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Jérôme Le Ny a, b
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Abstract : Position estimation in Multi-Robot Systems (MRS) relies on relative angle or distance
measurements between the robots, which generally deteriorate as distances increase. Moreover, the
localization accuracy is strongly influenced both by the quality of the raw measurements but also by the
overall geometry of the network. In this paper, we design a cost function that accounts for these two
issues and can be used to develop motion planning algorithms that optimize the localizability in MRS,
i.e., the ability of individual robots to localize themselves accurately. This cost function is based on
computing new Cramér Rao Lower Bounds characterizing the achievable positioning performance with
range and angle measurements that deteriorate with increasing distances. We describe a gradient-based
motion-planning algorithm for MRS deployment that can be implemented in a distributed manner,
as well as a non-myopic strategy to escape local minima. Finally, we test the proposed methodology
experimentally for range measurements obtained using ultra-wide band transceivers and illustrate the
improvements resulting from leveraging the more accurate measurement model in the robot placement
algorithms.

Keywords : UWB, robotics, CRLB, Multi-Robot Systems, signal processing
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1 Introduction

Reliable and accurate localization systems are critical for mobile robots to autonomously perform tasks

in their environment. Various positioning technologies, e.g., short- and long-range radio-frequency

(RF) systems, camera- or Lidar-based systems, offer different trade-offs in terms of performance, cost

or applicability in various environments [6,10]. Generally however, these technologies provide different

modalities to obtain range or angle measurements between a robot and environmental features or

between different robots in a Multi-Robot System (MRS).

The quality of the position estimates produced for an MRS based on relative range or angle mea-

surements depends on the geometry of the network, a phenomenon known as dilution of precision [10,

Chap. 7]. The relationship between network geometry and the ability of the robots to localize them-

selves can be captured through a localizability cost function [13], and the robots can then move to

optimize this cost function and thus their positioning performance [3, 11, 13, 17]. Localizability can

be quantified independently of the localization scheme by using Cramér Rao Lower Bounds (CRLB),

which provide a bound on the error covariance matrix of any unbiased position estimator one may

implement in the MRS.

The CRLB depends on the specific stochastic error model considered for the raw distance or angle

measurements. Although explicit CRLBs have been developed for measurement noise with constant

variance [3, 18], in practice we observe for many systems that the quality of measurements degrades

with distance. To address this issue, connectivity constraints can be added to maintain the robots

sufficiently close [16, 24]. However, such constraints increase the complexity of the motion planning

problems, and moreover this approach captures the issue of measurement quality only indirectly,

leading to suboptimal geometries. Hence, in this paper we propose a measurement variance model

with polynomial dependence on the robot inter-distances and derive the corresponding CRLB to be

used to quantify localizability and develop MRS deployment algorithms.

To illustrate the usefulness of deriving more refined CRLBs and localizability measures, we focus

on localization using Ultra-Wide Band (UWB) transceivers [22]. This technology can provide distance

measurements with decimeter to centimeter-level accuracy [7] while being relatively inexpensive and

energy efficient, which makes it particularly attractive for robotics applications [5, 14, 15], especially

indoors. We consider the problem of localizing multiple robots equipped with UWB transceivers, called

tags, communicating with each other and with other transceivers, called anchors, the location of the

latter being known. Anchors can also be carried by mobile robots having access to an external source of
localization. With enough relative distance or angle measurements obtained between the transceivers,

the robot positions can be estimated for example using least-squares or filtering techniques [9,22]. UWB

sensors can acquire relative range [5, 14] or angle [8, 19] measurements, using a variety of protocols

transmitting signals between nodes. The accuracy of these protocols deteriorates with the distance

between transceivers because the received signal power decreases and errors due to fading and multi-

path increase. In particular, the received signal power directly influences the Leading Edge Detection

(LDE) algorithm used to estimate the signals’ time-of-flight [5, 22]. Therefore, using a localizability

criterion relying on the network’s geometry without taking into account a realistic measurement error

distribution can lead to misleading predictions about the tags’ localization accuracy.

The rest of the paper is organized as follows. After a description of the problem in Section 2,

Section 3 presents the distance-dependent variance model for relative measurements and illustrates how

to fit such a model experimentally for UWB range sensors. For this general polynomial variable model,

the new localizability criterion is derived in Section 4, based on Fisher Information Matrices defining the

CRLB, computed in Section 5. Then, we present optimization algorithms in Section 6, which include

gradient-descent based algorithms as well as non-myopic strategies to escape local minima. Finally,

Section 7 validates the methodology experimentally and illustrates the benefits of incorporating the

refined model with distance deteriorated measurements to predict localization accuracy.
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2 Problem statement

Consider the problem of localizing in a given reference frame in dimension n, with n = 2 or 3, a

set U of U tags with unknown positions, while relying on a set K of K anchors with known positions.

Relative angle or range measurements µij ∈ R are available between a subset E of the tags and anchors,

with i ∈ U and j ∈ U ∪ K. Note that these measurements can involve either tag-tag or tag-anchor

pairs, i.e., E ⊂ U × (U ∪ K). The coordinates pi ∈ Rn of node i ∈ U ∪ K in the reference frame are

denoted pi = [xi, yi, zi]
> if n = 3 or pi = [xi, yi]

> if n = 2. Each tag is assumed to be carried by a

robot, and a subset KM ⊆ K of the anchors can also be mobile. Let p := [. . .p>i . . . ]
> ∈ RnN denote

the positions of the N := U +K nodes (anchors or tags).

2.1 Robot placement problem

We aim to move the robots to enhance the localizability of the tags, which is some measure of the

accuracy with which we can compute an estimate p̂U of the vector of tag positions pU := [. . .p>i . . . ]
> ∈

RnU , i ∈ U . Since the localizability depends on the network geometry p, we introduce a localizability

function J(p), which takes smaller values when the achievable accuracy for p̂U increases. We then aim

to find the optimal geometry p∗, solution to the following placement problem for the mobile nodes

p∗ = argmin
{pj}j∈KM∪U

J(p) + Jtask(pU ), (1)

where Jtask(pU ) is an additional cost function that represents the tasks to be achieved by the robots

carrying the tags. Indeed, from the tags’ point of view, J can be seen as a constraint (e.g., avoid

configurations with poor localizability) as they must achieve tasks while been accurately localized. The

function J should take into account both the geometry and the quality of the relative measurements µij .

2.2 Distance-deteriorating measurement models

The localizability depends on the assumed relative measurement model. In this paper, we consider the

following Gaussian model

µij ∼ N
(
µ̄ij(pij), σ

2
ij(dij)

)
. (2)

where µ̄ij is a mean function that depends on the relative positions pij := pi − pj of the pairs of

agents (i, j)∈ E . The variance σ2
ij(dij) of these measurements is a function of the inter-node distance

dij := ||pij ||. Moreover, we assume that the measurements are independent for distinct pairs (i, j).

This type of measurement model is standard for example for RF sensors estimating distances from

Time-of-Flight (ToF) measurements [15, 18]. It is also used in 2D to model noise in Angle of Arrival

(AoA) measurements [18,19]. However, σ2
ij is generally assumed to be a constant, independent of the

position, although in practice it is generally the case that the quality of the measurements decreases

as the distance increases [18], especially as we approach the maximum range of a given technology.

Hence, we propose to use variance functions σ2
ij(dij) that model the degradation in measurement

accuracy with distance, in order to improve the ability of the function J(p) to accurately predict the

localizability. It is important however to keep the computation of the function J and of its derivatives

sufficiently simple in order to develop tractable motion planning algorithms.

3 Distance-dependent variance model

In this section, we introduce a general polynomial model of the measurement variance σ2
ij(dij) in (2).

As an application, we calibrate a model of distance measurements with UWB transceivers.
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3.1 Polynomial variance model

The proposed polynomial variance model is

σ2
ij(dij ;ααα) = α0 +

P∑
l=1

αl(dij − δl)l1δl<dij . (3)

where P ∈ N is the chosen degree of the polynomial and ααα = [α0, α1, δ0, . . . , αP , δP ]> ∈ R2P+1
+ is

a vector of parameters. The the l-th order term of the polynomial activates at the distance δl. We

assume that α0 > 0 because measurements are uncertain even at close range, and αl ≥ 0 and δl ≥ 0,

∀l ∈ [1, P ], to keep σ2
ij(dij) > 0 and increasing with distance. CRLBs are derived in [18] for the

constant variance case where P = 0. The model (3) offers additional flexibility at long range while

still allowing closed form expressions for the localizability function.

The parameter vector ααα in (3) for a specific system and environment can be identified by col-

lecting M measurements {µkij(pij)}Mk=1 at a set M of relative positions pij , i.e., a total of M × |M|
measurements. We can then compute the empirical means ˆ̄µij(pij) = 1

M

∑M
k=1 µ

k
ij(pij) and variances

σ̂2
ij(pij) = 1

M−1

∑M
k=1(µkij(pij)− ˆ̄µij(pij))

2, and finally obtain ααα by solving the least squares problem

ααα = argmin
α̌αα∈R2P+1

+

∑
pij∈M

[
σ2
ij(||pij ||; α̌αα)− σ̂2

ij(pij)
]2
. (4)

3.2 Application to UWB two-way ranging measurements

To illustrate the model (3), we consider relative distance measurements acquired by two Decawave

DW1000 ©UWB sensors [7] performing Single-Sided Two Way Ranging (SSTWR). The exact protocol

to deduce distance measurements from signal time-of-flight measurements, including clock and power

correction, is detailed in [5]. The UWB transceiver j is carried by a mobile robot as shown on Figure 1,

and the transceiver i is fixed on a tripod. The robot moves to different positions while a motion capture

system provides exact measurements of pij . We compute empirical variances σ̂2
ij(pij) using M = 150

measurement samples at each relative positions pij . The results are plotted in Figure 2 for a straight

line trajectory, as a function of dij . A polynomial fit of the empirical variance is performed for P = 3

in (4) and shown in red.

Figure 1: Anchor, robot, motion capture system and UWB transceiver used for the variance model calibration.

At close range in Line-of-Sight (LoS) conditions, the received power is saturated, which can explain

that the variance remains relatively constant. At longer range, the fact that received power theoret-

ically decreases proportionally to the square of the distance could explain the parabolic shape of σ2
ij
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when dij > 6.5 m. Moreover, even in LoS, outlier measurements can also be caused by multi-path

propagation [9, 22], when reflected signals with significant power are detected by the LDE algorithm

instead of the wave on the direct path. For our set-up using a wheeled robot and isotropic antennas,

the planar ground leads to a higher chance of multi-path propagation as the distance increases. Note

that the data collected to fit the model using (4) should include these outlier measurements, in order

to capture such trends.

Figure 2: Empirical variance and fitted polynomial.

4 Localizability cost function

As in [13], the cost function penalizing network geometries leading to poor localizability, i.e., poor

accuracy of the estimator p̂U of pU , can be constructed from the CRLB. To define it, denote f(µµµ;p)

the joint probability density function of the random measurement vector µµµ = [. . . µij . . . ]
>, which

depends on the positions p of the tags and anchors. Moreover, assume that the estimator p̂U is

unbiased, i.e., E {p̂U} = pU . Then, the covariance matrix Σp̂U ,p̂U of p̂U satisfies the CRLB [12, 3.3]

Σp̂U ,p̂U := E
{

(p̂U − pU )(p̂U − pU )>
}
� F−1

U , (5)

where A � B for symmetric matrices A,B means that A − B is positive semi-definite, and FU ∈
RnU×nU is the Fisher Information Matrix (FIM), defined as follows [12, 3.7]

FU (p) = −Eµµµ
{
∂2 ln f(µµµ;p)

∂pU∂p>U

}
. (6)

Note that the FIM depends on the global geometry p and also on the specific distribution f of µµµ.

One can then define the localizability cost function to minimize as

J(p) := Tr
{
F−1
U (p)

}
, (7)

which is a lower bound on E
{
‖p̂U − pU‖2

}
, the Mean Square Error (MSE) of p̂U . Using the CRLB

has the advantage of providing a localizability measure that is independent of the specific estimator

p̂U implemented in the MRS. The function (7) corresponds to the A-Opt optimal design strategy [21,

p.137], other functions can be used, such as JD(p) = log detF−1
U (D-Opt design) or JE(p) = −λmin(FU )

(E-Opt design, to maximize the minimum eigenvalue of FU ), as discussed in more detail in [4, III].

5 Computing the FIM

In this section we derive a closed form expression of the FIM FU for the measurement model introduced

in sections 2 and 3, which is required to evaluate the localizability function J in (7).
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5.1 Structure of the FIM

The nU × nU FIM matrix FU can be decomposed into n× n blocks Fij , 1 ≤ i, j ≤ U , written as

Fij =

F xxij F xyij F xzij
? F yyij F yzij
? ? F zzij

 or Fij =

[
F xxij F xyij
? F yyij

]
, (8)

depending if n = 3 or n = 2, where ? denotes symmetric terms. From the assumption that the

measurements µij are independent and only available for (i, j) ∈ E , i.e., f(µµµ;p) =
∏

(i,j)∈E fij(µij ;pij),

we deduce that Fij = 0 for (i, j) /∈ E , whereas for (i, j) pairs of tags in E

F ξηij := −Eµij{∂2 ln fij(µij ;pij)/∂ξi∂ηj}, (9)

where we denote pairs of Cartesian coordinates ξ, η ∈ {x, y, z}2 if n = 3 or ξ, η ∈ {x, y}2 if n = 2. We

extend the expression (9) to tag-anchor pairs, so that Fij is defined for all (i, j) ∈ E . Then, we find

that

Fii = −
∑
j∈Ni

Fij ,

where Ni = {j ∈ U ∪ K, (i, j) ∈ E}, by using the fact that

∂fij(µij ;pij)/∂pi = −∂fij(µij ;pij)/∂pj .

Note that Fii can require blocks Fij outside FU , i.e. when j ∈ K. Hence, it is sufficient to obtain FU
to compute the terms of (9) for all (i, j) ∈ E . For the Gaussian measurement model (2), this can be

done using the Slepian-Bangs Formula (SBF) [12, 3.9], which gives for (i, j) ∈ E

F ξηij =
∂µ̄ij
∂ξi

∂µ̄ij
∂ηj

σ−2
ij +

1

2

∂σ2
ij

∂ξi

∂σ2
ij

∂ηj
σ−4
ij . (10)

We see that (10) involves the derivatives of the function σ2
ij defined in (3). For any (i, j) ∈ E ,

coordinates ξi ∈ {xi, yi, zi}, ξj ∈ {xj , yj , zj}, and ξij = ξi − ξj , we have

∂σ2
ij

∂ξi
= ∂σ2

ij :=

P∑
l=1

αl l
ξij
dij

(dij − δl)l−11δl<dij , (11)

and ∂σ2
ij/∂ξj = −∂σ2

ij/∂ξi. The expression ∂σ2
ij defined in (11) is zero if P = 0, i.e., if σ2

ij is constant.

Note that at points such that dij = δl, depending on the values of the constants αl, (11) may only

provide one-sided derivatives.

5.2 Distance measurements

Suppose that the measurements are distances µij = d̃ij given by the model (2) with mean µ̄ij :=

||pij || = dij , so that ∂µ̄ij/∂ξi = ξij/dij = −∂µ̄ij/∂ξj . Starting from the SBF (10), using identity (11)

and differentiation rules, we obtained for (i, j) ∈ E

F ξ,ηij = − ξij
dij

ηij
dij

σ−2
ij

[
1 +

1

2

(
∂σ2

ij

)2
σ−2
ij

]
. (12)

with σ2
ij defined in (3) (we omitted the dependence on dij for conciseness), and the same notation for

the coordinate η ∈ {x, y, z} as for ξ. Alternatively, we can write for (i, j) ∈ E

Fij = −wij
σ2
ij

pij p
>
ij

d2
ij

, (13)

where wij := 1 + 1
2

(
∂σ2

ij

)2
σ−2
ij .

Remark 1. The formulas in [18] correspond to (13) for a constant variance Gaussian model, i.e., wij = 1.

As in [4], (13) can be used to establish a connection between the FIM and a weighted version of the

infinitesimal rigidity matrix [23], which can be used to provide conditions guaranteeing the invertibility

of FU [4, Theorem 2].
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5.3 Angle measurements

Suppose now that n = 2 and we have angle measurement µij := θ̃ij between nodes (i, j) ∈ E , with

mean µ̄ij := θij := ∠(~x,pij), where ~x is a know reference direction. Without loss of generality, we

choose ~x = [1, 0]>, so that θij = atan2(yij , xij). For a coordinate variable ξ ∈ {x, y}, we denote by ξ̄

the other coordinate. We also introduce the symbol sξ,η, which is equals to 1 if η = ξ and −1 if ξ 6= η.

Finally, the SBF (10) yields directly the following formula, if i 6= j

F ξηij = − ξ̄ij
dij

η̄ij
dij

σ−2
ij

[
sξ,η
d2
ij

+
1

2

(
∂σ2

ij

)2
σ−2
ij

]
. (14)

Alternatively, we can write for (i, j) ∈ E

Fij = σ−2
ij

[
−1

2

(
∂σ2

ij

)2
σ−2
ij

pij p
>
ij

d2
ij

+
Bij

dij

]
, (15)

where Bij := d−1
ij (I2 − pijp

>
ijd
−2
ij ).

Remark 2. The matrices Bij are 2×2 blocks of the bearing rigidity matrix as defined in [25, Theorem 8].

As in Remark 1, this link can be used to provide conditions guaranteeing the invertibility of FU .

6 Localizability optimization methods

In this section we discuss two motion strategies for the mobile nodes in U and KM that improve

localizability by minimizing the cost function J in (7).

6.1 Gradient descent strategy

To quickly improve the localizability of U , we can use a gradient descent strategy starting from the

initial configuration p0 of the network. For each agent i ∈ U ∪ KM , the successive desired positions

are computed as follows

pk+1
i = pki − ηmin

{
1,

ηmax

||∂J/∂pi||

}
∂J

∂pi

>
∣∣∣∣∣
pi=pki

, (16)

where k denotes a step index, using a normalized stepsize rule [2]. The step size η is a given positive

constant and ηmax is a parameter adjusting the maximum distance ηmaxη between two iterations. The

gradient (∂J/∂pi)
> can be computed using standard matrix differentiation rules [20], which give for

each coordinate ζi ∈ {xi, yi, zi}, i ∈ U ∪ KM ,

∂J

∂ζi
= −Tr

{
F−2
U
∂FU
∂ζi

}
. (17)

In the Appendix, we provide an analytic formula for ∂FU/∂ζi, which can also be used to evaluate

gradients for cost functions JD and JE , from other optimal design strategies, see [13].

Suppose that the scheme (16) converges after l iterations to a configuration pl in the neighborhood

of a local minimum, i.e., ||pli−pl−1
i || < ε for each mobile node i and some threshold ε. The sequence of

configurations {pk}lk=0 can be computed offline and used to provide a reference trajectory for a lower-

level trajectory tracking controller. If used in real-time in a feedback loop however, the gradients in

the scheme (16) can only be evaluated at the current estimates p̂, which are supposed unbiased.

The gradient descent scheme can also be implemented in a distributed manner by the nodes, i.e., it

is possible for each node i to compute its local gradient (∂J/∂pi)
> in (16) by communicating only with

its ranging neighbors. Indeed, the FIM has the same sparse structure as in [4], so that the distributed

algorithms presented in Section V.B in that reference can be implemented.
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6.2 Non-myopic localizability improvement policy

The gradient descent strategy can quickly improve the localizability of the MRS by finding a local

minimum pl of the function J . However, as we illustrate in Section 7, there may exist other configura-

tions relatively close to pl with significantly better localizability. Hence, we propose a search strategy

to attempt to discover such configurations.

To do so, we introduce a regular grid of Rn around each pli, for i ∈ U ∪ KM . Starting from pl,

we recursively construct the grid by allowing at each stage k motion vectors uki ∈ Rn for each mobile

robot i, with components ±δ for some step size δ, up to a maximum number of moves D. We associate

a stage cost to a motion uki , which can penalize odometry drift, energy spent, etc. If we stop the

robots in some configuration pk at stage k, the terminal cost is J(pk). We then compute via dynamic

programming [1] trajectories for the robots that minimize the sum of the stage costs and the terminal

cost, up to the maximum horizon D. The optimal trajectory found balances potential improvement

in localizability with the total cost of the additional motions from pl.

Note that the complexity of the dynamic programming algorithm is polynomial in D, but exponen-

tial in the number of robots. It is also possible to reduce the size of the search space by removing from

the grid the configurations p such that J(p) > (1 + γ)J(pl) for some parameter γ > 0, which prevents

trajectories to go through configurations for the MRS that deteriorate the localizability too much.

7 Experimental validation

To test the models and methods developed in this paper, we consider a simple scenario with 3 fixed

UWB anchors K = {K1,K2,K3}, located at p1 = [3.0, 2.0, 1.5]>, p2 = [3.0,−2.0, 1.5]> and p3 =

[−4, 0.1, 2.0]>, and a unique UWB tag T carried by the robot shown on Figure 1. The position of the

tag is pT = [x, y, z]> where z = 0.43 m is a fixed constant and pU := [x, y]> has to be determined. The

tag T acquires distance measurements with the anchors using the SSTWR protocol described in [5],

and we aim to find a position that optimizes its localizability.

The following model for the distance measurement variance is identified empirically in the area

where the experiment is held, as explained in Section 3

σ2
Tj = α0 + α2(dTj − δ2)21δ2<dTj , j ∈ K, (18)

where α0 = 0.0382 m2, α2 = 5× 10−3 and δ2 = 4.5 m. To stress the benefits of using the model (18)

for localizability optimization, we consider two deployment scenarios: first, using a Constant Variance

(CV) model, as in [4], with α0 = 0.12 m2, α2 = 0, and second using the Quadratic Variance (QV)

model (18). Then, we compare the actual positioning performances and the localizability potential

values for both trajectories to stress the benefits of the refined model.

The values of the cost J(pU ) = Tr
{
F−1
U (pU )

}
for the CV and QV models are plotted on a loga-

rithmic color scale on Figure 3. Note that FU corresponds to the information on x and y coordinates

but involves distance measurements in R3. The initial tag position is pU (0) = [−2.5, 0.5]>. For the CV

model, the cost presents minima that are quite far from the anchors, which ignores the deterioration

of the the measurements with the distance. In contrast, the cost for the QV model has its global

minimum inside the triangle formed by the anchors, which is an intuitive placement solution.

To move the tag and optimize the localizability cost J , for both scenarios we first use the gradient

descent scheme (16). We set p0
U := pU (0), η = 200 and ηηmax = 0.5 m, and plot the computed paths

in red on Figure 3. After convergence, which is detected using a tolerance parameter ε = 0.1 m, we

apply the Non-Myopic (NM) optimization strategy of Section 6.2. We use a step size δ = 1.2 m, a

depth D = 4 and a stage cost equal to 2.0× 10−4 × ‖uT ‖2. The NM strategy returns a path from plU
to a potentially new point p∗U with better localizability, plotted in magenta on Figure 3. However, in
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(a) CV model. (b) QV model.

Figure 3: 2D localizability cost J(x, y) and computed paths for the tag, with the CV and QV models.

the CV case it turns out that plU was already a global minimum of the cost function, so that the NM

optimization has no effect for that model.

Then, the robot follows pre-computed trajectories joining the waypoints {p0
U , . . . ,p

l
U , . . . ,p

∗
U} and

acquires along them UWB range measurements with the anchors. At each position pU (t), it measures

distances d̃Tj , j ∈ K, and computes its position estimate by solving the least squares problem

p̂U (t) = argmin
p∈R2

∑
j∈K

(
d̃Tj(t)− ||p− pj(t)||

)2

,

using the Gauss-Newton method [2]. A motion capture system records the true trajectory pU (t) of the

robot. Since we are only interested here in characterizing the localization error, we use pU (t) directly

to control the motion of the robot and follow the preplanned trajectory, instead of p̂U (t). Finally, we

compute the Squared Error (SE) SE(t) = ||pU (t)− p̂U (t)||2 and the potential J(pU (t)). We plot the

results on Figures 4 and 5 for one trajectory. We also summarize in Table 1 the empirical MSE and 3σ

confidence bounds for the initial and final position estimates in both scenarios over five trajectories.
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(a) CV model.
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(b) QV model.

Figure 4: Performed trajectory and robot position estimates.

During the first 3 seconds of each run, we observe large SE values, as shown on Figure 5 and by the

empirical MSE for pU (0) in Table 1. The cost J(pU ) is correspondingly high, i.e., the localizability is

poor. Indeed, the cost function is a theoretical lower bound on the MSE, which is highlighted along

the trajectories by the superposition of J(pU (t)) and SE(t) on Figure 5. After about 4 seconds for

both scenarios the localization error decreases as the robot moves. However, range measurement errors

presumably due to multi-path are observed when the robot is moving and is far from the anchors K1
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(a) CV scenario.
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(b) QV scenario.

Figure 5: Squared positioning error and localizability cost.

Table 1: Empirical MSE for initial and final positions.[
m2

]
pU (0) pU (tf ) (CV) pU (tf ) (QV)

MSE 0.38 0.23 8.3× 10−3

3σ ±0.09 ±0.01 ±0.46× 10−3

and K2 (see Figure 5a after about 13 s for example), which yields a significant loss of precision. These

distance-dependent deterioration issues with the measurements are ignored by the CV model, while

using the QV model for deployment leads to a significant improvement of the MSE when the final

position p∗U computed by the NM strategy is reached after 35 seconds.

8 Conclusion and perspectives

In this paper, we developed a localizability criterion taking into account relative measurement distor-

tion at long range, which provides a tighter bound on the covariance of position estimates compared to

constant measurement error variance models. To use this criterion for robot deployment, we described

gradient-based and non-myopic optimization schemes. The possible improvements in positioning ac-

curacy have been illustrated experimentally. Future work includes developing tractable non-myopic

policies to search for optimal configurations over a larger area.

A Derivatives of the FIM

Here we give the expressions of ∂Fij/∂pl required to evaluate ∂J/∂pl in (16) via (17). Consider a

coordinate ζl ∈ {xl, yl, zl}. If i 6= j, ∂F ξηij /∂ζl = 0 for all l 6∈ {i, j}. Next, if i = j we have ∂F ξηii /∂ζl =

−
∑
j∈Ni∩Nl ∂F

ξη
ij /∂ζl. Finally, since the FIM FU is symmetric, we have ∂F ξηij /∂ζl = ∂F ξηji /∂ζl.

Therefore, to determine all the terms ∂F ξηij /∂ζl of ∂FU/∂ζl it is sufficient to compute ∂F ξηlj /∂ζl for

j ∈ Nl.

We find

∂F ξηlj
∂ζl

= −∂rij
∂ζl

σ−2
lj qlj + rijζlj(∂σ

2
lj)σ

−4
ij qlj − rijσ

−2
lj

∂qlj
∂ζl

,

where rij = ξljηljd
−2
lj and qlj = wlj = 1 + 1

2

(
∂σ2

lj

)2

σ−2
lj if we consider distance measurements or

qlj =
sξ,η
d2ij

+wij − 1 for angle measurements. We then compute the two remaining derivatives ∂rij/∂ζl
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and ∂qlj/∂ζl. First, we have
∂rij
∂ζl

= d−2
lj γlj − 2ξljηljζljd

−4
lj ,

where

γlj =


ξlj if ζ = η and ξ 6= η,

ηlj if ζ = ξ and ξ 6= η,

2ζlj if ζ ∈ {η, ξ} and ξ = η,

0 if ζ 6∈ {η, ξ}.
Second, if we consider distances measurement, we have

∂qlj
∂ζl

=
∂wlj
∂ζl

=
ζlj

2dlj

(
2(∂2σ2

lj)(∂σ
2
lj)σ

−2
lj − (∂σ2

lj)
3σ−4
ij

)
,

where

∂2σ2
lj =

P∑
l=2

αl l (l − 1)(dlj − d0,l)
l−2 1d0,l<dij ,

and for angle measurements

∂qlj
∂ζl

= −2ζlj
sξ,η
d3
ij

+
∂wlj
∂ζl

.
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