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Abstract— Autonomous vehicles (AVs) rely on environment
perception and behavior prediction to reason about agents in
their surroundings. These perception systems must be robust
to adverse weather such as rain, fog, and snow. However,
validation of these systems is challenging due to their complexity
and dependence on observation histories. This paper presents a
method for characterizing failures of LiDAR-based perception
systems for AVs in adverse weather conditions. We develop
a methodology based in reinforcement learning to find likely
failures in object tracking and trajectory prediction due to se-
quences of disturbances. We apply disturbances using a physics-
based data augmentation technique for simulating LiDAR point
clouds in adverse weather conditions. Experiments performed
across a wide range of driving scenarios from a real-world
driving dataset show that our proposed approach finds high
likelihood failures with smaller input disturbances compared to
baselines while remaining computationally tractable. Identified
failures can inform future development of robust perception
systems for AVs.

I. INTRODUCTION

Autonomous vehicles (AVs) rely on perception systems to
reason about critical information in their surroundings, such
as the presence of other vehicles and their future behavior.
These systems must perform reliably in a wide variety of
real-world scenarios that may not be be present during
development or may occur infrequently. Reliable perception
performance in adverse weather continues to be a challenge
for state-of-the-art perception systems [1], [2]. Identifying
how and when these systems fail in such conditions is critical
to the development and eventual deployment of autonomous
systems in human environments.

Many state-of-the-art AV perception systems rely on in-
dependent modules to perform object detection, tracking,
and trajectory prediction [3]–[5]. These modules may use
data-driven or classical methods. Verifying the input-output
properties of an individual module is not sufficient to guar-
antee good performance, since small errors in tasks like
object detection may be magnified in downstream modules
like trajectory prediction. Additionally, these systems rely
on sequential observations of the environment, meaning that
failures are associated with trajectories of detected objects.
Searching for failures over trajectories is difficult due to the
high-dimensionality of the search space.
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Fig. 1: Our proposed PAST framework for validation of tracking
and prediction stages of an AV perception systems under adverse
weather conditions. Red points indicate disturbances to the per-
ception system caused by LiDAR beams reflecting off of airborne
particles. MCTS controls how sequences of disturbances are added
to the system to cause failures in perception tasks that depend
on detections aggregated over time, such as object tracking and
trajectory prediction. PAST seeks to find the most likely failures in
these sequential perception system tasks.

Many previous approaches to validation of perception
systems draw on the idea of an adversarial attack on ob-
ject detection [6]–[8]. These methods solve an optimization
problem to find a small perturbation or physical object that
leads to an incorrect object detection when added to the base
input. However, they do not consider the impact that such
perturbations could have on downstream perception tasks that
depend on a history of detections, such as object tracking and
prediction. There have been several studies on the impact
of weather disturbances on sensing and object detection [9],
[10]. The performance of state-of-the-art object detectors can
be severely degraded in the presence of rain, fog, or snow [1].
These studies primarily consider the robustness of sensing
capabilities and object detection, but not the potential impact
of weather on downstream perception tasks.

This work focuses on the validation of LiDAR-based per-
ception systems in adverse weather. Research in validation
of complex systems has led to the development of adaptive
stress testing (AST), which uses reinforcement learning to
find the most likely ways that a system can fail [11]. AST is
used to validate black-box systems, where no knowledge of
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the system under test is available. The reinforcement learning
agent adds sequences of disturbances to the system to try to
cause failure. However, existing work on AST has primarily
considered stress testing of decision-making systems, where
the goal is to drive the true state of the system to failure. In
contrast, our goal is to drive a system’s estimated state to a
failure condition.

Our approach frames perception system validation as a
sequential decision making problem. We extend the AST
framework by using reinforcement learning to search for
sequences of disturbances that lead to perception system
failure. Our method is able to find sequences of disturbances
introduced by models of adverse weather that cause the per-
ception system to incorrectly track and predict the behavior
of surrounding vehicles.

This paper makes the following contributions: We present
a formulation of AST for perception systems which we call
Perception AST (PAST), illustrated in Fig. 1. We apply
PAST to find failures in a state-of-the-art AV LiDAR-based
perception system under adverse weather conditions. Our
experiments over many driving scenes show that our method
can find more likely failures compared to other approaches.

II. RELATED WORK

A. Validation Methods

Safety validation is the process of ensuring safe operation
of a system in an operating environment [12]. Methods such
as statistical model checking have been used to estimate the
probability that a perception system’s estimates comply with
some specifications [13]. Recently, AST has been applied
to autonomous systems to search for the most likely ways
that decision-making systems can fail [11], [14], [15]. This
work extends the AST formulation to search for the most
likely failures in perception systems rather than planning and
control systems.

B. Adversarial Attacks

There has been a significant amount of work investigating
robustness of image-based object detection with deep neural
networks [6], [16]. These methods typically introduce local
or global perturbations on inputs that cause networks to
incorrectly classify or miss objects that would otherwise be
detected. For more on these methods, refer to the survey by
Akhtar et al. [17]. Generative adversarial networks (GANs)
have also been used to generate attacks on object detec-
tion and to identify out-of-distribution examples in object
detection [18], [19]. These methods require ample data to
generate realistic attacks which may not be available and do
not consider temporal sequences of observations.

Adversarial attack methods for image-based detectors have
inspired methods for point-cloud based representations [20].
Point-cloud adversarial attacks can use similar perturbations
as images, such as adding noise to point positions or com-
pletely removing some points from the input [7], [21]. These
adversarial methods can quantify the robustness of deep-
learning based object detectors, but do not consider the

impact of disturbances on downstream temporal tasks such
as object tracking and prediction.

C. Impact of Weather on Perception

Prior works studied the impact of adverse weather such as
rain, fog, and snow on LiDAR data [2], [9], [10]. Adverse
weather tends to decrease the maximum detection range, add
noise to range measurements, and introduce backscattering
where LiDAR beams reflect off of particles in the air. Further
studies have investigated building and applying models of
adverse weather conditions to evaluate the robustness of
object detection [1], [22], [23]. We draw on these models to
simulate the impact of adverse weather conditions on LiDAR
data. Specifically, these weather models provide controllable
disturbances to perception system input data that AST uses
to induce failures.

III. METHOD

This section describes our Perception Adaptive Stress
Testing (PAST) formulation. First, we overview the typical
components of an AV perception system. Next, we define the
objective function for PAST, and show how it can be framed
as a Markov decision process (MDP).

A. Problem Setting

This work considers LiDAR-based AV perception systems
with modular components for object detection, tracking, and
prediction. At each time step, the perception system takes
as input a 3D LiDAR point cloud and produces a list of
object tracks and motion predictions. We assume that object
tracks are represented by 3D bounding boxes with associated
position, velocity, and orientation. Predictions are made for
all tracked vehicles that are not parked. Trajectory predictions
for individual objects are represented by a time series of
future positions. Our goal is to find likely sequences of
disturbances to the input LiDAR data that cause large errors,
or failures, in the object tracks and predictions.

B. Adaptive Stress Testing for Perception Systems

AST is a configuration of model-free reinforcement learn-
ing for black-box system validation [11]. Rather than learn-
ing a policy that optimizes an agent’s performance, AST
optimizes disturbances to the environment that cause an
agent to fail. Previous applications of AST have focused
on validation of decision-making systems, where the goal
is to drive the true state of a system to failure. We present a
formulation of AST for the validation of perception systems
called Perception AST (PAST). In contrast to AST, the goal
of PAST is to drive the estimated state of a system to failure.

We define a generative black box simulator S comprised
of time-series sensor data, a stochastic disturbance model,
and a perception system. We denote the hidden internal state
of the system at time t as st. The internal state represents
the perception system’s belief or state estimate about the
true states and future trajectories of surrounding agents. The
simulation is stepped through time by drawing a random
next state, where the sampling is pseudorandomly generated



from a provided seed. In our simulator, we first sample an
input disturbance from the disturbance model and then use
the perturbed data to update the perception system’s state
estimate. The simulator exposes the following four functions
for simulation control:

• Initialize(S ): Resets the simulator S to an initial
state s0. This function resets the internal state of the
perception system and the sensor data.

• Step(S , a): Steps the simulation S in time by up-
dating the perception system with a sample from the
disturbance model. The randomness in the disturbance
is controlled by the psuedorandom seed a. This function
returns the likelihood of the transition, which is the
likelihood of the sampled disturbance.

• IsTerminal(S ): Returns true if simulator S has
reached the end of the simulation horizon and false
otherwise.

• IsFailure(S ): Returns true if the perception system in
simulator S has reached a failure.

The goal of PAST is to find the most likely sequence of
disturbances generated by seeds a0:t such that IsFailure(S )
is true. Equivalently, we can formulate the objective as
finding the sequence of pseudorandom seeds that maximizes
the joint probability of disturbances subject to the constraint
that the disturbances lead to a failure.

Following the AST framework, we recast this problem into
an MDP. An MDP is defined by the tuple (S,A, R, T ) [24].
An agent chooses an action a ∈ A based on a state s ∈ S and
receives a reward r based on the reward function R(s, a). The
state transitions stochastically to the next state s′ according
to the transition model T (s′ | s, a). In the PAST MDP,
actions correspond to psuedorandom seeds for the generation
of disturbances to the perception input data. Recall that since
the actions a control the stochastic transition of the system,
the sequence of actions uniquely determines the system’s
state s. The transition model for the MDP is represented by
the Step function exposed by the simulator, which takes in
an action and returns the probability of the transition.

The reward function is designed to be equivalent to
maximizing the joint probability of all actions, assuming
that each action is independent. The functions IsFailure and
IsTerminal exposed by the simulator are used to calculate the
reward according to:

R(s, a) =


0 if IsFailure(s)
log p(a) else if not IsTerminal(s)
−α otherwise

(1)

where α is a large term that penalizes cases where a terminal
state is reached that is not a failure. Assuming actions are
independent, the agent in the MDP is maximizing the sum
over log p(at), which is equivalent to maximizing the product
over p(at) or the probability of the action sequence.

The goal of a PAST agent is to maximize its expected
utility by finding a policy π that specifies an action a = π(s).
The utility of following a policy π from state s is given by
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Fig. 2: Illustration of tracking failure (left) and prediction failure
(right). In both images, the ego vehicle is in blue and the observed
vehicle is in red.

the value function:

V π(s) = R(s, π(s)) + γ
∑
s′

T (s′ | s, π(s))V π(s′) (2)

where γ is the discount factor that controls the weight of
future rewards. Algorithms such as Monte Carlo Tree Search
(MCTS) can be used to find an optimal policy. MCTS is an
online sampling-based algorithm that can be used to find
solutions to MDPs [25]. MCTS builds a search tree by
sampling the state and action spaces, and estimates the value
of states and actions through forward simulation. This work
uses a variant of MCTS with double progressive widening
(DPW) [26]. DPW regulates the branching factor in the state
and action spaces to prevent the number of children in the
search tree from exploding when the state or action spaces
are very large.

IV. EXPERIMENTS

In this section we present the experimental setup used to
illustrate the performance of our proposed method. We de-
scribe specific data sources, perception system components,
and failure definitions for each experiment. We consider two
experimental settings. We first illustrate the effectiveness of
our approach at finding failures in the perception of a single
vehicle. Then we consider an at scale experiment using an
adverse weather disturbance model.

A. Experimental Setup

We perform validation of an AV perception system using
data from the real-world driving dataset, nuScenes [27]. The
dataset contains many hours of real-world driving data di-
vided into 20 s long scenes. Each scene contains 32-beam Li-
DAR sweeps at 20 Hz and ground truth 3D object bounding
boxes. We only consider the 123 scenes from the validation
split that were recorded in clear weather conditions. We use
the validation split to avoid any issues that may be caused
by overfitting in perception modules. Our algorithm does not
involve training or tuning hyperparameters based on this data.
We treat each of these scenes as an independent validation
case, in which we stress test the system to find a likely
sequence of disturbances that lead to failure. Each scene is
simulated by stepping through time, perturbing the recorded
point cloud, and updating the perception system.
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Fig. 3: Detections (blue) and ground truth (black) bounding boxes leading up to the failure discovered in the single object perception PAST
experiment. The target vehicle is in the center of each detection frame. The solid line inside the box indicates heading. PAST does not
remove any points until t3, where it removes 15 points from the front of the target vehicle. This disturbance causes a large error (almost
180°) in the detected heading of the target vehicle. Under this simple disturbance identified by PAST, the target vehicle is predicted to
be travelling in the opposite direction as the ground truth. The ISO baseline removes points at each time step that prevent the target from
being detected. Since there are no detections of the target vehicle with ISO, the perception system can’t make a trajectory prediction. The
target vehicle is shown in red in the predictions. AST is able to find a more likely path to failure by considering disturbance trajectories.

B. Perception System Under Test

We consider validation of state-of-the-art detection, track-
ing, and prediction modules that are commonly used to
baseline nuScenes perception tasks. Object detection is per-
formed by the PointPillars architecture [28], [29]. Multi-
object tracking is performed by AB3DMOT, which uses
a Kalman filter to maintain tracks of 3D bounding box
observations [30]. Finally, trajectory prediction is performed
by CoverNet [31], which makes predictions based on a pre-
determined set of candidate trajectories.

C. Failure in Single Object Perception

As an illustrative example, we consider the case where
disturbances only interfere with the perception of a particular
vehicle in the scene, which we refer to as the “target vehicle”.
We hand select a target vehicle from the dataset, and define a
simplified disturbance model that only impacts points inside
the target vehicle’s bounding box.

Disturbance Model: We assume that every LiDAR point
in the bounding box is associated with an independent
Bernoulli random variable representing whether the point
will be removed. All points have the same probability of
being removed, θ. Given a random sample generated with
seed a for all m available points, the likelihood of the
disturbance is:

p(a) = θn(1− θ)m−n (3)

where n is the number of points selected to be removed. For
demonstration purposes, we use θ = 0.1.

Failure Definition: We define a failure in perception for
this simple example in terms of the target vehicle’s estimated
track and trajectory prediction. These definitions are illus-
trated in Fig. 2. We define failures in tracking to occur when
the error in the estimated position exceeds 2 m, or when the
track associated with the target vehicle is lost. We define a
failure in prediction to occur when the final displacement



TABLE I: PAST and baseline results on the nuScenes dataset. Mean and standard error values are provided for the
local disturbance magnitude δ, global disturbance magnitude ∆, and trajectory length. Higher failure rate indicates better
performance, while lower values of disturbance magnitudes and trajectory length are desired. PAST is able to find many
likely failures in both tracking and prediction.

Failure Criteria Method Failure Rate (%) δ (%) ∆ (%) Trajectory Length (-)

Tracking and Prediction ISO (Baseline) 69.1 8.1 ± 2.1 0.11 ± 0.20 5.75 ± 0.57
MC (Large) 25.1 4.68× 10−2 ± 7.6× 10−3 3.94 ± 0.35 12.2 ± 1.2
MC (Small) 22.1 3.08× 10−2 ± 4.5× 10−3 3.54 ± 0.54 13.9 ± 1.3
PAST (Large) 51.2 4.06× 10−2 ± 1.2× 10−2 4.10 ± 0.42 7.54 ± 0.62
PAST (Small) 31.7 2.71× 10−2 ± 8.2× 10−3 4.00 ± 0.53 8.63 ± 0.57

Prediction MC (Prediction) 21.9 5.18× 10−2 ± 7.1× 10−3 3.19 ± 0.57 16.5 ± 1.1
PAST (Prediction) 29.3 7.70× 10−2 ± 1.5× 10−2 3.41 ± 0.55 9.46 ± 0.71

error exceeds 15 m in CoverNet’s most likely predicted
trajectory. We chose this threshold to capture cases where
the predicted intent of a vehicle is significantly different from
ground truth. In practice, these failure thresholds should be
decided by vehicle manufacturers and policy makers.

D. At Scale Validation in Adverse Weather

In the following set of experiments, we perform vali-
dation on all 123 scenes from the nuScenes dataset with
disturbances based on an adverse weather model. These
experiments demonstrate the ability of our method to scale
validation of a state-of-the-art perception system over a wide
range of driving scenes.

Disturbance Model: We use the LiDAR Light Scattering
Augmentation (LISA) software package to model the effects
of adverse weather on LiDAR data [23]. LISA provides
methods to augment LiDAR measurements with physics-
based models of rain, fog, and snow. In our experiments, we
focus on disturbances due to rain. LISA takes as input a rain
rate and returns a new point cloud with simulated rain effects.
The algorithm generates a new point cloud by randomly
sampling from physics-based distributions to remove points,
add range noise, and reflect points. For use within our PAST
framework, we modify LISA to accept a random seed and
to compute the log-likelihood of sampled disturbances.

Failure Definition: The definitions of perception failure
are slightly different in adverse weather experiments to
more accurately reflect how a real-world perception system
might be used. Here, failures in prediction occur when the
minimum final displacement error exceeds 15 m over Cover-
Net’s top five most confident predictions. The definition of
tracking failures is the same as in the single object perception
experiment. We only check for failures that emerge due to
the adverse weather disturbances. In particular, if a failure
criterion is met for a vehicle without disturbances, we do not
terminate PAST for this failure event.

We perform PAST over all 123 scenes using three different
configurations. The first configuration we call PAST (Large).
PAST selects from three relatively heavy rain rates of 20, 30,
and 40 mm/h. We consider more mild disturbances in PAST
(Small), where we consider rain rates of 5, 10, and 15 mm/h.
The last experiment PAST (Prediction) uses the same smaller
rain rates, but only considers failures in prediction. PAST

(Prediction) demonstrates the flexibility of PAST to find
failures under different criteria. For all PAST experiments,
we use MCTS with a maximum of 2, 000 iterations.

E. Baselines

As a baseline for our approach, we consider a modified
version of the Iterative Salience Occlusion (ISO) algorithm,
an adversarial attack on 3D object detection [21]. ISO uses
latent feature spaces of 3D object detectors to identify
sets of critical points, or points in the input space that
contribute the most to the network’s identification of an
object. ISO iteratively removes these critical points from the
input until the network misclassifies the result. The original
ISO algorithm was created for single object detection. We
use a modified version of the ISO algorithm for the multi-
object detection task in AV perception.During simulation,
we run ISO each time step until a maximum number of
iterations is reached or a vehicle is misclassified. Rather
than checking for misclassification of a single object, we
check for misclassification of any agent of a specific class,
such as ‘car’. After termination of ISO, we use the new
point cloud that it returns to update the perception system’s
state estimate. Adversarial attack methods like ISO struggle
to stay computationally tractable when considering multiple
time steps and very large point clouds. We restrict ISO to
consider LiDAR points inside the ground truth bounding
boxes of other vehicles and set a limit of 100 iterations to
ensure computational tractability in our experiments.

We also baseline our approach using Monte Carlo (MC)
random search with the adverse weather disturbance model
to confirm that PAST is able to maximize its objective.
Random search selects actions at random using the same
number of iterations as MCTS and returns the maximum
likelihood failure discovered. This baseline is repeated for
each of the large rain rate, small rain rate, and prediction-
only experiment cases that we consider for PAST.

V. RESULTS

Experiments were conducted on a desktop with 32GB of
RAM, an Intel i7-7700K CPU, and an NVIDIA GeForce
GTX 1080 Ti GPU. PAST was implemented using AST-
Toolbox, an open-source software package for designing
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Fig. 4: Histogram of the total log-likelihood of failures in trajectory
prediction found using Monte Carlo random search and PAST.
PAST successfully finds more likely failures than random search.

and running AST experiments.1 We first consider an exper-
iment involving perception of a single object in a scene.
Next, we perform experiments over many driving scenes
using an adverse weather disturbance model, demonstrating
our method’s ability to scale. Our code is available at:
https://github.com/sisl/PerceptionAdaptiveStressTesting.

Failure in Single Object Perception: The object de-
tections and predictions for the single object perception
experiment are illustrated in Fig. 3. In the detections, the
target vehicle is shown in the center of the frame. The
target vehicle is making a left turn while becoming occluded
with respect to the ego vehicle. In the predictions, the target
vehicle is shown in red. The perception system successfully
outputs good tracks and predictions without disturbances as
seen in the first row.

The most likely failure event according to PAST is shown
in the second row in Fig. 3. The most likely failure in this
experiment corresponds to the failure that results from the
fewest total number of points removed. At the beginning
of its search, PAST removes points at each time step. Over
successive iterations, PAST seeks to maximize the expected
reward, or minimize the number of points removed. PAST
discovers that a failure can occur by only removing 15 points
at the third time step (as shown in Fig. 3). The ISO baseline
removes 112 LiDAR points in total, removing points at every
time step, resulting in the target vehicle never being detected
by definition of the approach. By reasoning over trajectories
of disturbances, PAST is able to find a failure trajectory that
removes significantly fewer points than the ISO baseline.

At Scale Validation in Adverse Weather: For the at scale
experiment, we compare the performance of our method
against baselines in terms of failure rate, mean local dis-
turbance magnitude δ, global disturbance magnitude ∆, and
mean trajectory length. Failure rate refers to the proportion
of scenes that the method was able to find failures in. Local
disturbance magnitude δ is the proportion of points removed
from inside the bounding box of the vehicle involved in the
failure. Global disturbance magnitude ∆ is the proportion

1https://github.com/sisl/AdaptiveStressTestingToolbox

of points moved or removed in the whole point cloud.
Trajectory length refers to the number of observations of
the failure vehicle leading up to the failure event.

A summary of experimental results for PAST and baseline
methods over the nuScenes validation split is shown in
Table I. The first five rows in Table I show results for
experiments considering failures in tracking and prediction.
PAST outperforms MC in failure rate as well as in trajectory
length. The baseline ISO algorithm is substantially more
aggressive in the number of points removed locally than
our algorithm, resulting in a higher failure failure rate when
considering failures in tracking and prediction. For ISO
to be tractable at the scale of these experiments, it was
restricted to consider points inside ground truth bounding
boxes. ISO tends to remove a higher proportion of LiDAR
points associated with specific vehicles to introduce poor
detections. In contrast, while PAST adds a disturbance over
the whole point cloud, this disturbance is relatively small
with respect to the ground truth vehicles as demonstrated by
the δ metric. Therefore, PAST can scale validation to larger
datasets and add smaller disturbances by considering longer
failure trajectories.

When considering failures in tracking and prediction, all of
the failures found by PAST and the baseline methods occur
in object tracking. To find failures in prediction, there must
first be tracks to predict. Since the disturbances cause poor
detections, it is more difficult to maintain good object tracks
and the perception system fails in tracking before failures
in prediction can manifest. The last two rows of Table I
show results considering only failures in prediction. The ISO
algorithm was unable to find failures in prediction. Both MC
(Prediction) and PAST (Prediction) were successful, since
they are able to consider longer failure trajectories. PAST
finds more failures in predictions than MC because it is able
learn sequences of actions that maximize the PAST objective
function. Fig. 4 shows a histogram comparing the likelihood
of failures found in MC (Prediction) and PAST (Prediction).
In addition to being able to find more failures than MC,
PAST also finds failures that are shorter and more likely.
The high performance of PAST compared to random search
suggests that PAST is maximizing its objective function.

An example failure trajectory is illustrated in Fig. 5. In
this scene, the ego vehicle is stopped at a light with a
few surrounding vehicles. The vehicle just to the left of
the ego begins to accelerate forward. Without disturbances,
this behavior is predicted accurately. However, the rain
disturbance identified by our PAST method makes it appear
to the perception system that the vehicle is turning right and
into the ego vehicle’s lane, cutting the ego vehicle off. This
incorrect prediction about the other vehicle’s future trajectory
could lead to undesirable performance in the AV, such as an
unnecessary hard braking maneuver.

PAST required 90 min for a single scene on average,
while Monte Carlo and ISO averaged 60 min and 200 min,
respectively. While ISO finds shorter paths to failure than
MC or PAST, its aggressive local disturbances are not likely
to occur in the real world. Considering smaller disturbances

https://github.com/sisl/PerceptionAdaptiveStressTesting
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Fig. 5: Comparison of detections and predictions without disturbances (top) and with disturbances found by PAST (bottom). Red points
indicate points reflected due to the adverse weather model. Detected bounding boxes are shown in blue and the ground truth is shown
in black. With the adverse weather disturbance, the detections of the vehicle just to the left of the ego vehicle appear to be turning
right. Predictions are shown in the last column with the ego vehicle in green and the predicted vehicle in red. The observations under
disturbances cause the predicted trajectory to be turning right and in front of the ego vehicle when the vehicle is actually accelerating
straight ahead. This type of failure could cause the AV to brake unnecessarily in traffic, causing a potentially unsafe driving scenario.
Results for ISO are not shown since it is unable to find a failure.

with ISO becomes computationally intractable due to the
high dimensionality of the search space. PAST is able to find
failures in prediction and tracking that are relatively small
while remaining computationally tractable.

VI. CONCLUSION

AVs rely on perception and prediction to reason about their
surroundings. Identifying how and when these systems fail
in adverse weather conditions is critical to the development
and deployment of autonomous systems in human environ-
ments. This work presents PAST, a method for validation
of LiDAR-based perception systems that uses reinforcement
learning to find likely failures. The method was applied to
the validation of a perception system in adverse weather
using real-world LiDAR data. The results showed that the
proposed PAST method tractably finds likely disturbances
that introduce large errors into the tracking and prediction
of other vehicles across a range of driving scenarios. A key
future research direction is to apply PAST to validate end-to-
end perception and prediction methods [32]–[35], enabling
quantitative comparison of the robustness between modular
and end-to-end perception systems under adverse weather
conditions. Additionally, understanding failures in different
systems could inform how to combine perception systems
to balance each component’s strengths and weaknesses,
resulting in a more robust solution.
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