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Abstract— To safely deploy legged robots in the real world it
is necessary to provide them with the ability to reliably detect
unexpected contacts and accurately estimate the corresponding
contact force. In this paper, we propose a collision detection
and identification pipeline for a quadrupedal manipulator. We
first introduce an approach to estimate the collision time span
based on band-pass filtering and show that this information
is key for obtaining accurate collision force estimates. We
then improve the accuracy of the identified force magnitude
by compensating for model inaccuracies, unmodeled loads,
and any other potential source of quasi-static disturbances
acting on the robot. We validate our framework with extensive
hardware experiments in various scenarios, including trotting
and additional unmodeled load on the robot.

I. INTRODUCTION

Quadrupedal robots have recently become sufficiently ad-
vanced to be deployed in unknown and unstructured envi-
ronments, where they could operate alongside humans or
other robots. In such settings, unexpected collisions with
people or objects are likely to occur and collision detection
plays an important role in ensuring the safety of the external
environment, and also for keeping the balance of the robot.
Thus, robots need to be able to reliably detect such collisions,
accurately estimate the corresponding contact forces and
their location, and react accordingly.

Literature refers to the framework for responding to col-
lisions as the collision event pipeline, separating a collision
event into five phases, i.e.: detection, isolation, identification,
classification and reaction [1]. In this paper, we focus on
two phases. Briefly, the collision detection phase defines
when a collision happens based on the external estimated
torques acting on the robot, and the collision identification
phase estimates the external collision force in magnitude and
direction.

Momentum-based collision event pipelines have proven
to be successful in collision handling for fixed-based ma-
nipulators [1], [2]. However, especially for complex high-
DoF robots, the employed robot model might be affected
by potential accidents and modeling inaccuracies due to, for
example, static friction, wear and tear. In addition, it might be
difficult to model all kinds of payloads that the robot might
need to carry during a manipulation task. Such elements of
uncertainty can lead to failures of the collision detection
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Fig. 1: The quadrupedal robot ANYmal with a 6-DoF manip-
ulator mounted on top. We consider the following scenarios:
(1) stance; (2) arm motion; (3) measured load in the gripper;
(4) unmodeled load on the base; (5) unmodeled load on the
forearm; and (6) trot.

phase (e.g., detecting a collision when there is none) or
inaccurate external force estimation (e.g., considering the
force coming from such disturbances as being part of the
collision force). Therefore, in this work, we focus on the
design of a collision detection and identification method that
is robust against such disturbance factors. To achieve this,
we recognize the importance of detecting the start and end
time of a collision, and use this information to improve the
collision force estimation during the identification phase. We
provide a comparison of state-of-the-art methods focusing on
torque estimation and collision detection. Finally, we carry
out extensive hardware tests where we validate our pipeline
and open-source the data of over 400 collisions from our
experiments as a public benchmark dataset.

A. Related work

Existing collision event pipelines for robotic systems are
based on monitoring the generalized external torques act-
ing on the robot. Many torque estimation methods have
been proposed in the literature, e.g. direct estimation [3],
static direct estimation [4], filtered dynamics observer [5] or
momentum-based observers (MBO) [6], [7], [8], [9], [10].
For collision detection, the estimated torques are usually
compared with appropriately-designed thresholds [11], [12].
Constant thresholds suffer from the problem of false positives
(FPs) occurring when a robot task includes high-frequency
content or false negatives (FNs) for light impact collisions.
Another challenge in collision detection is the presence of
modeling errors that can generate slow and configuration-
dependent variations in the estimated torques. Dynamic
thresholds based on velocity [13], [14] or standard deviation
of the estimated force [15] have been proposed to cope with
such a problem. An effective way to improve the robustness
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of detection in the presence of model uncertainties [16] or
unknown loads [17] is to filter the estimated torques with
a band-pass filter (BPF). BPF-based methods filter out the
quasi-static component in the estimated external torques due
to payloads or model inaccuracies, allowing to reduce the
detection threshold by an order of five [16], and thus obtain
faster detection. However, so far BPF-based works have only
considered high-impact contacts on low-DoF manipulators
and have focused only on the detection phase.

The collision detection step is usually followed by a
collision isolation phase [1], [18], [19] and a collision iden-
tification phase. Collision identification has been studied for
fixed-base manipulators [1], and works have also considered
wheeled humanoids [20], [21]. Legged robots, on the other
hand, impose additional challenges, such as the high number
of DoFs which increases the computational time and tuning
complexity [18], impulsive contact switching during trotting
[8], and the necessity of reasoning about a large number of
contacts [6]. Thus, much interest has recently been given
to tackling the problem of force estimation and collision
identification for legged robots [4], [6], [8], [18], [19], [22],
[23]. In [4], contacts are applied while a NAO humanoid is at
standstill or static equilibrium. Similarly, in [3], four different
collisions between 25 − 30N lasting 18 s are applied on
a HRP-4 humanoid. Collision identification during walking
with a NAO robot is addressed in [22]; the authors estimate
the external collision forces using internal (proprioceptive)
sensing in combination with an Inertial Measurement Unit
(IMU) and force-sensing resistors beneath the feet. Contact
wrench estimation for quadrupeds has mostly been restricted
to estimating the forces at the feet in contact with the
ground [7], [23], [24]. In [8], external forces are estimated
at unknown contact points other than the feet; multiple case
studies in which collisions are applied to the legs, both during
stance and trotting, are validated in simulation.

However, such works do not consider the effect of model
uncertainties or unmodeled loads on the estimated external
forces. In [6], force/torque (F/T) sensors placed on the robot
body are used to compensate for the weight of an unknown
load; model inaccuracies are not addressed and the method is
only validated in simulation. Furthermore, previous works on
collision handling for legged robots have only been evaluated
on real hardware on a small number of collisions.

B. Contributions

In this work, we propose a model-based collision detection
and identification framework for a quadrupedal manipulator,
able to estimate the collision time span and external collision
forces in various scenarios, including unmodeled loads on the
robot. The main contributions of this work are the following:

• A BPF-based approach for estimating the time span of
applied collisions, that is shown to make the collision
identification phase more accurate.

• An improved identification method, based on continu-
ous disturbance force estimation, which can compensate
for unmodeled loads and model inaccuracies.

• A comparison of state-of-the-art external torque estima-
tion and collision detection methods.

• Extensive experimental validation of the proposed
framework on a quadrupedal manipulator. This is ac-
companied by an open-source dataset 1 of multiple
collision samples, including collisions on the base and
arm in various scenarios as depicted in Fig. 1.

II. PRELIMINARIES

In this section, we first present the model of a floating-base
manipulator (Sec. II-A). Then, we give the fundamentals of
the first block of the collision pipeline (see Fig. 2). These
fundamentals are generally applicable to any robot system
and include the estimation of the external generalized torques
(Sec. II-B) and the external wrench (Sec. II-C).

Throughout the paper, we use the symbol â to denote the
estimate of a variable a. In addition, the 2-norm of a vector
a is denoted as |a|, while the absolute value of one of the
components of the vector is denoted as |a|.

A. Floating-base dynamic model

The equations of motion of a floating-base robot are given
by [19], [25]

M(q)v̇ +C(q,v)v + g(q) = ST τm + τ ext + τ ft, (1)

where q,v ∈ R6+n are the robot generalized coordinates
and velocities, respectively, and n is the number of actu-
ated joints. M(q) ∈ R(6+n)×(6+n) is the inertia matrix,
C(q,v) ∈ R(6+n)×(6+n) is the Coriolis matrix while g(q) ∈
R6+n is the vector of gravitational terms. The joint torques
τm ∈ Rn are mapped into the 6 + n dimensional space of
generalized velocities by the transpose of actuator-selection
matrix S =

[
0n×6 In×n

]
. In this work, we divide the

external torques acting on the robot into two components.
The first one is assumed to be directly measured using a F/T
sensor and is denoted τ ft. The second one is denoted as τ ext

and is due to external contact and collision forces that are
not measurable with a F/T sensor, and disturbances. With
a slight abuse of notation, in this paper we use the term
disturbances to refer to modeling inaccuracies, unmodeled
payloads, sensor noise and errors in the estimation of motor
torques τm. The latter might occur when estimating the
torque τm from current measurement (e.g., in pseudo direct
drives) without any additional torque sensors.

B. Torque estimation

To estimate the external torques acting on the robot joints,
τ ext, we use a momentum-based observer approach [12],
which is based on the definition of the robot generalized
momentum p =M(q)v. Let n(q,v) := g(q)+C(q,v)v−
Ṁ(q,v)v. Based on [12], τ̂ ext can be computed as

τ̂ ext =KO

(
p(t)−

∫ t

0

ST τm + τ ft − n̂(q,v) + τ̂ extds

)
,

(2)

1Available at https://u.ethz.ch/wmIqO



where KO is a positive diagonal observer gain matrix, and
n̂ is the estimate of the nonlinear terms n, obtained from
the rigid body dynamics equations of the robot.

C. Wrench estimation

Let Fext,i = (Fext,i,mext,i) ∈ R6 be the wrench applied
to the colliding link i. The force Fext,i is given by Fext,i =
Fc,i + Fdis,i, where Fc,i is the external collision force, and
Fdis,i is due to all other disturbance sources. Note that
besides detecting the beginning and the end of a collision,
the final goal of this paper is to isolate the disturbance
component Fdis,i and obtain an accurate estimate of the
collision force Fc,i.

Once τ̂ ext is obtained from Eq. (2), the external forces
and wrench are estimated as

F̂f,1

...
F̂f,4

F̂ext,i

 =
[
JT
f,1(q) . . . JT

f,4(q) JT
i (q)

]#
τ̂ ext, (3)

where the symbol # denotes the Moore-Penrose pseudoin-
verse operation, Ff,j is the force on contact foot j with Jf,j ∈
R3×(6+n) its translational Jacobian, and Ji ∈ R6×(6+n) is
the spatial Jacobian of the colliding link i [6], [19]. Here,
the contact feet and the collision links are modeled as point
contacts and thus are only subject to linear forces. However,
since the exact contact location of the collision force is
unknown, the spatial Jacobian of an arbitrary robot link is
used in Eq (3), which results in the additional torque mext,i

caused by the impact force.
In this work, we assume quasi-static scenarios. This as-

sumption is valid even while trotting, since the arm and the
base - on which the collisions occur - are not subject to high
accelerations.

III. COLLISION DETECTION, ISOLATION AND
IDENTIFICATION

As the fundamentals of torque and wrench estimation
are explained in Sec.II, in this section we describe the
remaining components of the pipeline: detection, isolation,
and identification. A scheme of the pipeline is illustrated in
Fig. 2 and can be summarized in: (1) estimating the external
torque τ̂ ext and the external force at the base and arm; (2)
filtering the estimated forces with a BPF to detect the start of
a collision and estimate its time span; (3) filtering τ̂ ext with
a BPF and using it to determine if the arm or base is the
colliding body part; and (4) isolating the disturbance from
the force estimate to identify the collision force. With the
final estimated collision force F̂c, a reaction strategy can be
implemented.

A. Collision detection

At the start of the collision pipeline, we do not have any
knowledge of the colliding body part yet. Therefore, both
the estimated external forces on the arm, F̂ext,arm, and the
base, F̂ext,base, are used as inputs to the collision detection
block (Fig. 2). They are estimated from Eq. (3) by stacking

either the arm or the base Jacobian in JT
i (q). While the

estimated external torque vector τ̂ ext could also be used for
collision detection, it is more intuitive to use the estimated
external forces at the arm and the base for observation and
tuning purposes. We note that it is essential to verify both
base and arm force for collision detection since particular
arm collisions will not be detected in the base force, and
vice versa.

1) Force filtering: During collision detection, we first
filter F̂ext,arm and F̂ext,base with a BPF. We indicate the
resulting filtered forces with F̂ ′ext,arm and F̂ ′ext,base. While
it has been proven that the use of a high-order BPF can
increase the overall robustness of the detection [16], [17], it
increases the time delay compared to a first-order BPF [26].
We therefore opt for the latter in our experiments.

2) Collision detection and time span estimation: During a
collision, the high-pass property of the BPF causes two peaks
on the filtered forces, one at the start and one at the end of
the impact. These peaks are the result of the high frequencies
due to the sudden force change when the contact is applied
and removed. This phenomenon is depicted Fig. 3 (top-right
plot). In the proposed method, we employ this two-peak BPF
phenomenon to detect not only the beginning but also the end
of the collision.

Briefly, a collision is detected when the band-pass filtered
force crosses the chosen threshold b on either the positive
or the negative half-plane. The end of the collision is then
detected at the beginning of the second peak, i.e. when
the signal crosses the threshold on the opposite half. This
criterion is applied to each component of the band-pass
filtered force. The detection of the beginning and the end of
the collision using the band-pass filtered force, rather than
the estimate of the force itself, is of particular importance as
it is robust against disturbances. It also allows for an accurate
estimation of the time span of the collision.

The output of the collision detection is a variable ε, which
is 1 if a collision is detected and 0 otherwise.

B. Collision isolation

A common approach to isolate the colliding body link
is based on the assumption that, when a collision occurs
at contact link i in an open kinematic chain structure, this
contact does not produce torques along the joints more distal
from the link in contact [1], [3], [6]. Consequently, the
first link i for which |τ̂ext,i| > bis, with bis the isolation
threshold larger than 0, is defined as the one on which the
external force is applied. The validity of this assumption can,
however, be challenged as collision forces parallel to joint
axes cannot be detected.

Here we aim to distinguish between base and arm colli-
sions, hence retrieving the contact link and the exact contact
location is out of the scope of this work. Therefore, we
use the following collision isolation rule: after a collision
is detected, if one of the arm torques τ̂ ′ext,i crosses its
threshold, we conclude that the collision is occurring at the
arm. Otherwise, it is occurring at the base.



Fig. 2: Collision-event pipeline presented in this work. The pipeline consists of the following phases: torque and wrench
estimation (Sec. II-B, II-C), collision detection (Sec. III-A), isolation (Sec. III-B), and identification (Sec. III-C).

Fig. 3: The collision force (3a) is estimated and filtered with
a BPF (3b), where a constant threshold with value b is set
for detection and the stars indicate the detected start and end
of the collision with the proposed method. The conventional
detection approach works the same, but detects a collision
only when the BPF force is exceeding the threshold. Thus,
it would detect two collisions, while the proposed detection
technique detects the time span accurately (3c).

C. Collision identification

As pointed out in Sec.III-A, applying a BPF to the
estimated external force is a solution to make the colli-
sion detection algorithm robust to model inaccuracies and
unmodeled loads. However, this may alter the magnitude
characteristics of the estimated force. Thus, the band-pass
filtered forces cannot be used to identify the magnitude of
the collision force.

Existing methods try to improve the force estimation
accuracy by performing off-line model identification [2],
[27]. However, this may be a complex and time-consuming
process and errors will always remain [2]. Moreover, the
identified model remains sensitive to changes in the robot
configuration, wear and tear or accidents that might occur to
the robot in a real-world environment.

Therefore, here we propose the following collision iden-
tification method. For brevity, we define:

F̂ext =

{
F̂ext,arm, if arm collision
F̂ext,base, if base collision

(4)

as defined in Eq. (3). Let Fdis be the disturbance signal that
includes modeling errors, unmodeled payloads and sensor

noise. At time k, starting with k = 1, we compute:

F̂dis(k) =

{
(1− α) F̂dis(k − 1) + αF̂ext(k), if ε = 0

F̂dis(k − 1), if ε = 1
(5)

where α = e−ωTs , ω is the cut-off frequency of the low-
pass filter (LPF) and Ts is the sampling time. We assume no
collision is occurring at k = 0 and that F̂dis(0) = F̂ext(0).
As shown in Eq. (5), we assume that modeling errors stay
constant while in collision (ε = 1), and thus we freeze
F̂dis to its pre-collision value during this time. At time k,
the collision force F̂c(k) is computed by subtracting the
disturbance signal from the estimated value, i.e.: F̂c(k) =
F̂ext(k)− F̂dis(k).

IV. EXPERIMENTS

We verify the proposed pipeline through hardware exper-
iments on the quadrupedal robot ANYmal with a 6DoF arm
mounted on top [25] (Fig. 1). The robot is equipped with
a RobotiQ 2F-85 gripper 2 and a BOTA Rokubi SensOne
6-DoF F/T sensor 3 at its end-effector. ANYmal’s legs
are equipped with series elastic actuators while its arm is
equipped with pseudo direct drives.

In total, in our experiments, we apply 416 collisions to
the robot in various case studies visualized in Fig. 1. The
collision distribution is presented in Table I. Examples of
collisions in these scenarios are shown in the accompanying
video 4. Ground truth contact data is read from a hand-held
F/T sensor; the collisions are created by either pushing the
F/T sensor on different parts of the arm and base of the robot
or by holding it still while the arm collides with it.

In the following sections, we first provide some experi-
mental analysis to explain the reasoning behind our choice of
continuous-time MBO for torque estimation (Sec. IV-A) and
constant thresholds for detection (Sec. IV-B). Afterwards, we
validate the proposed collision-event pipeline in hardware
tests (Sec. IV-C).

A. Comparison of torque estimation methods

In this section, we compare existing variants of MBOs
in hardware experiments. The purpose of this comparison is
to decide which torque estimation method is most suitable
to be used with our collision identification approach, which

2https://robotiq.com/products/2f85-140-adaptive-robot-gripper
3https://www.botasys.com/
4Available at https://youtu.be/Rr4h4tEHCFU



TABLE I: Collision distribution during experiments.

Scenario Number of collisions

Stance no load 109
measured load 133
unmodeled load 99

Arm motion no load 40
measured load 10
unmodeled load 13

Trotting no load 12
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Direct estimation
Static direct estimation
MBO continuous

MBO discrete
MBO third-order
MBKO

F/T sensor ground truth

Fig. 4: One of the collisions applied on the arm of the
robot during stance. Due to disturbances, an offset is visible
between the estimated and the ground truth force.

TABLE II: Comparison of torque estimation methods.

Tuning
simplicity

Computation
time

Noise
(in N)

Delay
(in ms)

Absolute
error
(in %)

Direct estimation ++ + 0.72 179 37
Static direct estimation ++ + 0.72 180 37
MBO continuous + + 0.30 159 34
MBO discrete + + 0.30 160 33
MBO third-order − + 0.32 185 31
MBKO − −− 0.21 176 30

are evaluated separately in Sec. IV-C. We consider scenarios
where collisions are applied on the arm, while the robot is
in stance (Fig. 4). We consider the following methods:
• Direct estimation [3]: computes τ̂ ext from Eq. (1).
• Static direct estimation [4]: similar to [3], but neglects

the acceleration and velocity-dependent terms.
• Continuous-time MBO [6]: implements Eq. (2).
• Discrete-time MBO [7]: discretized implementation of

the MBO [6];
• Third-order MBO [8]: similar to the continuous-time

MBO, but using a higher-order LPF. This results in more
accurate estimations due to a sharper filtering action.

• MBKO [9]: reformulates the continuous-time MBO [6]
as a Kalman filter.

Except for the MBKO [9], all these approaches have been
used on legged robots in previous literature. A comparison
was therefore essential to understand the differences between
them and their impact in the scenario at hand.

We use the methods above to obtain an estimate of the

generalized external torque τ ext. Afterwards, we compute
the estimated external force F̂ext,arm as explained in Sec.II-
C. The results from our comparison, considering 40 colli-
sions in stance and arm motion, are reported in Table II.
In Fig. 4, the response of the selected methods to one of
the collisions applied to the arm of the robot is visualized.
In Table II, we use noise to refer to the standard deviation
over the time in between collisions. The delay is defined as
the detection time. To compute this detection time, we set a
constant threshold on the band-pass filtered forces, similar to
the threshold set at 10% of the estimated force in [28]. This
threshold is set equal for each method. The absolute error
is defined as:

e =

∣∣∣∣∣∣

∣∣∣F̂ ∗∣∣∣
|F ∗|

− 1

 · 100%
∣∣∣∣∣∣ , (6)

where |F̂ ∗| and |F ∗| indicate the magnitude peak values of
the estimated and ground-truth F/T sensor collision force,
respectively. Note that we compare the methods based on
the estimated contact force magnitude and we do thus not
consider force direction.

As shown in Fig. 4, during the experiments the disturbance
effect is not negligible and is reflected in a constant offset
of about 7 N. Thus, when computing the absolute error in
Table II, we take into account the offset for all the methods
to obtain a fair comparison.

It is visible from Table II that the methods based on
the direct estimation of τ ext have a high absolute error.
In addition, the force estimated with such methods shows
oscillations when the force estimate is at its peak value.
Direct estimation shows higher delay than the MBO because
it relies on accelerations which are quite noisy especially,
for example, in the trotting case and need to be heavily
filtered. The third-order MBO and MBKO have the highest
estimation accuracy in terms of absolute error and noise, re-
spectively. However, computation time is significantly higher
for the MBKO, and the third-order MBO has a large delay.
Furthermore, both methods have a higher tuning complexity,
which is an important aspect to consider when working with
a high-DoF quadrupedal manipulator. The higher-order filter
could also possibly result in oscillations and instability [29].
Thus, we conclude that the continuous-time and discrete-
time MBOs provide the best trade-off between delay and
estimation accuracy. Since they show similar results, we
select the continuous-time MBO for our experiments.

B. Threshold comparison

We compare constant and dynamic thresholds to assess
how they influence the collision detection performance. We
consider a dynamic threshold based on joint velocities from
[13] and a dynamic threshold based on estimated force
standard deviation from [15] (although we do not include
proximity sensors).

An average of 14ms improvement in detection delay is
obtained using a dynamic threshold; this result was obtained
in experiments that we conducted with the robot in stance,
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Fig. 5: Comparison of constant and dynamic thresholds. The
dynamic threshold is based on the desired joint velocity q̇d
and on estimated force standard deviation σ. The arm is
moving until a collision occurs at t = 16.5 s.

performing arm motion, and in the presence of an unmodeled
payload. To tune the constant threshold and the constant parts
of the dynamic threshold equations, we evaluate all collisions
during arm motion. Thresholds are set such that no FPs and
FNs occur and are set to the lowest values possible. Since
we consider arm motion, which makes the force estimation
noisy, the tuned thresholds should be robust against FPs,
meaning there is no need to adjust these in other scenarios.
A plot from one of the experiments is reported in Fig. 5. For
conciseness, in Fig. 5, we only plot the component of the
estimated force along the main contact direction.

The dynamic thresholds move along with the variations
in the filtered force that arise due to model errors. Thus,
they are helpful to increase detection robustness in cases
such as trotting or arm motion compared to when the robot
is in a static configuration. A static threshold needs to be
conservative to avoid FPs resulting from such scenarios
where τ̂ ext may increase due to high accelerations. This
is especially the case for our experiments which include
trotting, where such variations can arise due to the high-
frequency impact of the robot’s feet on the ground. In this
work, we opted for using three different static thresholds for
the following scenarios: trotting, arm motion and stance. This
proved sufficiently robust and did not exhibit any decrease
in performance w.r.t. dynamic thresholds which, on the other
hand, remain sensitive to tuning parameters.

C. Collision detection and identification results

In this section, we present the experimental results of
our pipeline and discuss our findings. We test our collision
identification method in different scenarios in the presence
of the following factors of variation:

• Mode. Stance, arm motion and trotting.
• External load. As shown in Fig.1, we add a payload on

different links of the robot. In particular, we consider
the following cases:

– Unmodeled load: an unmodeled 0.58 kg payload is
placed on arm or base, or a 2 kg load on the base;

– Measured load: a load of 0.58 kg is added to the
gripper with its force measured by the F/T sensor
placed at the robot end-effector.

• Duration and magnitude of force. Magnitudes of the
applied force range in the interval 5− 165N, and time
span of collision is in 0.3− 6.0 s.

Fig. 6: Boxplots comparing the absolute estimation error of
the collision time span.

In all the experiments we use a cut-off frequency f = 0.5Hz,
with ω = 2 · π · f , for estimating the disturbance force Fdis

of Eq. (5). The cut-off frequencies of the BPF for F̂ext are
selected as 0.4, 3.0Hz.

1) Collision detection and time span estimation: We
validate our collision detection algorithm over a dataset of
416 collision experiments on both arm and base. Note that
we assume detection of fast-rising contact forces only. We
define the success rate and the precision over N collisions as
(N −NFN)/N and N/(N +NFP), respectively, where NFN

is the number of FNs, and NFP is the number of FPs. Overall,
we achieve a 99% success rate and a precision of 98%
for collision detection. We can detect all collisions during
stance and arm motion with and without unmodeled loads,
i.e. all scenarios mentioned in Fig. 1 except for trotting. All
undetected collisions occur during trotting and represent very
challenging scenarios, such as when the magnitude of the
collision force is below 10N. Note that the noise of the raw
MBO output during trotting can reach up to 35 N as can be
seen in Fig. 9b.

Next, in Fig. 6 we analyze the time span estimation
accuracy of our proposed approach over a set of 156 detected
collisions performed in stance, arm motion and trotting
without considering additional loads. The average absolute
error of time span estimation is 234ms, 272ms and 390ms,
respectively, for the previously mentioned three scenarios.

2) Robustness analysis of collision identification: We
compare the performance of our method in three different
cases: No load, Measured load and Unmodeled load of
different weights, placed on various locations on the robot.
The collision force estimation accuracy of the proposed
identification method in these scenarios is visualized in
Fig. 7. The variability is higher in the Measured load
and Unmodeled load scenarios, compared to the No load
scenario. This is because of the increased inertia of the robot
caused by the payload, which results in a more significant
response to a collision. Additionally, the medians of the
absolute errors between the three scenarios are comparable.
This underlines the fact that our collision identification
approach compensates robustly for the unmodeled load, due
to the continuous estimation of the disturbance force Fdis,
as introduced in Sec. III-C.

Furthermore, we evaluate the repeatability of our collision
identification method. To do this, we split a dataset of 73
arm and base collisions in stance into 25 sets of doubles,
triples, and quadruples of contacts with equal magnitude and
location. The average of the standard deviation of the error
computed within these sets is 5%, compared to a standard
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Fig. 7: Boxplots comparing the absolute estimation error of
the external force magnitude in various scenarios. ‘Meas.
load’ indicates presence of an object in the gripper and ‘Unm.
load’ an object on the arm or base.

deviation of the error of 12% within all collisions without
the split.

3) Comparison against baseline collision identification
methods: To validate the performance of our collision iden-
tification approach, we compare it to the state-of-the-art
methods from Sec. IV-A that have been verified on legged
robots. Hence, we select the continuous-time MBO from
[6], discrete-time MBO [7] and third-order MBO [8]. As
explained in Sec. IV-A, we use Eq. (3) to obtain the estimated
external forces F̂ext,arm or F̂ext,base. We carry out two
different studies.

First, we compare the overall performance of our method
in three scenarios: stance, arm movement and trotting, with-
out additional loads on the robot. We point out that our
goal is to estimate the collision, and not the payload force.
The results for the first comparison study are shown in
Fig. 8. The error metric e from Eq. (6) is used to compute
the error between the identified collision force F̂c and the
ground-truth F/T sensor collision force. With our method,
a significant improvement in collision estimation accuracy
can be achieved in various scenarios. The average absolute
error is reduced from 52% in methods [6], [7] and 49% in
[8] to 23% during stance. While for trotting, the average
error is reduced from 100, 101% in [6], [7] and 87% in [8]
to 42%. Note that due to the high-frequency high impact
forces of the feet, in this case, the estimated forces show a
large noise level. Therefore, we add an LPF to the estimated
forces during trotting for all the methods in the comparison.

Secondly, we show a detailed analysis of the performance
in two collision scenarios: with an additional load on the arm
and during trotting. The corresponding plots are presented in
Fig. 9. Note that the offset in the forces estimated with the
conventional MBOs is due to errors coming from modeling
inaccuracies and the unmodeled payload (in Fig. 9a). As
shown in Fig. 9a, state-of-the-art methods cannot compensate
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(a) Collisions on base and arm during stance.
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(b) Collisions on base and arm during arm motion.
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(c) Collisions on arm during trotting.

Fig. 8: Boxplots comparing the external force magnitude
estimation of the following collision identification methods:
continous-time MBO, discrete-time MBO, third-order MBO
introduced in Sec. IV-A, and ours.

for the unmodeled payload, while our method is able to do
so.

Moreover, trotting is a challenging scenario with many
high frequency variations in the estimated forces, as it can
be seen in the unfiltered MBO signal presented in Fig. 9b.
However, the trend line of the two collision forces is followed
well and the absolute error is reduced with our approach:
from 98, 97% [6], [7] and 92% [8] to 31% during the first
collision, and from 102% [6], [7] and 88% [8] to 18%
during the second.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we introduce a collision event pipeline
for quadrupedal manipulators. This includes a method for
computing the time span of collisions in the presence of
model inaccuracies and unmodeled loads, and an improved
identification of the collision force itself. We verify our
approach by carrying out extensive hardware experiments,
involving loads placed at different points on the robot and
trotting. We produce a large dataset of collisions, that we
make publicly available. A comparison with other state-of-
the-art approaches is also presented.

As future work, we aim to additionally classify collisions
and design appropriate reaction strategies. Moreover, to
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(a) Three arm collisions with an unmodeled payload on the arm.
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(b) Two arm collisions during trotting. Note that an LPF has been
added to the estimated forces.

Fig. 9: Comparison of external collision identification meth-
ods.

improve isolation, approaches that have been validated on
manipulators, such as Bayesian filtering [30] and machine
learning [31] could be extended to the legged robot case.
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