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Abstract— Robowflex is a software library for robot motion
planning in industrial and research applications, leveraging
the popular MOVEIT library and Robot Operating System
(ROS) middleware. Robowflex provides an augmented API for
crafting and manipulating motion planning queries within a
single program, making motion planning with MOVEIT easy.
Robowflex’s high-level API simplifies many common use-cases
while still providing low-level access to the MOVEIT library
when needed. Robowflex is particularly useful for 1) developing
new motion planners, 2) evaluating motion planners, and 3)
complex problems that use motion planning as a subroutine
(e.g., task and motion planning). Robowflex also provides
visualization capabilities, integrations to other robotics libraries
(e.g., DART and Tesseract), and is complementary to other
robotics packages. With our library, the user does not need
to be an expert at ROS or MOVEIT to set up motion planning
queries, extract information from results, and directly interface
with a variety of software components. We demonstrate its
efficacy through several example use-cases.

I. INTRODUCTION

A core component of any autonomous system is motion
planning [1]–[3], which finds feasible motions that satisfy
task requirements (e.g., reaching the goal, satisfying some
motion constraint, etc.). There are many motion planning
software system for general manipulators; a popular library
for motion planning is MOVEIT [4], which is built on top of
the ubiquitous Robot Operating System (ROS) framework [5].
MOVEIT has four key advantages: it is widely adopted in
industry and research, it is easy to setup for new robots and
over 150 robots are already available [6], it is easy to integrate
with a ROS system, and it has a large and vibrant open source
community. However, due to MOVEIT’s massive scope and
abstract architecture, many tasks are challenging for both
engineers and researchers. For example, it can be difficult to
evaluate and develop planning algorithms, extend a planner’s
functionality, extract low-level information from planners,
or use a planner within the scope of a broader planning
algorithm, e.g., task and motion planning [7].

This paper introduces Robowflex, a software library de-
signed to simplify the use of MOVEIT for industrial and
research applications of motion planning. Robowflex is a high-
level API to easily manipulate robots, collision environments,
planning requests, and motion planners. Robowflex “wraps”
the underlying MOVEIT library within a C++ interface that
provides many utilities that simplify the use and evaluation of
motion planners. Moreover, Robowflex provides direct access
to the implementation (that is, not through ROS messaging).
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The key advantage of this approach is the ability to 1) develop
self-contained scripts to evaluate motion planning, 2) retain
the capability of easy system integration through ROS when
necessary, and 3) implement integrated algorithms that use
motion planning extensively (e.g., task and motion planning).
Robowflex also integrates other libraries, e.g., the Open Mo-
tion Planning Library (OMPL) [8], DART [9], ROS Industrial’s
Tesseract [10], and visualization with Blender [11]. For
example, these integrations enable comparison of MOVEIT’s
RRTConnect against Tesseract’s TrajOpt on the same scene
in a single, short script. We demonstrate the usefulness
of Robowflex in several example use-cases, such as bench-
marking for motion planning experiments and an industry-
focused use-case of evaluating Robonaut 2 walking from
NASA. Robowflex is open-source1, documented online2, and
has already been used in a number of publications [12]–[22].

II. BACKGROUND

Robowflex is built around MOVEIT [4], a widely-used3

software library designed to provide motion planning to
ROS [5] enabled robots. MOVEIT has been successfully
used with many robots, such as the PR2 [23], Fetch [24],
and NASA’s Robonaut 2 [25]. MOVEIT also provides a
setup assistant to easily configure new robots for motion
planning [6]. MOVEIT provides default motion planning
plugins such as sampling-based motion planning [1]–[3]
through OMPL [8] and trajectory optimization (e.g., [26],
[27]).

Typically4, users interact with MOVEIT through the pro-
vided MOVEGROUP program, which leverages MOVEIT’s
plugin-based architecture to provide a flexible, configurable
motion planning service. While convenient for basic motion
planning, MOVEGROUP falls short when used outside this
scope. For more advanced applications of motion planning,
such as profiling or evaluating detailed aspects of a motion
planner, changing parameters or components of a planner, or
extracting more information from planners, it is insufficient.
To edit or improve the capabilities of MOVEIT, users must
either edit or create plugin classes, which can be complicated
for those who are unfamiliar with MOVEIT’s internal struc-
ture. Moreover, if users just want to use MOVEIT as a library,
there are many parameters to load and configure (e.g., URDF,
SRDF, joint limits, kinematics plugins, planner configurations,
etc.). Robowflex provides a MOVEGROUP-like interface as a
high-level API, while also providing full access to underlying

1https://github.com/KavrakiLab/robowflex
2https://kavrakilab.github.io/robowflex/
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data, enabling access to these underlying structures to either
modify or inspect5.

Robowflex aims to support motion planning research, such
as developing new sampling-based algorithms [1]–[3]. A
popular motion planning library used by many frameworks is
the Open Motion Planning Library (OMPL) [8], and support of
OMPL is paramount for many benchmarking applications [28].
However, augmenting or customizing OMPL is difficult for real
robotic systems, due to the difficulty of accessing the internals
of the library through interfaces such as MOVEIT. Robowflex
provides low-level access to OMPL, which is essential for rapid
development and testing of novel motion planning techniques.
Moreover, it is possible to develop novel planners within the
Robowflex framework that are not tied to MOVEIT or OMPL.

Additionally, Robowflex was designed to support algorithms
that use motion planning as a subroutine. For example,
motion planning is used within task and motion planning
(TAMP), e.g., [7], [29], [30]. TAMP combines AI task planning
with motion planning, generating a sequence of valid actions
the robot should accomplish, each requiring a motion plan.
There has been work in integrating TAMP-like approaches
in MOVEIT, e.g., [31], however this approach only finds
motions for predetermined sequences of actions. Critically,
TAMP requires both evaluating many motion plans to validate
actions as well as using feedback from motion planning to
inform task planning. These requirements involve a deeper
introspection into motion planning, which is at odds with the
design of MOVEGROUP.

Beyond MOVEIT, there are many excellent motion planning
frameworks that are compatible with ROS through wrappers.
OPENRAVE [32] is a fully featured motion planning frame-
work. However, it is not actively developed and does not have
the level of community support available in MOVEIT and
ROS. Similarly, KLAMP’T [33] is an all-in-one toolbox that
specializes in handling contact, providing its own environment
with ROS adapters. The Robotics Library [34] is an all-in-one
library for real-time planning, but lacks the ability to connect
to the broader robotics ecosystem through ROS. As stated
above, the benefit of using MOVEIT over the above libraries
is that MOVEIT is easy to integrate with new robots, easy
to integrate with ROS, and is actively developed with a large
community.

III. THE Robowflex LIBRARY

Robowflex is intended for use in research, education, and
industry. Robowflex is informed by the following design
goals.

1) Clarity of Interface: Provide an easy to understand
interface that meshes with intuitive understanding of

3https://moveit.ros.org/moveit/ros/2020/07/24/
moveit-research-roundup.html

4https://ros-planning.github.io/moveit_tutorials/
5Note that MoveItCPP (https://ros-planning.github.io/

moveit_tutorials/doc/moveit_cpp/moveitcpp_tutorial.
html) and https://github.com/PickNikRobotics/moveit_
boilerplate provide simple interfaces to load MOVEIT structures
internally, but lack the abstraction, isolation, IO support, and support
modules provided by Robowflex.

the concepts involved in motion planning.
2) Minimize ROS: Encapsulate ROS as much as possible

such that it is easy to write independent programs.
3) Leverage MOVEIT’s Ubiquity: By being based on

MOVEIT, many robots are supported in Robowflex out
of the box. The use of MOVEIT also enables Robowflex
scripts to effortlessly connect to the greater ROS system.

4) Unrestricted Access and Integration: While providing
a high-level API, give access to underlying libraries
so users are not hampered by Robowflex in any way.
A key advantage Robowflex provides is that all the
underlying data structures used in MOVEIT, OMPL, or
other libraries can be accessed and modified. Robowflex
provides a common interface and adapters to convert
between the representations used by each library.

5) Consistency Across Versions: Robowflex provides
adapters such that Robowflex code is not tied to a
specific version of ROS or MOVEIT. Robowflex supports
all versions from ROS Indigo to ROS Noetic.

At a high-level, Robowflex provides wrappers around core
MOVEIT concepts so that it is easy to create and manage
robots, scenes, and planners within a script. The primary
building blocks of Robowflex are the robot’s kinematics,
the collision environment, and the motion planner. Although
other facades to MOVEIT exist, Robowflex provides a higher
level of abstraction that allows users who are unfamiliar
with MOVEIT to still achieve complex programming tasks.
Moreover, these core features are supported by a suite of
utilities, such as input-and-output helpers for a variety of
formats, benchmarking tools, visualization within RViz, and
more. Beyond the core library are auxiliary modules for other
robotics libraries, and support seamless integration between
Robowflex and native formats.

A. Input and Output

Many complicated robotic problems require large amounts
of file input and output (IO), e.g., for configuration, loading
problems and scenes, and more. Robowflex provides many
IO helpers for common file-types used in robotics, such as:

a) Files and ROS Packages: It is common to access files
that exist in ROS packages that are specified with package
URIs—Robowflex provides helper functions to resolve file
paths and to either open or create said file.

b) XML Files: Many configuration files in robotics are
written in Extensible Markup Language (XML) or in the
macro XML language XACRO. Robowflex provides helper
functions to load these files (including unprocessed XACRO)
as well as inject changes on the fly.

c) YAML Files: It is common to save and load ROS
messages as YAML files. However, there is no easy way to
load or save ROS messages in YAML in C++. Robowflex
has broad YAML support, and can load YAML from ROS
Python and ROS topics. Many Robowflex classes can load
ROS messages, e.g., motion planning requests, robot states,
and more. This makes it easy to load problems using YAML
files.

https://moveit.ros.org/moveit/ros/2020/07/24/moveit-research-roundup.html
https://moveit.ros.org/moveit/ros/2020/07/24/moveit-research-roundup.html
https://ros-planning.github.io/moveit_tutorials/
https://ros-planning.github.io/moveit_tutorials/doc/moveit_cpp/moveitcpp_tutorial.html
https://ros-planning.github.io/moveit_tutorials/doc/moveit_cpp/moveitcpp_tutorial.html
https://ros-planning.github.io/moveit_tutorials/doc/moveit_cpp/moveitcpp_tutorial.html
https://github.com/PickNikRobotics/moveit_boilerplate
https://github.com/PickNikRobotics/moveit_boilerplate


1 namespace rx = robowflex;
2

3 auto wam7 = //
4 std::make_shared<rx::Robot>("wam7");
5 wam7→initialize( //
6 "package://barrett_model/robots/

wam_7dof_wam_bhand.urdf.xacro", // urdf
7 "package://barrett_wam_moveit_config/config/

wam7_hand.srdf", // srdf
8 "package://barrett_wam_moveit_config/config/

joint_limits.yaml", // joint limits
9 "package://barrett_wam_moveit_config/config/

kinematics.yaml" // kinematics
10 );

Fig. 1. Loading a robot (here, a Barrett WAM® arm) in Robowflex.

d) ROS Parameters: Many ROS programs rely on the
parameter server, a distributed key-value store available in
ROS. As a result, it is sometimes difficult to have multiple
programs running simultaneously that require similar parame-
ters, leading to issues with managing namespaces. By default,
Robowflex uses an anonymous namespace so that many in-
stances of Robowflex code can simultaneously run. Moreover,
there is support to load YAML files onto the parameter server,
which is typically only available through ROS launch, making
it easy to have scripts load their parameters.

There is also support for ROS bag files, HDF5 files, various
transformation representations, and others.

B. Robot Kinematics

Commonly, the kinematics and geometry of a robot are
described using the Universal Robot Description Format
(URDF). Moreover, MOVEIT requires a Semantic Robot
Description Format (SRDF) file, which describes additional
properties such as what links are allowed to collide with each
other, what groups of joints should be used for planning,
and what parts of the robot are the end-effector. There are
also additional configuration files MOVEIT requires, such as
YAML files that describe kinematics plugins and additional
joint limits. Typically, most robots are configured through
the MOVEIT setup assistant wizard which generates a ROS
package containing all necessary configuration files. Part
of this configuration are complicated ROS launch files that
contain parameters necessary to start MOVEGROUP, and in
order to modify the behavior of MOVEIT, both the program
and launch file need to be modified.

Robowflex takes care of all the necessary legwork to load
and configure a robot without the need for a launch file.
Moreover, Robowflex enables loading multiple robots within
the same program, and duplicating robots if necessary—with
default MOVEIT, this process can become convoluted. An
example of loading a robot is shown in Figure 1.

C. Collision Environment

The robot can be used to initialize a planning scene, which
contains the collision geometry of the environment. The scene
can be used for adding and moving collision objects and
computing collisions and distance to collision. For example,

scenes can be loaded from YAML files, which encode full
planning scenes:

1 auto scene = std::make_shared<rx::Scene>(wam7);
2 scene→fromYAMLFile( //
3 "package://robowflex_library/yaml/scene.yml");

Scenes also support adding collision objects programati-
cally:

1 auto scene = std::make_shared<rx::Scene>(wam7);
2 auto geometry = //
3 rx::Geometry::makeCylinder(0.025, 0.1);
4 auto pose = //
5 rx::TF::createPoseXYZ( //
6 -0.268, -0.826, 1.313, // position
7 0., 0., 0.)); // XYZ Euler
8 scene→updateCollisionObject( //
9 "cylinder", geometry, pose);

Note that many scenes can be loaded simultaneously, can be
copied and modified, and saved and loaded to and from disk.

D. Motion Planner

MOVEIT uses a plugin-based system to load motion
planning pipelines6, which consist of adapters that filter and
process both the planning request and output trajectory found
by a motion planner. Robowflex provides an implementation
to access any pipeline, and helpers for common plugins such
as the default OMPL planning pipeline plugin. To specify a
planning request, a helper class is provided which simplifies
the design of complex goal and path constraints, as well
as setting start and goal states. This helper class can also
save and load motion planning requests to YAML files, for
later evaluation or setup. Many planners can be loaded
simultaneously and used in tandem. Moreover, Robowflex
supports inserting new planners, either through MOVEIT’s
API or its own.

E. Example Script

Figure 2 shows a simple script for motion planning with
Robowflex using the Fetch robot. The robot is loaded on
line 2—Robowflex comes with some preconfigured robots. An
empty planning scene for the robot is created on line 6. The
standard OMPL planner for the Fetch is created and initialized
in lines 9 to 12. A simple request, which unfurls the Fetch’s
arm from the stow position to an extended position, is created
in lines 15 to 31. Finally, motion planning occurs on line 34.
A version of this script is available in the repository7.

This simple script is akin to basic planning using the
MOVEIT’s MoveGroupInterface class8. The critical
difference is that, rather than having to use roslaunch
to run an instance of the MOVEGROUP program and then
communicate plans over ROS messages, all of MOVEIT’s

6https://ros-planning.github.io/moveit_tutorials/
doc/motion_planning_pipeline/motion_planning_
pipeline_tutorial.html

7https://github.com/KavrakiLab/robowflex/blob/
master/robowflex_library/scripts/fetch_test.cpp

8https://ros-planning.github.io/moveit_tutorials/
doc/move_group_interface/move_group_interface_
tutorial.html

https://ros-planning.github.io/moveit_tutorials/doc/motion_planning_pipeline/motion_planning_pipeline_tutorial.html
https://ros-planning.github.io/moveit_tutorials/doc/motion_planning_pipeline/motion_planning_pipeline_tutorial.html
https://ros-planning.github.io/moveit_tutorials/doc/motion_planning_pipeline/motion_planning_pipeline_tutorial.html
https://github.com/KavrakiLab/robowflex/blob/master/robowflex_library/scripts/fetch_test.cpp
https://github.com/KavrakiLab/robowflex/blob/master/robowflex_library/scripts/fetch_test.cpp
https://ros-planning.github.io/moveit_tutorials/doc/move_group_interface/move_group_interface_tutorial.html
https://ros-planning.github.io/moveit_tutorials/doc/move_group_interface/move_group_interface_tutorial.html
https://ros-planning.github.io/moveit_tutorials/doc/move_group_interface/move_group_interface_tutorial.html


1 // Create a default Fetch robot.
2 auto fetch = std::make_shared<rx::FetchRobot>();
3 fetch→initialize();
4

5 // Create an empty scene.
6 auto scene = std::make_shared<rx::Scene>(fetch);
7

8 // Create the default planner for the Fetch.
9 auto planner = //

10 std::make_shared< //
11 rx::OMPL::FetchOMPLPipelinePlanner>(fetch);
12 planner→initialize();
13

14 // Create a motion planning request.
15 rx::MotionRequestBuilder request( //
16 planner, "arm_with_torso");
17

18 // Set the start state.
19 fetch→setGroupState("arm_with_torso",
20 {0.05, 1.32, 1.40, -0.2, 1.72, 0, 1.66, 0});
21 request.setStartConfiguration( //
22 fetch→getScratchState());
23

24 // Set the goal state.
25 fetch→setGroupState("arm_with_torso",
26 {0.27, 0.5, 1.28, -2.27, 2.24, -2.77, 1, -2});
27 request.setGoalConfiguration( //
28 fetch→getScratchState());
29

30 // Set the desired planner.
31 request.setConfig("RRTConnect");
32

33 // Do motion planning!
34 auto result = planner→plan( //
35 scene, request.getRequest());

Fig. 2. A code snippet demonstrating basic motion planning on a Fetch
robot [24], from a “stow” position of the arm to an “unfurled” position. Note
this does not use any ROS messages, similar to the internals of MOVEIT’s
MOVEGROUP program.

internal structures are loaded in the Robowflex program9.
Providing access to these structures within a single program
is a key benefit of Robowflex. The scripting paradigm offered
by Robowflex is more amenable to rapid testing and scripting
than MOVEGROUP, which is designed primarily to be a “live”
component of a ROS system extant in some world.

F. Integrations

Robowflex also provides a number of auxiliary modules
that enable compatibility with different robotics libraries.

a) OMPL Integration: The Robowflex OMPL module
provides deeper access for motion planning to the default
MOVEIT OMPL motion planning plugin. This includes ex-
tracting the underlying OMPL setup for a given planning
problem, which enables users to modify the behavior of OMPL
planning without having to recompile either the MOVEIT
planning plugin or OMPL. An example script for how to
extract and customize the underlying OMPL planner used by
MOVEIT is shown in Figure 3. With Robowflex, it easy to
use a custom planner or feature in OMPL, as compared to

9See https://ros-planning.github.io/moveit_
tutorials/doc/motion_planning_api/motion_planning_
api_tutorial.html for how this could be done without Robowflex.
Also, see footnote 5 for other helper classes that can set up planning
without Robowflex.

1 // Create an OMPL planner
2 auto planner = //
3 std::make_shared< //
4 rx::OMPL::OMPLInterfacePlanner>(fetch);
5

6 // Extract underlying OMPL structures
7 auto context = //
8 planner→getPlanningContext(scene, request);
9 auto ss = context→getOMPLSimpleSetup();

10

11 // Customize OMPL planner
12 ss→setPlanner(...);
13 auto space = ss→getStateSpace();
14 space→setStateSamplerAllocator(...);

Fig. 3. A code snippet demonstrating how to use the Robowflex OMPL
integration to access internal OMPL features.

integrating a new planner into MOVEIT (e.g., this was done
in [12]–[14]).

b) DART Integration: The Robowflex DART module
provides an alternative to MOVEIT, by modeling robots and
scenes in the DART [9] framework with bidirectional conver-
sion to/from MOVEIT constructs. The module provides an
implementation of motion planning through OMPL, including
motion planning with manifold constraints [15]. Moreover,
this module provides an easy way to plan for multi-robot
systems, allowing arbitrary composition of MOVEIT enabled
robots. This capability was used by the multi-robot task-
motion planning framework discussed in subsection IV-B.
An example script demonstrating the DART module is given
shown in Figure 4.

c) Tesseract Integration: The Robowflex Tesseract mod-
ule provides access to the ROS Industrial Consortium’s
planning framework [10], which includes an implementation
of the TrajOpt planner [27]. Similar to the DART module,
methods for converting data (e.g., scenes and plans) back and
forth are provided. Robowflex’s Tesseract module was used
in [16] to access and modify TrajOpt for comparison against
OMPL planners.

d) MOVEGROUP Integration: The Robowflex MOVE-
GROUP module provides an easy connection to a live instance
of MOVEIT’s MOVEGROUP. This connection can be used
to obtain the current collision environment, publish plans to
be executed, and generally synchronize information between
MOVEGROUP and a Robowflex script.

e) Visualization with Blender: The Robowflex visu-
alization module makes it easy to render robots within
Blender [11], a tool for 3D modeling and animation. An
example rendered still is shown in Figure 5. Moreover, it
is easy to animate motion plans generated by Robowflex to
create appealing visualizations and videos10. This module has
also been used to generate figures in [12], [13], [15].

IV. EXAMPLE USE-CASES

Crucial to the particular use-cases listed here as well as
many others, Robowflex simplifies the pipeline of creating,

10https://kavrakilab.github.io/robowflex/md_
_home_runner_work_robowflex_robowflex_robowflex_
visualization_README.html

https://ros-planning.github.io/moveit_tutorials/doc/motion_planning_api/motion_planning_api_tutorial.html
https://ros-planning.github.io/moveit_tutorials/doc/motion_planning_api/motion_planning_api_tutorial.html
https://ros-planning.github.io/moveit_tutorials/doc/motion_planning_api/motion_planning_api_tutorial.html
https://kavrakilab.github.io/robowflex/md__home_runner_work_robowflex_robowflex_robowflex_visualization_README.html
https://kavrakilab.github.io/robowflex/md__home_runner_work_robowflex_robowflex_robowflex_visualization_README.html
https://kavrakilab.github.io/robowflex/md__home_runner_work_robowflex_robowflex_robowflex_visualization_README.html


1 namespace rd = robowflex::darts;
2

3 // Convert MoveIt robot to Dart
4 auto fetch1 = std::make_shared<rd::Robot>(fetch);
5

6 // Copy the Fetch for multi-robot planning
7 auto fetch2 = fetch1→cloneRobot("other");
8 fetch2→setDof(4, 1); // Offset on X-axis
9

10 // Combine kinematic structures into a world
11 auto world = std::make_shared<rd::World>();
12 world→addRobot(fetch1);
13 world→addRobot(fetch2);
14

15 // Plan using planning groups from both robots
16 rd::PlanBuilder builder(world);
17 builder.addGroup("fetch", "arm_with_torso");
18 builder.addGroup("other", "arm_with_torso");
19

20 // Set start configuration for both robots
21 builder.setStartConfiguration({ //
22 0.05, 1.32, 1.4, -0.2, 1.72, 0, 1.66, 0,
23 0.05, 1.32, 1.4, -0.2, 1.72, 0, 1.66, 0
24 });
25 builder.initialize();
26

27 // Set goal configuration and setup planning
28 auto goal = builder.setGoalConfiguration({ //
29 0.27, 0.5, 1.28, -2.27, 2.24, -2.77, 1, -2,
30 0.27, 0.5, 1.28, -2.27, 2.24, -2.77, 1, -2
31 });
32 builder.setGoal(goal);
33 builder.setup();
34

35 // Solve using OMPL
36 auto result = builder.ss→solve(30.0);

Fig. 4. A code snippet demonstrating Robowflex’s DART module for multi-
robot motion planning. Here, the Fetch robot that was loaded in the prior
script (Figure 2) is converted to DART and copied, created a multi-robot
system. A plan is generated in the composite space of both robots.

editing, inspecting, saving, and loading motion planning
problems (both collision environments and motion planning
requests). These capabilities are essential for many research
and industrial tasks that rely on reproducibility, experimen-
tation, and debugging.

A. Benchmarking Motion Planners

A core use-case for Robowflex is benchmarking mo-
tion planners in a variety of planning scenes. The task
of evaluating motion planners on realistic robots in many
environments, extracting detailed planner information, and
collating all collected data is difficult. Robowflex provides
a benchmarking tool that enables easy benchmarking of
different planners, scenes, and requests. The tool enables
configurable benchmark output in a number of formats. For
example, a default format provided is the OMPL benchmark
log output, so output is compatible with the standard OMPL
benchmarking suite and tools [28]. In addition, recall that
Robowflex supports loading both environments and requests
from disk, making it easy to craft datasets for evaluation.
As new planners are developed, targeted benchmarking can
be done for many planner properties, a contribution to the
motion planning community due to the difficulty of setting up
consistent benchmarking criteria. For example, the following

Fig. 5. A Fetch robot [24] and planning scene rendered in Blender using
Robowflex’s visualization module.

Fig. 6. Example benchmarking results from 200 runs of RRT* [35], an
asymptotically optimal algorithm, on the Fetch. The “best cost” path (here,
shortest path length) is displayed over time. This progress property of the
planner is captured by Robowflex’s benchmarking, using the planner from
the OMPL module. This plot was generated with Planner Arena12 [28], which
accepts OMPL benchmark output for interactive plotting.

could be added after line 31 of Figure 2 to benchmark the
motion planning request:

1 rx::Profiler::Options options;
2 rx::Experiment experiment( //
3 "example", // Name of experiment
4 options, // Options for internal profiler
5 60.0, // Query timeout
6 100); // Number of trials
7

8 experiment.addQuery("planner",
9 scene, planner, request→getRequest());

10

11 auto *dataset = experiment.benchmark();
12 rx::OMPLPlanDataSetOutputter output( //
13 "benchmark_example");
14 output.dump(*dataset);

Moreover, benchmarking can capture progress properties
of a motion planner, if properly exposed. These properties
are important for profiling the performance of asymptot-
ically (near-)optimal motion planning algorithms, such as
RRT* [35]. An example is shown in Figure 6. Robowflex’s



Fig. 7. Two Fetch robots [24] displayed in RViz executing a task and motion
plan (TAMP) to rearrange blocks. The motion planning component of this
TAMP problem is done through the DART module of Robowflex. Robowflex
enables the TAMP algorithm to have integrated access to the motion planner,
which allows for trying many queries simultaneously, extracting collision
information, and more. Image courtesy of Tianyang Pan.

benchmarking was used in [12]–[17], [19].
Compared to MOVEIT’s built in benchmarking capabili-

ties13, Robowflex provides a self-contained means of bench-
marking that is more easily extendable. MOVEIT’s bench-
marking requires use of ROS Warehouse for constructing
benchmark datasets as opposed to Robowflex’s simple file
storage, and does not easily support planning scenes with
obstacle variation, which is important for learning-based
methods. For example, [13], [19] take advantage of these
two features by running Robowflex benchmarking instances
in containers federated over many machines. Moreover,
Robowflex enables creation of custom metrics with access
to underlying planner results (e.g,. progress properties are
not available in MOVEIT, properties of a particular method),
and can be run as a single script.

B. Task and Motion Planning

One of the strengths of Robowflex is motion planning in
isolation. That is, being able to use many different instances
of robots, scenes, and motion planners all within the same
script. This is essential to efficient task and motion planning
(TAMP), as a TAMP algorithm will evaluate many different
motion plans in a variety of scenes to find a feasible task-and-
motion plan. Robowflex has been used as the motion planning
component in a few TAMP algorithms (e.g., [18], [21]), one of
which is shown in Figure 7. Here, Robowflex and Robowflex’s
DART module are leveraged to provide the motion planning
components necessary for a multi-robot TAMP algorithm.
Crucial to TAMP is the evaluation of many possible scene
configurations—Robowflex allows for many copies of the
collision environment to be considered in parallel. Moreover,
Robowflex enables information on planning progress to be
extracted from the underlying planner, which is used to inform

12http://plannerarena.org/
13https://ros-planning.github.io/moveit_tutorials/

doc/benchmarking/benchmarking_tutorial.html

Fig. 8. NASA’s Robonaut 2 inside of a module of the International Space
Station, visualized in RViz. For a given step between handrails, many possible
configurations are evaluated through Robowflex. Image courtesy of Misha
Savchenko and NASA.

the task planner. Finally, the DART module allows for multi-
robot planning, as shown in Figure 4.

C. Robonaut 2 and NASA

Robowflex has also been used by NASA for motion planning
for Robonaut 2. Robonaut 2 is a highly dexterous system, with
many degrees of freedom. One of the many motion planning
challenges Robonaut 2 faces is climbing across handrails in
the International Space Station, as shown in Figure 8. To this
end, Robowflex was used to evaluate potential handrail grasps
and the difficulty of motion planning between different grasps
to automate walking across the station. Robowflex provides
the means to use, inspect, and evaluate custom inverse kine-
matics solvers for Robonaut 2 and to benchmark the variety
of handrail grasp configurations and scenes. Additionally,
Robowflex was used for the Robonaut 2 experiments and
figure in [15]. As demonstrated by the examples presented
here, the affordances provided by Robowflex are general
and broadly useful to different members of the robotics
community.

V. DISCUSSION

We have presented Robowflex, a C++ library that enables
the use of MOVEIT in an easier, more flexible way for the
creation of advanced robot software for industry, research,
and education. The core advantage that Robowflex provides
over the default distribution of MOVEIT is the ability to
easily access and modify core data structures within the
program itself, rather than through ROS messages to the
provided MOVEGROUP program. This also enables the
use of motion planning within more complex algorithms,
such as task and motion planning approaches. Moreover,
Robowflex provides a high-level API, enabling many use-
cases such as benchmarking and motion planning without
any ROS or MOVEIT expertise required. Robowflex also has
a number of auxiliary modules that provide access to other
robotics libraries and visualization tools, such as OMPL, DART,

http://plannerarena.org/
https://ros-planning.github.io/moveit_tutorials/doc/benchmarking/benchmarking_tutorial.html
https://ros-planning.github.io/moveit_tutorials/doc/benchmarking/benchmarking_tutorial.html


Tesseract, and Blender. Beyond motion planning software
development, we hope that Robowflex will enable broader
application and adoption of motion planning algorithms and
raise the level of experimental evaluation in comparisons.
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