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Communication-Preserving Bids in Market-Based Task Allocation

Félix Quinton1, Christophe Grand1 and Charles Lesire1

Abstract— In this paper, we study the effects of impaired
communications on the performances of auction-based task
allocation in a dynamic surveillance scenario. We propose a
novel connectivity term to include in the bid valuation formula,
that aims at improving communications in the multi-robot team.
We evaluate our method as well as another state-of-the-art
method using robot inter-distance to maintain communication,
on randomly generated scenarios and on a real-world scenario.
We demonstrate that including our connectivity term in the bid
valuation formula improves the performances of the auction
scheme.

I. INTRODUCTION

Multi-robot systems (MRSs) are a long active field of
research, and their application to surveillance missions have
been extensively studied [1], [2]. However, a reliable coordi-
nation strategy is needed for an MRS to operate safely and
efficiently. An important part of MRS coordination is the
Multi-Robot Task Allocation (MRTA) problem, that consists
in assigning a set of tasks to the MRS agents [3]. As MRTA
is NP-hard, most of the research interested in solving it in
real-time scenarios focus on approximate methods.

Among the many methods proposed for MRTA through-
out the years, the Market-Based Approaches (MBAs) stand
out as some of the most investigated methods. In MBAs,
the robots composing the MRS compete for the tasks to
be allocated through a market scheme that emulates real-
world economic transactions. In particular, a sub-category of
MBAs that received much attention are the Auction-Based
Approaches (ABAs): the tasks are sold through an auction
scheme in which the bidders are the robots [4]. ABAs excel at
efficiently and robustly allocating single tasks [5]. However,
ABAs require a reliable communication network (CN) for
the market scheme to operate properly. For instance, if a
robot is disconnected from its teammates, it might be unable
to communicate its bids. As a result, an ABA might not
allocate any task to this robot. Hence, a degraded CN leads to
a surge in inefficiencies. Moreover, the CN typically evolves
dynamically, as robots move farther apart. Yet, few works
are dedicated to improve the CN in ABAs for MRS.

To address this issue, Sheng et al. proposed an improved
ABA that accounts for the CN connectivity by managing the
pairwise distance between robots [6]: robots are rewarded
for staying close to their teammates. However, this approach
does not account for a major element that disturbs com-
munication: physical obstacles may block two robots from
communicating regardless of their closeness. In real-world
scenarios, such obstacles could severely degrade the CN and
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create isolated areas. In this paper, we will study a surveil-
lance scenario taking place in the environment displayed in
Fig. 1. In this environment, buildings can prevent teammates
that are very close, in terms of distance, from commu-
nicating. To address this issue in the context of auction-
based approaches, we introduce a pricing method that aims
at preserving a well-connected CN by considering the CN
topology. Our method consists in penalizing allocations that
may partition the CN into smaller components connecting
disjointed robotic sub-teams, while rewarding allocations that
merge CN components into larger components connecting
robots through multi-hop communications. We apply this
pricing method to a dynamic surveillance mission performed
by a team of heterogeneous robots with different moving and
sensing capabilities. During the mission, the requirements for
surveying some positions evolve dynamically.

Fig. 1. Real-world surveillance scenario. The graph’s nodes must be visited
by the robots, but require specific sensors. Robots can navigate on the
graph’s edges. Buildings on the top, left and bottom of the area may block
messages.

After a review of the relevant literature, we will explicit the
mission that we study and describe the ABA scheme that we
use. We then present the bid valuation processes, including
the evaluation of our communication-preserving term. Next,
we detail our experiments and discuss our experimental
results. We conclude our paper by summarizing our main
results and proposing directions for future research.



II. RELATED WORK

The use of MBAs to solve MRTA is a long-studied
issue [5], and many improvements to ABAs were introduced
to adapt them to more sophisticated requirements that arise in
multi-robot surveillance missions: allocating complex tasks
using task tree decomposition [7], managing robots joining
or leaving the team [8], re-auctioning tasks to robots with
lengthy patrol paths to improve a minimax criterion [9], or
including a monitoring agent that redistributes tasks of under-
performing robots [10].

However, ABAs depend heavily on reliable communica-
tions, as the quality of the obtained allocations depends
greatly on the loss rate of bid messages. In general, the per-
formances achieved by ABAs decrease as the CN becomes
less reliable [11]. Otte et al. [12] conduced a comparative
study including many ABAs variants, in a context of de-
graded communications. The authors showed that all variants
perform worst as the message loss probability increased.
When the mission objective is to minimize the robots
path length on a randomly generated map, the numerical
experiments of [12] produced mixed results, as no ABA
variant was better than the others across the whole spectrum
of message loss probabilities. It is clear that unreliable
communications are very detrimental to the quality of the
MRTA solutions produced by ABAs, which motivates works
aiming at developing and assessing strategies that account
for communications when solving MRTA.

To address these issues, many authors have focused on
improving the communication protocols among teammates.
Ferri et al. [13] proposed a method to reduce communication
requirements using a Single-Item Auction (SIA) scheme.
Auctioneers only send the announcement messages to the
bidders with which they immediately share a communication
link in the network. The method proposed in [14], built upon
an SIA scheme, allows for proxy agents to gather and filter
bids from neighbor agents. Mezei et al. [15] allowed robots
receiving an announcement to decide whether they must
relay it to subsequent teammates in the network based on an
estimation of their bids. Bai et al. [16] used an information
consensus procedure to merge the local data of neighboring
robots before carrying auction rounds. A score that accounts
for the availability of robots has been introduced in [17]; this
score depends on the number of task announcements received
by a robot: robots with a bad availability score do not engage
in further auctions. However, these approaches decrease
the communication requirements, but does not improve the
ability of robots to share information.

An alternative to ensure a stable CN would be to design a
bid valuation formula that accounts for the network’s quality,
and encourages robots to favor tasks that would maintain
a well connected CN. To the extend of our knowledge,
the only work proposing such a communication-related bid
formulation is the work by Sheng et al. [6]. In their study,
the authors defined a measure called the nearness measure,
whose purpose is to evaluate the proximity of a robot
to its neighbors. More precisely, robots receive rewards

that increase when the distances between them and their
teammates decrease, multiplied by a factor that decreases
for each subsequent neighbor after the nearest. This allows
for robots to spread evenly on the map. This measure is used
in the bid formula to try to maintain a connected CN during
the task allocation process. Simulation experiments showed
that it improved the quality of the produced solutions [6].
However, this method takes the distance between robots as
the metric for communication quality, which does not hold
when obstacles prevent communications, as discussed in the
introduction.

In this paper, we then propose to integrate in the bid
formula a new communication-preserving term based on the
connectivity of the CN, and in particular on the number of
robots in the connected components of the CN, rather than
on the distance between robots. We then evaluate and discuss
the interest of this new term in a real-world scenario includ-
ing obstacles that may disrupt communications, preventing
neighbor robots from communicating even if they are very
close.

III. PROBLEM FORMULATION

A. Surveillance Scenario

In this paper, we consider an area surveillance mission
performed by a team of robots. Robots are able to commu-
nicate via a multi-hop CN. The mission takes place on a
known area represented by a graph G = {W, E}. Robots
must survey the waypoints W as often as possible and are
only allowed to move through the edges E of the graph. We
consider the instantaneous idleness of the waypoints, defined
by Equation (1), as the metric to determine the effectiveness
of the proposed algorithms,

Iw(t) = t− twlast (1)

where t ∈ R+ is the current time, and twlast ≤ t is the
last visit date of waypoint w. We denote by tlast the vector
of last visit times twlast, w ∈ W . The mission’s objective
is to minimize the maximum idleness among all waypoints
during the whole mission, as described by Equation (2). This
objective ensures that any allocation that left a waypoint
without surveillance is disincentivized. Such modeling have
been long used in multi-robot surveillance missions [18],
[19], [20].

min max
w∈W

Iw(t), ∀t ∈ [0, te] (2)

with te the ending date of the mission. To solve this
problem, we use a team of robots denoted R. Each robot
r ∈ R is described by its type T ∈ T . Robots of the same
type have identical moving speed vT and communication
range cT . They are also equipped with the same set of
sensors ST . Each waypoint w ∈ W requires a specific
set of sensors to be surveyed, that we denote Sw ⊂ S.
The minimization of the maximum idleness described in
Equation (2) is constrained by the ability of different robot
types to survey each waypoint. Robots that are not equipped
with at least one relevant sensor for a given waypoint, i.e.
ST ∩ Sw = ∅, are not able to survey it. We also assume



in this paper that robots are able to determine their position
exactly.

ABAs are distributed decision making algorithms. There-
fore, robots need to share information with their teammates
through a multi-hop network, in order to build a local knowl-
edge of their environment and of their teammates’ behavior.
In ABAs, robots must share the auction announcements and
bids among as many robots as possible to allow the auction
round to result in the most efficient feasible allocation [12].
In the multi-robot patrol scenario, the allocated tasks, and the
latest visit dates of waypoints are also essential to compute
relevant auction bids [20]. For these reasons, we want to
ensure that the communication network that connects the
robots is highly connected.

B. Dynamic events

In real-world environments, robots encounter unexpected
events while executing their tasks. Such events are un-
predictable and cannot be accounted for when solving
the MRTA problem. In particular, we modeled dynamic
events representing real-world situations that alter the sensors
needed to survey a waypoint. For instance, a change in
lighting conditions may prevent standard visual cameras to
survey a waypoint, while night vision cameras will still be
able to do so. Also, in the presence of smoke, that may appear
during the mission, a specific sensor, such as a thermal
camera, is needed to gather data.

A dynamic event is then characterized by the triplet (w ∈
W, t > 0, s− ∈ Sw). The location of the event is given
by w, and its date by t, while s− represents a set of sensors
unable to survey w. In other words, this means that at time t,
the list of sensors able to survey w will be updated such that
Sw ← Sw \ s−. We consider that the robots are only able
to detect these events when trying to survey the concerned
waypoint.

IV. AUCTION PROTOCOL

To solve the problem described in Section III-A, we use a
Sequential Single-Item Auction (SSIA) scheme [21]. SSIAs
are a simple scheme to consider task synergies in an ABA. In
SSIA, robots auction tasks one after the other, in subsequent
auction rounds. Tasks are auctioned one by one, and robots
send their bids one at a time, considering their current plan
to value the auctioned task. The auctioneer closes a round
after waiting for bids for a fixed amount of time, in order to
account for unavailable communications.

In the following, we denote by Lr the list of items to
auction of robot r, and by execr its list of tasks to execute. To
ensure that tasks are reallocated, robots start an auction for
each waypoint that they survey successfully. More precisely,
when a robot r reaches a waypoint w ∈ execr, there are two
possible outcomes. If r is equipped with one of the sensors
required to survey the waypoint, i.e. ST ∩ Sw ̸= ∅ with T
the type of r, then the waypoint is considered as surveyed.
In consequence, its idleness is reset to 0, it is removed from
execr, and inserted at the end of Lr. Otherwise, if the robot
does not have one of the required sensors for w, the idleness

of w if not reset, it is removed from execr and inserted at
the end of Lr. The robot updates its local knowledge of Sw,
and will not bid for this waypoint in future auction rounds.
It also broadcasts this information so that its teammates can
do the same.

At each auction round, one of the robots with tasks to sell
(i.e. Lr ̸= ∅) takes on the auctioneer role, which means that
it is in charge of the announcement of the auction: this robot
sends task specifications to as many teammates as possible.
The auctioneer gathers its teammates’ bids, and evaluates
them to determine which teammates will receive the task.
The teammate receiving the task adds it to its execution set
execr.

The bid valuation function is one of the most important
elements of an ABA. It determines the winner of each auction
round. In this section, we present two terms proposed in
the state-of-the-art to estimate waypoints idleness and the
CN quality through a nearness measure. We then present the
novel term we propose to estimate the CN quality through a
computation of its connected components.

A. Idleness term adapted from Yan and Zhang (2016) [20]
When robot r has to bid on waypoint w, the term proposed

in [20] estimates the idleness of w when r will survey it. To
do so, this term compares the instantaneous idleness of w
(as known by r) with the travel time needed by r to reach
waypoint w. We adapted the term proposed in [20] to our
SSIA protocol, resulting in the formula given in Equation (3),

Jr(t, w) = 1 +
t− trlast(w)

d(r, w)/vT
(3)

where t ∈ R+ is the time at which the computation occurs,
trlast(w) ≤ t is the last visit date of waypoint w, T ∈ T
is the type of robot r, and d(r, w) ∈ R+ is the length
of the shortest path from the position of r’s last target, to
w. However, Equation (3) gives much higher values than
the other terms described further in Equations (5) and (6),
making them irrelevant. Therefore, we must normalize Jr
between 0 and 1 so that its values are consistent with the
other terms used in our bid formula, resulting in the term
given in Equation (4),

Ir(t, w) =
Jr(t, w)

1 + Jr(t, w)
. (4)

B. Nearness measure from Sheng et al. (2006) [6]
In this paragraph, we describe the nearness measure as

defined in [6]. The nearness measure is given by Equation
(5),

Sr(t, w,d) = e
− d1

cT + λe
− d2

cT + ...+ λnk−2e
−

dnk
cT (5)

where d = {d1, ..., dnk
} denotes the pairwise distances

between robot r and the robots it is able to communicate
with through multi-hop communications, sorted in increasing
order. λ is a factor smaller than 1, such that each subsequent
robot after the nearest neighbor is valued exponentially
less than its predecessor. This ensures that robots are not
rewarded for staying in very tight groups, and instead spread
quite evenly on the map.



C. Term rewarding the network’s connectivity

To preserve a highly connected CN, we introduce a
communication term Kr(t, w) described in Equation (6),

Kr(t, w) =

∣∣∣C (
N

(
t+ d(r,w)

vr

)
, r
)∣∣∣

|C (N (t), r)|
− 1. (6)

In this term, N (t) = (R,F) is a graph describing the com-
munication network at time t, with F the pairs of robots able
to communicate with each other, and C(Γ, r) the connected
component of graph Γ that contains robot r. Note that each
robot maintains a local version of N (t), so the computation
of Kr(t, w) is done using only r’s local knowledge. To
keep N (t) up-to-date, robots may periodically broadcast
pings to check with which teammates they can communicate.
However, for simplicity, this aspect was handled through a
centralized dispatcher that feeds the CN to each robot.

This term is the ratio between the number of robots in the
same sub-CN as the bidder robot r at the starting date t of
the auction, and an estimation of the number of robots in
the same sub-CN as r at the future date t + d(r,w)

vr
when r

will reach the auctioned waypoint w. To compute this second
number, we must predict the positions of r’s teammates in
the future, which necessitates an up-to-date local knowledge
of teammates’ arrival dates. Formally, we define the number
of robots in r’s sub-CN as the cardinal of the connected
component that contains r in the topological representation
of the CN. Note that we subtract 1 to the ratio to ensure that
Kr(t, w) is negative if allocating w to r would decrease the
number of robots in its sub-CN.

D. Aggregated bid formula

In the forthcoming experiments, we will combine the
idleness cost Ir with the communication-oriented costs, Sr

and Kr, to build the bid valuation formula. More precisely,
the main contribution of this paper is to demonstrate the
benefits of using Kr together with Ir to build the bid
valuation formula, as described in Equation (7a), in order
to solve dynamic scenarios through an SSIA scheme. We
will compare our approach with a bid valuation consisting
of Ir alone, and with a bid valuation consisting of Ir together
with Sr, as described in Equation (7b),

Br(t, w) = Ir(t, w) +Kr(t, w), (7a)

Br(t, w,d) = Ir(t, w) + Sr(t, w,d). (7b)

E. Shared Data

In order to compute their bids on the auctioned tasks,
the robots need to share data about the current state of
the mission. Robots share their local knowledge to the best
of their abilities through multi-hop communications, i.e., to
every teammate that is in the same sub-CN. First, to evaluate
the idleness cost Ir described in Section IV-A, robots have to
share their knowledge of the last visit dates for each waypoint
w in order to assess the idleness of the waypoints. To do
so, each robot r ∈ R maintains a local version of tlast,
denoted trlast, that is updated when receiving this value from

another robot. Robots send an updated version of trlast to
their teammates after surveying a waypoint. Upon reception
of such message, robots update their list of last visit dates by
keeping the element-wise minimum of the received list and
their local list. In addition to the last visits dates, robots also
need to know the expected paths of their teammates, as they
are needed to predict the robots’ future positions in order to
compute the communication costs presented in Sections IV-
B and IV-C. The expected path of a robot is modified
only when it receives an award after winning an auction.
In consequence, sharing this information do not add much
to the communication load, as a unique message is necessary
per auction round to maintain an up-to-date version of the
expected paths among all robots. Note that the maximum size
of this message is attained when a single robot is awarded
all the waypoints, and therefore the maximum size of the
message is |W|.

V. SIMULATION EXPERIMENTS

A. Simulation set up

The goal of the experiments described in this section is to
evaluate the impact of accounting for the CN’s connectivity
using the connectivity term Kr proposed in Section IV-
C. We will compare it with existing ABAs that used the
idleness term Ir [20] described in Section IV-A and the
nearness measure [6] described in Section IV-B. To do so,
we made a first set of experiments on randomly generated
scenarios in which the environment is structured as a grid.
These scenarios consist of 5 × 5 grid graphs from which
we remove 8 randomly selected edges and on which we
randomly place from 4 to 8 physical obstacles that will block
communications. 50 such scenarios were generated for the
simulation experiments described in this Section. Figure 2
shows one of the generated environments. Note that the area
of the real-world missions is much smaller than the area of
the grid graphs.

Fig. 2. Randomly generated patrolling scenario. The cells of the grid that
are filled in grey represent obstacles that block communication.



Secondly, we used the realistic surveillance scenario
whose graph is given in Fig. 1, with a team of five robots.

We evaluated 3 different methods: a simple SSIA scheme
using only the idleness term (denoted B = I in the results),
an SSIA scheme using Sheng’s nearness measure (denoted
B = I + S), and finally the SSIA scheme containing our
contribution, i.e. our CN’s connectivity term to improve
communications in the MRS (denoted B = I + K). To
determine the performance of these approaches, we measured
the evolution of the maximum idleness among all waypoints.
The objective of each method would then be to minimize this
maximum idleness.

We set up dynamic events to ensure that the scenario is
dynamic, as described in Section III-B. Events are randomly
generated such that in average, half the waypoints will
require a night vision camera, and a fourth will require
a thermal camera. These events have an occurrence date
distributed from t = 0 seconds to t = 300 seconds, and
each run lasts 1800 seconds so that the MRTA process has
time to converge back to a stable solution. Also, this allows
us to examine the impacts of the dynamics events on the
idleness of the waypoints. The robot’s communication range
was set to cT = 250 for all robot types.

In our simulations, the ability for a pair of robots to
communicate depends on their communication range, and
on physical obstacles that may disrupt communications. In
particular, we consider that a pair of robots that does not
have a line of sight are not able to communicate. In the
randomly generated grid instances, physical obstacles are
placed randomly on the grid (see Fig. 2). In our real-world
scenario, physical obstacles correspond to buildings as shown
on the map of Fig. 1, for instance in the top left corner. Once
this random selection is done, we keep the same pairs for the
three SSIA variants, ensuring that the methods are evaluated
on the same configurations.

Figure 3 shows the evolution of the maximum idleness
of waypoints, averaged over 50 runs for each SSIA variant.
The 99% confidence intervals of these averages are plotted
around the main curves.

B. Results

The results for randomly generated instances represented
on Fig. 3a indicate that our approach (blue line) allows for a
smoother handling of dynamic events when compared with
the two other approaches, as it yields consistently lower
values for the maximum idleness. The approach using the
nearness measure (red line) is largely dominated by both
our approach and the baseline SSIA (green line). This was
expected: as it tries to improve communication without ac-
counting for the obstacles, the nearness measure is ineffective
in improving communications. Therefore, it only disrupts the
optimization of the idleness without bringing any benefits.
After some time, the three approaches converge to stable
MRTA solutions with similar maximum idleness values.

The results from our real-world scenarios of Fig. 3b are
quite different. Our approach (blue line) pics higher than
the others, but also sooner. This means that it solved many

dynamic events at once. In one hand, the height of the
pic is explained by quite a few events not being handled
before the pic. In the other hand, the earliness of the pic
is evidence that all events were handled swiftly. The other
approaches handled events more smoothly but also more
slowly, as the pic is lower and happens later. In addition, we
can see that our approach consistently manages to converge
to a much more efficient MRTA solution as time passes.
This indicates that the reallocations made by the approach
using the nearness measure (in red) and the baseline SSIA
(in green) in order to handle the dynamic events, locked
them into local minima. Also, the physical obstacles are
distributed on the edges of the map, reducing the benefits of
the connectivity term with respect to the nearness measure.
Obstacles placed on the edges of map do not split the CN into
long-lasting disconnected sub-CNs ; robots quickly move
around the obstacle and regain access to the full CN. On the
contrary, obstacles placed in the middle on the map tend to
cause long-term splits in the CN. For instances, on the graph
depicted in Figure 2, robots surveying the top left corner
of the graph will be disconnected from robots surveying
the lower part of the graph. Despite that, our approach was
able to outperform the baseline and the approach using the
nearness measure by ≈ 34% at the end of the mission.

These results show that using the connectivity cost that we
introduced in Section IV-C allows for clear improvements in
the maximum idleness yielded by the SSIA scheme. Indeed,
our method outperforms the approach using only the idleness
term adapted from [20] as well as the approach combining
the idleness term and the nearness measure proposed by [6]
during most of the duration of the mission. This is true in
both the randomly generated grid scenarios, as shown in
Figure 3a and the real-world inspired scenarios shown in
Figure 3b.

VI. CONCLUSION

In this paper, we studied a dynamic surveillance MRS
mission accounting for physical obstacles blocking commu-
nications. State of the art methods to solve MRTA for such
MRS missions include ABAs, that need a highly connected
CN to perform reliably. However, there is no contribution
that aims at improving the connectivity of the CN in the
existing literature.

To address the issue of maintaining a connected communi-
cation network throughout the mission duration, we proposed
the network connectivity term, designed to reward allocations
that improve the connectivity of the CN. We considered
two types of scenarios: randomly generated grids and real-
world inspired scenarios. In both scenarios types, a number
of dynamic events were randomly generated, causing most of
the waypoints to require a specific sensor to be surveyed. To
handle these dynamic events, robots had to re-allocate their
tasks through an SSIA scheme. However, their communica-
tion capabilities were limited by their communication range,
and by physical obstacles that may block messages. We
produced simulation experiments to compare SSIA schemes
using our network connectivity term with similar schemes



(a) Randomly generated grid instances. (b) Instances modeling the real-world mission presented in Fig. 1

Fig. 3. Results for the maximum idleness. 50 runs were averaged to obtain each curve. The band around each curve represents the 99% confidence
interval of the corresponding mean.

that either do not consider communication at all, or try to
improve communication using the nearness measure, that
relies on the pairwise distance between robots [6].

The results obtained from these experiments show that
monitoring the connectivity of the CN using the network
connectivity term that we introduced yields better MRTA
solutions, as they produce a lower maximum idleness. Our
approach allows for a swift and efficient handling of dynamic
events in the grid scenarios, and converges to much more
efficient allocations in the real-world inspired scenarios.

In future work, it would be interesting to evaluate these
methods on a wider range of parameters. Such parame-
ters could include robots’ communication ranges, density
of physical obstacles in the mission’s environment, and
proportion of nodes concerned by a dynamic event. We
could also explore different graph topologies, such as star-
shaped graphs. It would also be useful to define new metrics,
in addition to the maximum idleness, that account for the
robustness of the approach. Finally, it would be interesting
to compare the performances of auction-based approaches
with some decentralized optimization-based approaches.
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