 4.94±0.31 1.30±0.16 80.34±0.57 7.82±0.39 11.09±0.45 4.87±0.31
MGAIL 69.82±0.66 28.90±0.65 1.69±0.19 1.95±0.20 25.08±0.62 73.78±0.63 1.63±0.18 1.97±0.20
MGAIL + Route 95.91±0.28 1.86±0.19 1.31±0.16 1.22±0.16 88.11±0.47 5.80±0.34 4.78±0.31 3.16±0.25
MGAIL + BC 71.97±0.65 26.96±0.64 1.72±0.19 1.37±0.17 20.27±0.58 78.52±0.59 1.69±0.19 1.32±0.16
MGAIL + BC + Route 97.05±0.24 1.90±0.20 0.67±0.12 0.48±0.10 89.65±0.44 5.67±0.33 4.41±0.30 1.60±0.18

TABLE III: Novel Route Without vs. With the Interactive Agent on the Interactive Agent Test Set.

Method
Without Reactive Agent With Reactive Agent

Success
rate (%)

Route Failure
rate (%)

Collision
rate (%)

Off-road
rate (%)

Success
rate (%)

Route Failure
rate (%)

Collision
rate (%)

Off-road
rate (%)

BC + Route 59.07±1.45 8.66±0.83 32.29±1.38 6.63±0.73 72.38±1.32 9.02±0.84 17.22±1.11 6.69±0.74
MGAIL + Route 77.77±1.23 7.24±0.77 15.70±1.08 3.03±0.51 83.38±1.10 6.77±0.74 9.48±0.87 2.71±0.48
MGAIL + BC + Route 78.05±1.22 8.95±0.84 14.09±1.03 2.23±0.44 85.69±1.03 7.04±0.75 7.27±0.77 2.20±0.43

logged and novel routes. We observe the same patterns in
the individual metrics that make up the overall success rate.

Low All Medium High
0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Logged Route

BC + Route
MGAIL + Route
MGAIL + BC + Route
Playback

Low All Medium High

Novel Route

Fig. 3: Logged Route vs. Novel Route success rate for different
challenge levels.

5) What is the impact of closed-loop training and how
should MGAIL be prioritized vs. BC? Our results indicate
that employing closed-loop training with MGAIL and adding
the BC loss produces the highest success rates on both
logged and novel routes. This leads to the question of which
combination of adversarial and BC losses performs best.
To determine this, we evaluate different MGAIL and BC
policy loss weight mixtures and compare their success rates.
In particular, we show success rates for different relative
MGAIL loss weights (Figure 4), which set the ratio of the
MGAIL policy loss weight (λP ) to the total policy loss weight
(λP + λBC). We obtain the best results by weighting the
MGAIL loss more than the BC loss. Furthermore, for novel
routes compared to logged routes, a higher relative MGAIL
loss weight yields the highest success rate, providing additional
evidence that MGAIL is beneficial for generalization.

VI. CONCLUSION AND FUTURE WORK

We demonstrated a hierarchical model-based generative
adversarial imitation learning (MGAIL) method that performs

0.0 0.2 0.4 0.6 0.8 1.0
Relative MGAIL Loss Weights

0.94

0.95

0.96

0.97

0.98
Su

cc
es

s R
at

e 
on

 L
og

ge
d 

Ro
ut

es

MGAIL + BC Loss Mixture

Logged Routes
Novel Routes 0.80

0.82

0.84

0.86

0.88

0.90

Su
cc

es
s R

at
e 

on
 N

ov
el

 R
ou

te
s

Fig. 4: Success rates of route-conditioned models on logged
and novel routes for different relative MGAIL loss weights.

similarly to an expert demonstrator on a large unbiased sample
of urban driving on key planning metrics. We highlighted the im-
portance of closed-loop training with MGAIL, as well as closed-
loop evaluation with interactive agents in order to more accu-
rately assess the planning agent’s ability to generalize. Although
aggregate performance is similar to the expert, we showed that
there still remains a gap on generalization to novel routes, as
well as performance on challenging and rare scenarios. This
suggests further improvements must focus on this “long-tail” of
performance. Refinement through reinforcement learning and re-
ward shaping with safety constraints, or active curriculum learn-
ing on specific data subsets are two promising directions for fu-
ture work. In addition, training the planning agent directly along-
side pre-trained interactive agents may improve the policy’s
ability to interact with and influence other actors, facilitating bet-
ter generalization to novel goals. Incorporating this policy into
a complete AV platform to drive real-world vehicles is a natural
next step, which will likely necessitate dynamic rerouting and
adapting our action model to include realistic vehicle dynamics.



ACKNOWLEDGMENT

We thank Rami Al-Rfou, Ury Zhilinsky, Ben Sapp, James
Philbin, and Jonathan Bingham for their helpful comments,
and Aleksei Timofeev for his contributions to model-based
imitation learning during his employment at Waymo.

REFERENCES

[1] W. B. Knox, A. Allievi, H. Banzhaf, F. Schmitt, and P. Stone, “Reward
(mis)design for autonomous driving,” CoRR, vol. abs/2104.13906, 2021.
[Online]. Available: https://arxiv.org/abs/2104.13906

[2] D. A. Pomerleau, “ALVINN: an autonomous land vehicle in a neural
network,” in Advances in neural information processing systems 1, 1989.

[3] M. Bojarski et al., “End to end learning for self-driving cars,” CoRR,
2016. [Online]. Available: http://arxiv.org/abs/1604.07316

[4] M. Bansal et al., “Chauffeurnet: Learning to drive by imitating
the best and synthesizing the worst,” 2018. [Online]. Available:
http://arxiv.org/abs/1812.03079

[5] S. Ross et al., “A reduction of imitation learning and structured
prediction to no-regret online learning,” in AI Stats, 2011.

[6] S. Levine, A. Kumar, G. Tucker, and J. Fu, “Offline reinforcement
learning: Tutorial, review, and perspectives on open problems,” May 2020.

[7] N. Baram, O. Anschel, I. Caspi, and S. Mannor, “End-to-end
differentiable adversarial imitation learning,” in International Conference
on Machine Learning. PMLR, 2017, pp. 390–399.

[8] G. Swamy, S. Choudhury, J. A. Bagnell, and Z. S. Wu, “Of moments
and matching: A game-theoretic framework for closing the imitation
gap,” 2021.

[9] M. Igl, D. Kim, A. Kuefler, P. Mougin, P. Shah, K. Shiarlis, D. Anguelov,
M. Palatucci, B. White, and S. Whiteson, “Symphony: Learning realistic
and diverse agents for autonomous driving simulation,” in Robotics and
Automation (ICRA), 2022 IEEE International Conference on, 2022.

[10] C. R. Garrett, R. Chitnis, R. Holladay, B. Kim, T. Silver, L. P. Kaelbling,
and T. Lozano-Pérez, “Integrated task and motion planning,” 2020.

[11] A. Mandlekar et al., “Iris: Implicit reinforcement without interaction at
scale for learning control from offline robot manipulation data,” in 2020
IEEE International Conference on Robotics and Automation (ICRA),
2020, pp. 4414–4420.

[12] Y. Ding, C. Florensa, M. Phielipp, and P. Abbeel, “Goal-conditioned
imitation learning,” June 2019.

[13] P. de Haan, D. Jayaraman, and S. Levine, “Causal confusion in imitation
learning,” 2019.

[14] A. Jain, L. D. Pero, H. Grimmett, and P. Ondruska, “Autonomy 2.0:
Why is self-driving always 5 years away?” 2021.

[15] A. Y. Ng and S. Russell, “Algorithms for inverse reinforcement learning,”
in in Proc. 17th International Conf. on Machine Learning. Morgan
Kaufmann, 2000, pp. 663–670.

[16] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse
reinforcement learning,” in ICML, 2004.

[17] F. Behbahani, K. Shiarlis, X. Chen, V. Kurin, S. Kasewa, C. Stirbu,
J. Gomes, S. Paul, F. A. Oliehoek, J. Messias, and S. Whiteson,
“Learning from demonstration in the wild,” Nov. 2018.

[18] B. D. Ziebart, A. L. Maas, J. A. Bagnell, and A. K. Dey, “Maximum
entropy inverse reinforcement learning,” in AAAI, vol. 8, 2008, pp.
1433–1438.

[19] C. Finn, S. Levine, and P. Abbeel, “Guided cost learning: Deep inverse
optimal control via policy optimization,” in International Conference
on Machine Learning, 2016, pp. 49–58.

[20] N. D. Ratliff, J. A. Bagnell, and M. A. Zinkevich, “Maximum margin
planning,” in Proceedings of the 23rd international conference on
Machine learning, 2006, pp. 729–736.

[21] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey
of robot learning from demonstration,” Rob. Auton. Syst., 2009.

[22] A. Hussein, M. M. Gaber, E. Elyan, and C. Jayne, “Imitation learning:
A survey of learning methods,” ACM Comput. Surv., vol. 50, no. 2,
apr 2017. [Online]. Available: https://doi.org/10.1145/3054912

[23] P. A. Ortega et al., “Shaking the foundations: delusions in sequence
models for interaction and control,” 2021.

[24] J. Ho and S. Ermon, “Generative adversarial imitation learning,” in
Advances in Neural Information Processing Systems, vol. 29, 2016.

[25] J. Fu, K. Luo, and S. Levine, “Learning robust rewards with adversarial
inverse reinforcement learning,” Oct. 2017.

[26] Y. Li, J. Song, and S. Ermon, “Infogail: Interpretable imitation learning
from visual demonstrations,” in Advances in Neural Information
Processing Systems, 2017, pp. 3812–3822.

[27] F. Codevilla, M. Müller, A. López, V. Koltun, and A. Dosovitskiy,
“End-to-end driving via conditional imitation learning,” 2018.

[28] M. Vitelli et al., “Safetynet: Safe planning for real-world self-driving
vehicles using machine-learned policies,” 2021.

[29] D. Chen, B. Zhou, V. Koltun, and P. Krähenbühl, “Learning by cheating,”
2019.

[30] A. Kendall, J. Hawke, D. Janz, P. Mazur, D. Reda, J.-M. Allen, V.-D.
Lam, A. Bewley, and A. Shah, “Learning to drive in a day,” July 2018.

[31] B. Paden, M. Cap, S. Z. Yong, D. Yershov, and E. Frazzoli, “A survey of
motion planning and control techniques for self-driving urban vehicles,”
Apr. 2016.

[32] B. Varadarajan et al., “Multipath++: Efficient information fusion and
trajectory aggregation for behavior prediction,” 2021.

[33] N. Rhinehart, R. McAllister, K. Kitani, and S. Levine, “Precog:
Prediction conditioned on goals in visual multi-agent settings,” 2019.

[34] N. Rhinehart, R. McAllister, and S. Levine, “Deep imitative models
for flexible inference, planning, and control,” 2019.

[35] J. Liu, W. Zeng, R. Urtasun, and E. Yumer, “Deep structured reactive
planning,” 2021.

[36] S. Casas, A. Sadat, and R. Urtasun, “Mp3: A unified model to map,
perceive, predict and plan,” 2021.

[37] S. Ettinger et al., “Large scale interactive motion forecasting for
autonomous driving : The waymo open motion dataset,” 2021.

[38] W. Zeng, W. Luo, S. Suo, A. Sadat, B. Yang, S. Casas, and R. Urtasun,
“End-to-end interpretable neural motion planner,” 2021.

[39] J. Ngiam et al., “Scene transformer: A unified architecture for predicting
multiple agent trajectories,” 2021.

[40] S. Suo, S. Regalado, S. Casas, and R. Urtasun, “Trafficsim: Learning
to simulate realistic multi-agent behaviors,” 2021.

[41] H. Caesar et al., “nuplan: A closed-loop ml-based planning
benchmark for autonomous vehicles,” 2021. [Online]. Available:
https://arxiv.org/abs/2106.11810

[42] M. Zhou et al., “Smarts: Scalable multi-agent reinforcement
learning training school for autonomous driving,” arXiv preprint
arXiv:2010.09776, 2020.

[43] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “CARLA:
An open urban driving simulator,” arXiv preprint arXiv:1711. 03938,
2017.

[44] M. O’Kelly, A. Sinha, H. Namkoong, J. Duchi, and R. Tedrake, “Scalable
end-to-end autonomous vehicle testing via rare-event simulation,” 2019.

[45] X. Pan, Y. You, Z. Wang, and C. Lu, “Virtual to real reinforcement
learning for autonomous driving,” 2017.

[46] M. Müller, A. Dosovitskiy, B. Ghanem, and V. Koltun, “Driving policy
transfer via modularity and abstraction,” 2018.

[47] Y. Liu, J. Zhang, L. Fang, Q. Jiang, and B. Zhou, “Multimodal motion
prediction with stacked transformers,” 2021.

[48] A. Jaegle et al., “Perceiver: General perception with iterative attention,”
in ICML, 2021.

[49] M. P. Deisenroth et al., “A survey on policy search for robotics,”
Foundations and trends in Robotics, 2013.

[50] D. Michie, M. Bain, and J. Hayes-Miches, “Cognitive models from sub-
cognitive skills,” IEE control engineering series, vol. 44, pp. 71–99, 1990.

[51] M. Xu et al., “Variance reduction properties of the reparameterization
trick,” in AI Stats, 2019.

[52] A. Goldberg and C. Harrelson, “Computing the shortest path: A* search
meets graph theory,” Symposium on Discrete Algorithms, 2003.

[53] A. Vaswani et al., “Attention is all you need,” Advances in neural
information processing systems, 2017.

[54] J. Mercat et al., “Multi-head attention for multi-modal joint vehicle
motion forecasting,” in ICRA, 2020.

[55] J. Lee et al., “Set transformer: A framework for attention-based
permutation-invariant neural networks,” in ICML, 2019.

[56] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” arXiv
preprint arXiv:1607.06450, 2016.

[57] K. Cho, B. Van Merriënboer, D. Bahdanau, and Y. Bengio, “On the
properties of neural machine translation: Encoder-decoder approaches,”
arXiv preprint arXiv:1409.1259, 2014.

[58] F. Torabi, G. Warnell, and P. Stone, “Generative adversarial imitation
from observation,” arXiv preprint arXiv:1807.06158, 2018.

[59] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings, Y. Bengio and Y. LeCun, Eds., 2015. [Online]. Available:
http://arxiv.org/abs/1412.6980

[60] D. Amodei, C. Olah, J. Steinhardt, P. Christiano, J. Schulman, and
D. Mané, “Concrete problems in ai safety,” 2016.

https://arxiv.org/abs/2104.13906
http://arxiv.org/abs/1604.07316
http://arxiv.org/abs/1812.03079
https://doi.org/10.1145/3054912
https://arxiv.org/abs/2106.11810
http://arxiv.org/abs/1412.6980

	I INTRODUCTION
	II Related Work
	III Background
	III-A Markov Decision Processes
	III-B Model-based Generative Adversarial Imitation Learning

	IV Method
	IV-A Route Generation
	IV-B Observation Encoding
	IV-C Delta Actions Model
	IV-D Training Losses
	IV-E Closed-Loop Evaluation with Interactive Agents
	IV-F Challenge Classifier

	V Experiments
	V-A Dataset
	V-B Metrics
	V-C Results
	V-C.1 Can the model safely follow logged routes? What is the impact of route conditioning?
	V-C.2 Can the model generalize to novel routes?
	V-C.3 What is the impact of closed-loop evaluation with interactive agents?
	V-C.4 What is the performance on challenging scenarios?
	V-C.5 What is the impact of closed-loop training and how should MGAIL be prioritized vs. BC?


	VI CONCLUSION AND FUTURE WORK
	References

