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Abstract— Inspired by the fact that humans use diverse
sensory organs to perceive the world, sensors with different
modalities are deployed in end-to-end driving to obtain the
global context of the 3D scene. In previous works, camera
and LiDAR inputs are fused through transformers for better
driving performance. These inputs are normally further inter-
preted as high-level map information to assist navigation tasks.
Nevertheless, extracting useful information from the complex
map input is challenging, for redundant information may
mislead the agent and negatively affect driving performance.
We propose a novel approach to efficiently extract features from
vectorized High-Definition (HD) maps and utilize them in the
end-to-end driving tasks. In addition, we design a new expert
to further enhance the model performance by considering
multi-road rules. Experimental results prove that both of the
proposed improvements enable our agent to achieve superior
performance compared with other methods. The source code is
released as an open-source package.

I. INTRODUCTION

Autonomous driving is conducted via several modules [1],
[2], namely localization [3], perception [4], planning [5], and
control. However, the system performance is constrained by
the manually selected intermediate criteria, e.g., localization
and lane detection error. One solution is to use end-to-end
driving which optimizes the system from the perspective of
the overall system performance, avoiding the potential loss
caused by incorrect human-designed intermediate criteria. In
this work, we apply imitation learning to train an agent to
mimic the expert’s action and behavior with the available
sensor data inputs.

In imitation learning, expert drivers are utilized to collect
the training data and generate its ground truth of actions
before the training phase. Experts in [6]–[8] only con-
sider avoidance collisions according to the distance between
agents. As illustrated in the left image of Fig. 1, it is danger-
ous to only consider the nearby vehicles in terms of distance,
since vehicles may be at a high speed when changing lanes.
Hence, more information is added in our expert to enable the
expert to capture more potential collisions which are missed
in existing methods.

Apart from the ground truth given by the expert, the
agent in imitation learning needs sensor data to have a clear
understanding of the surroundings. Existing methods in end-
to-end driving mostly depend on only a single type of sensor,
like camera [6] or LiDAR [9]. Recently, Prakash et al. pro-
posed to fuse camera and LiDAR data through an attention
mechanism in [7]. It turns out that taking advantage of
the complementary sensors can achieve a satisfactory result.
Specifically, cameras can better capture texture information.
However, they are susceptible to lighting conditions. LiDAR

Fig. 1. Scenarios in complex urban environments. The ego vehicle needs
to yield to other vehicles when switching lanes or at the roundabout. These
scenarios indicate more abundant environmental information such as the lane
structure and the velocities of other vehicles may assist to better facilitate
the end-to-end driving task. Figures captured from CARLA leaderboard.

outperforms cameras in terms of accurate distance informa-
tion, whereas the sparsity of LiDAR point clouds may cause
information loss. Apart from the intrinsic disadvantages of
these two sensors, driving scenarios in complicated urban
environments, examples of which as illustrated in Fig. 1,
also reveal the importance of introducing more sensors into
end-to-end driving.

The scenarios presented in Fig. 1 suggest the benefits
of providing lane structures and vehicle velocities for the
end-to-end driving task. Thus, we add the HD map and
radar on top of the LiDAR and camera as the network
inputs in our approach. The HD map offers high-level map
data like lanes and roads, which is more closely related
to the action or trajectory outputs compared with camera
and LiDAR data. Additionally, radar can offer the velocities
of other agents directly without any calculation, which are
more accurate than the ones calculated from other sensor
data. However, little work has been conducted on how to
efficiently represent HD maps and radar data in end-to-
end learning frameworks and extract useful features from
them. It is challenging to effectively integrate the complex
HD map, which contains not only hierarchical geometric
information but also semantic information, into the network.
When integrating radar data into the network, the sparsity
of radar points can not be ignored. Therefore, we propose a
Multi-Modal-Fusion-Network (MMFN) to properly represent
and fuse the meaningful information extracted from the
complementary sensor raw data in the end-to-end driving
task. Our method is proved to be effective in CARLA [10]
leaderboard task and open-sourced in https://github.com/Kin-
Zhang/mmfn. The main contributions of this work include
the following:
• We use a multi-path consideration rule-based expert to
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improve the performance of existing agents [6].
• We explore different representations on the HD map as

the network input and propose a framework based on
[7] to fuse the four different types of sensor data.

• We experimentally validate the performance of our
method both on local driving routes and the online
leaderboard [11], with an increase in the driving score
by 34.67% and a decrease in the infraction rate by
50.8% on average compared with [7].

II. RELATED WORK

In end-to-end driving, many works only concentrate on
utilizing a single type of sensor, like cameras. For example,
Chekroun et al. [12] used three cameras and combined the
action result and the semantic segmentation result to train the
agent jointly. Similarly, Chitta et al. [8] also employed three
cameras to get neural attention fields and predicted the future
waypoints. Other works like [13] and [14] both focused
on camera input and used deep reinforcement learning to
circumvent the use of an expert. These works show that
applying multiple networks [15]–[17] initially proposed for
image detection can promote the driving performance [18].
As mentioned before, cameras are not robust to lighting
conditions, so information resources such as LiDAR, HD
maps, and radar, have been added to compensate for the
limitations of cameras.

To use other sensors apart from cameras, processing
techniques tailored for each sensor need to be utilized.
Images like RGB and RGBD data with semantic labels are
processed similarly using off-the-shelf networks like con-
volutional neural networks (CNNs). In the object detection
task using LiDAR, Lang et al. [19] proposed to extend the
dimensions of point data to offer more detailed information.
Rhinehart et al. [20] presented a compact form to describe
the LiDAR point cloud data, and this was utilized in our
method. Specifically, the LiDAR point clouds are divided
into two groups based on their z-axis values and a pseudo
image with the number of points inside each pixel of the
image is output. Gao et al. [21] represented the map in a
vectorized form when predicting other agents’ motion. While
Chen et al. [6] used a bird’s-eye-view (BEV) map to express
the map, which included more information, like the location
of other agents and traffic lights, compared with [21].

Most existing multi-modality fusion networks focus on
perception tasks like object detection and motion forecasting.
For instance, Liang et al. [22] designed a network for 3D
object detection to jointly process camera and LiDAR inputs,
of which the outputs are the results of four sub-tasks. Liang
et al. [23] and Guo et al. [24] fused the multi-modal features
obtained from BEV LiDAR and RGB images in a multi-
scale fusion fashion for 3D object detection. Their work
inspired other researchers to introduce the sensor fusion
mechanism into end-to-end driving. For example, Prakash
et al. [7] proposed to embed LiDAR point clouds into a
transformer network to cooperate with camera image data.
Based on [7], we additionally integrate HD map and radar
data into the network. We also show the effective use of the

Fig. 2. Illustrations of expert rules under different scenarios. (a) the scenario
when calculating TTC, and the red dashed line is ∆p − Pp2v ; (b) the
scenario when the ego vehicle and the nearby vehicle are driving on the
same road but in different lanes, where d is the current lane width obtained
from the HD map; (c) the scenario when the ego car changes its lane but
there is another car in the adjacent lane.

transformer network by applying different types of sensors
and their corresponding data representations.

III. METHODOLOGY

In this section, we improve the expert in [6] by considering
time to collision and lane structures. Then, we directly use
the dataset expert collected to train the MMFN framework
which introduces multiple sensors. Fig. 3 shows the whole
framework for training, details of how to extract sensor data
feature can be found in the following.

A. Expert Principle

The expert agent in [6] (AUTO expert) only uses distance
to find the nearby obstacles and only considers its front area.
This means that the AUTO expert fails to locate its nearby
agents using the road or lane ID. To address this issue, the
map information provided by the CARLA simulator [10]
is used in our expert agent, where the map refers to the
lane information attached to vehicles. Our expert can drive
more similarly to human drivers, because the traffic rules that
human drivers abide by are based on lane structures that can
be obtained from the map input. Based on the AUTO expert,
we add time to collision (TTC) and take the vehicles in other
lanes into consideration when lane switching happens.

To calculate the TTC, the expert first gets the relative
position vector ∆p and relative velocity ∆v between two
cars in the CARLA simulator, and ∆v is projected to ∆p
through:

Pv2p = ∆p · ∆p>∆v

∆p>∆p
, TTC =

Pv2p

∆p
, (1)

where Pv2p is the projected relative velocity. Moreover,
‖∆p−Pp2v‖, as illustrated in Fig. 2 (a), is the unreachable
distance. When it exceeds the threshold defined by the lane
width d, the expert thinks that this nearby vehicle will not
collide with the ego vehicle in terms of TTC.

For the vehicle stop case, not only is the distance consid-
ered but also the angle, and the angle from the ego vehicle
to the obstacle is calculated by

θ =
arccos (o1 ·∆p)

‖o1‖ ‖∆p‖
, (2)

where o1 corresponds to the orientation of the ego vehicle.
When θ > arcsin d

‖∆p‖ , it means that the obstacle may not



Fig. 3. Architecture. Process on LiDAR Point Cloud in Section III-B.3. (a) receive all point cloud data, (b) divide point clouds with 2m height into two
channels; Two methods for representing the HD map as input to the network in Section III-B.1: (c) rasterize to BEV perspective image, (d) vectorize road
elements.

be in front of the ego car, as Fig. 2 (b) indicates, where d is
the current lane width.

As shown in Fig. 2 (c), when the ego vehicle intends
to switch to other lanes, apart from the locations of other
vehicles, the lane information of these vehicles will also be
extracted from the HD map. If another vehicle is in the lane
that the ego vehicle intends to switch to, and the distance
between these two vehicles is below a certain threshold, the
ego vehicle will stop for a while and then execute changing.

B. Input and Output Representation

To make the best of the fusion mechanism in [7], apart
from camera and LiDAR data, an OpenDrive HD map
and radar data are added as the network inputs in the
proposed approach. Even though the HD map in this work is
obtained from the CARLA simulator, there are still several
approaches to export the HD map automatically [25], [26].
Additionally, to improve the model’s adaptability to dynamic
environments, long-range radar is used. In the following, we
briefly introduce the processing techniques for each type of
sensor data used in our method.

1) OpenDRIVE HD Map: Considering that maps contain
more complex information compared with other sensors, it
is worthwhile to investigate the influence of different map
representations on the model performance. Here, two kinds
of map representations are evaluated, the image-based and
vector-based methods. Both extract information from an
ASAM OpenDRIVE file, and the difference is the way to
describe the information extracted. In the image-based rep-
resentation, the map is rasterized from the BEV perspective
using the lane and road messages in the file, and a map is
drawn using the map elements in the raster map, as illustrated
in Fig. 3 (c). For the vector-based representation, the nearby
center lines of the lanes in the map are vectorized. Here, a
window of 28 × 28 m centered in the ego vehicle position
is used to define the surrounding map elements, and the
vectorized map is shown schematically in Fig. 3 (d). What
distinguishes these two map types from each other are the
orientation and semantic information of the map elements,
which will be discussed in detail in Section IV-C.

2) Radar: Endowed with the velocity information, radar
contributes to the following and lane switching maneuvers,
especially in highly dynamic environments. In our method,
two radars with the specification of a 35◦ field of view (FOV)
and a maximum range of 100 meters is arranged, one at
the front end of the vehicle, and the other at the rear of
the vehicle. To avoid radar waves being reflected from the
surface of the ground, the pitch angle of the two radars is
increased by 5◦, and their height is set as 1 m. We first
calculate the time for each point to reach the radar sensor
position by dividing the point depth by the velocity of this
point, and then we select the points closer to the radar sensor
according to the time calculated. In our setting, the top N =
81 radar points are selected, and if the actual number of
radar points is less than N , the remaining feature vectors
are padded with 0.

3) LiDAR Point Cloud: : Our approach to dealing with
LiDAR data is similar to [20], which converts the 3D LiDAR
data into a 2D BEV grid map by calculating the number of
LiDAR points inside each grid as Fig. 3 (a) and (b) show.
The total area considered by the 2D BEV grid map is 32×32
m, with 28 m distance in front of the vehicle, 6 m distance
behind the vehicle, and 16 m distance on the left and right
sides of the vehicle. The reason for considering the LiDAR
points at the rear of the agent is that the information in this
space is crucial when lane changing happens or when the
ego vehicle drives away from the highway. Other settings
are the same as [7].

4) Camera Images: For the RGB input, one camera is
deployed in front of the vehicle with a 100◦ FOV and a 400×
300 resolution in pixels. Because of the distortion caused by
the rendering of the cameras in the CARLA simulator, the
RGB images are cropped to 256× 256× 3.

5) Output Representation: : As in [7] and [8], the output
of the network forecasts the future trajectory w of the vehicle
in the BEV space which coincides with the ego vehicle’s
coordinates frame. The trajectory is represented by a series
of 2D waypoints in the form of {wt = (xt, yt)

T
t=1}, where

the default number of waypoints is set as 4.



Algorithm 1 OpenDrive to VectorNet Input
1: Initialize: Srough lane ← ∅
2: Slane ← PARSE(opendrive)
3: for lane in Slane do
4: Llane node ← ∅
5: for s in {0, . . . , lane.max s} do
6: lane node← CALCULATEPROPERTY(lane,s)
7: Llane node.APPEND(lane node)
8: if Llane node.SIZE ≥ 10 then
9: Srough lane.INSERT(Llane node)

10: Llane node ← ∅
11: end if
12: end for
13: if Llane node 6= ∅ then
14: Srough lane.INSERT(Llane node)
15: end if
16: end for
17: return Srough lane

C. Architecture Design

In this section, the network architecture of the proposed
approach is discussed. To better fuse the network inputs with
multiple modalities, different sensor data inputs are treated
in different ways before the fusion layers, as indicated in
Fig. 3. Thus the remainder of this section introduces the part
of the network architecture before the fusion layers, and the
fusion mechanism [7].

1) Map: The ASAM OpenDRIVE file is parsed into
a discrete HD map, and this process is summarized in
Algorithm 1, where Slane refers to the set consisting of the
lanes expressed by analytic formulas, Llane node corresponds
to a list of discretized points of the lane, and Srough lane is the
set composed of discretized lanes called rough lanes and s
is the road arc length from the start to the reference point.
To select the lanes of interest around the ego vehicle so as
to discretize them, all lanes inside a window centered at the
ego vehicle are selected. In our setting, the number of lanes
is N , and each discretized lane is represented by P = 10
points and P − 1 vectors, with each vector expressed by:

vi = [di−1,di,ai] , i ∈ [1, . . . , P ] (3)

where di−1, di are the coordinates of each lane point (x, y),
and ai is the label of this lane point. In correspondence with
the available semantic labels of a point in the OpenDRIVE
message, here ai could indicate whether the lane point is at
a junction and if it is available for left/right change.

After discretizing the lanes selected as mentioned above,
these lanes are then vectorized according to [21]. Briefly
speaking, the lane vectors are sent to their own Multilayer
Perceptron (MLP), followed by attention layers to concate-
nate the outputs of the MLPs. We adopt VectorNet to process
the lane features. The map feature information output from
VectorNet is then fed to ResNet18, as demonstrated in Fig.
3 to get the OpenDRIVE map data in the same size as the
other sensor data before the fusion layers.

Fig. 4. Detailed version of the gray fusion layer block in Fig. 3

2) Radar: When dealing with radar inputs, if directly
resizing them to the same size as that of the camera data
before fusion, significant amounts of information will be lost
because of the sparsity of radar points. Inspired by [27], we
choose to connect the radar points to form a graph whose
weights are the relative azimuth distances. Then the weights
of this graph are multiplied by the radar points to get the
radar features as follows:

Fout = WPin, (4)

where Fout ∈ RN×L is the output radar feature, Pin ∈
RN×L is the input radar points, W ∈ RN×N is the weight
matrix obtained from the weights of the graph, N = 81 is
the number of radar points after pre-processing mentioned
in Section III-B.2, and L = 5 is the number of the feature
labels, which include a point’s velocity, depth, azimuth,
altitude and the label to indicate its location. These radar
features are sent to the attention layers to be resized to
the same size as other sensor data. The overall processing
procedure for radar data mentioned above is the Graph
Attention Network shown in Fig. 3.

3) Fusion: With different sensor features of the same size,
transform layers [7] are utilized to offer a chance for these
sensor data to ‘communicate’ with each other. There are four
fusion layers in total, with each receiving the concatenated
multi-modal sensor features extracted at different stages of
their own feature networks. After being blended with other
types of sensor data in fusion layers, these features are then
sent back to the place from which they are extracted before
fusion, as shown in Fig. 3. The detailed network architecture
inside the fusion layers is demonstrated in Fig. 4. It shows
that all the different types of sensor data are concatenated
together as the input of the fusion layers Fin, which is then
multiplied by three matrices:

Q = FinMq,K = FinMk,V = FinMv, (5)

where Q, K and V refer to the query, key and value
respectively, and Mq ∈ RDf×Dq ,Mk ∈ RDf×Dk ,Mv ∈
RDf×Dv are weight matrices in the form of linear layers.

The overall process of Attention mechanism [28] in Fig.
4 could be generalized as:

A = softmax

(
QKT

√
Dk

)
V, (6)

4) Output: The output layers of the overall network in
Fig. 3 are the same as those in [7] and [8], which uses
four cascaded Gated Recurrent Units (GRUs) for the final



waypoint output. The first GRU takes the differential ego
vehicle waypoints and the relative goal location points as
inputs, and the last GRU outputs the coordinates of the
predicted waypoints relative to the ego vehicle. The loss
function of the network is set as the L1 loss between the
expert’s and the agent’s waypoints:

L =

T∑
t=1

∥∥wt −wgt
t

∥∥
1
, (7)

where wgt
t is expert waypoint coordinates on time t. After

training, the network can receive the sensor data and relative
goal location to output the predicted waypoints. Two PID
controllers are connected with the network to transform the
network outputs to the control signals on the steering wheel,
throttle, and brake pedal.

IV. EXPERIMENTS

Since it is costly to collect large-scale multi-modality
sensor data in the real world, the CARLA simulator [10]
is chosen for generating the data needed in the simulation
environment. Moreover, it also provides public routes and
scenarios for users to evaluate their own agents based on
the unified criteria in the online leaderboard platform. To
maintain fairness, the AUTO [6] and MMFN experts collect
the same routes for training the models in Table II which
have 207K frames data separately.

In Section IV-C, to show the generalization performance of
the trained model, instead of using a single map in one Town,
the routes in [8] are used for testing instead. Every two routes
out of these twelve routes are obtained from the same Town
and of the same length. Considering that the main purpose
is to test whether the agent can handle complex scenarios,
we add all the events under the available driving scenarios
in the CARLA leaderboard into the Town maps.

A. Evaluation Metric

The CARLA leaderboard includes unified metrics to evalu-
ate the driving task, the driving score (DS), route completion
(RC), and infraction penalty, among which the most impor-
tant, the DS, is computed by Ri×Pi, where Ri and Pi refer
to the RC and infraction penalty coefficient of the i-th route
respectively.

The DS has an upper limit of 100, and a higher DS
indicates a better agent. The RC reveals several facts, e.g.,
whether the agent can successfully go through junctions
without traffic lights. The infraction results shown in Table
I and II are obtained by calculating the infractions of
the vehicle per kilometer (Infra/km). Thus, the lower the
Infra/km, the better the agent behaves. More details about
infractions can be obtained from CARLA leaderboard.

B. Expert Performance

As seen from Table I, our MMFN expert outperforms
the AUTO expert in most cases. The reason is mainly that
the MMFN expert abides by more reasonable rules similar
to those in real driving scenarios. Especially for Town 03,
04, and 05, where there are more complex scenarios like

TABLE I
EXPERT DRIVING PERFORMANCE

No.

Town

DS ↑ RC ↑ Infra/km ↓
AUTO MMFN AUTO MMFN AUTO MMFN

1 85.90 94.00 100.00 100.00 0.06 0.02
2 62.58 60.06 95.29 85.09 0.16 0.12
3 66.36 79.55 80.91 88.07 0.07 0.04
4 88.79 91.90 98.36 98.7 0.01 0.01
5 71.00 87.60 100.00 94.6 0.07 0.02
6 60.92 89.60 100.00 100.00 0.06 0.01

lane changing on highways, the MMFN expert performs
considerably better than the AUTO expert. Overall, the
infractions per kilometer decreased by about 45.27% for all
routes in the six towns, indicating that our expert has more
awareness of safe driving. Furthermore, the next section also
shows that as the upper bound of how well the agent can
behave, the expert plays an important role in the driving
performance of its agent.

C. Local Evaluation

From Table II, we can conclude that our MMFN expert
can improve the agent’s driving performance by comparing
the left and right columns. The DS and RC increase by about
9.8% and 10.3% respectively, and the infra/km decreases
by around 4.9%. Moreover, comparing the left and right
columns of one row in Table II reveals that the expert
performance also affects the agent performance, since the
expert limits how well the agent can behave, as mentioned
in Section IV-B.

Before row-wise comparisons, the three baselines given
in Table II need to be introduced. CILRS [29] and AIM
[7] both use one camera as the network input, which is
then sent to a ResNet 34. CILRS outputs the vehicle control
signal directly, while AIM outputs waypoints through four
GRU decoders followed by PID controllers. Based on AIM,
Transfuer [7] adds the LiDAR input and transform layers to
fuse the camera and LiDAR data. Apart from the camera and
LiDAR, MMFN adds two more sensor data, HD map, and
radar, into the network to offer more information. MMFN
(Image) transforms the HD map into a BEV image which
is then fed into ResNet 18. By contrast, MMFN (VectorNet)
vectorizes the HD map first and extracts features from the
vectorized map. Additionally, MMFN (Radar) adds radar
input based on MMFN (VectorNet).

It experimentally shows that how to represent the newly
added sensor data is crucial in improving the driving per-
formance, by comparing the results of Transfuser and AIM
in Table II. Although one LiDAR and one camera are used
in Transfuser, the driving performance of this model is still
worse than that of AIM which only uses one camera. The re-
sults of MMFN (Image), MMFN (VectorNet), and Transfuser
in Table II proves the effective use of the additional HD map
data, either in the image form or in the vector form, since
the remaining sensors except the map used in MMFN are
the same as those used in Transfuser.

https://leaderboard.CARLA.org/#evaluation-and-metrics
https://leaderboard.carla.org/#evaluation-and-metrics


TABLE II
DRIVING PERFORMANCE OF DIFFERENT MODELS WITH DIFFERENT EXPERT DATA

AUTO expert MMFN expert

Methods Driving Score ↑ Route Completion ↑ Infra/km ↓ Driving Score ↑ Route Completion ↑ Infra/km ↓
CILRS [29] 20.52 ± 1.07 33.05 ± 0.08 1.70 ± 0.01 18.18 ± 3.44 30.04 ± 4.17 1.65 ± 0.05

AIM [7] 67.56 ± 1.77 86.53 ± 5.14 1.03 ± 0.02 73.45 ± 1.04 90.33 ± 0.12 0.73 ± 0.02

Transfuser [7] 56.25 ± 0.24 62.66 ± 0.34 0.64 ± 0.17 62.36 ± 0.58 79.43 ± 0.29 0.97 ± 0.20

MMFN (Radar) 46.05 ± 5.95 58.82 ± 8.73 0.91 ± 0.08 58.72 ± 2.47 68.25 ± 3.96 0.67 ± 0.08

MMFN (Image) 72.22 ± 3.51 88.78 ± 0.43 0.70 ± 0.11 76.56 ± 0.41 89.51 ± 1.09 0.67 ± 0.08

MMFN (VectorNet) 75.62 ± 0.32 82.17 ± 1.73 0.50 ± 0.08 88.75 ± 1.42 96.53 ± 0.47 0.41 ± 0.05

Expert 84.08 ± 1.67 98.62 ± 0.23 0.35 ± 0.04 92.32 ± 1.52 97.32 ± 0.25 0.17 ± 0.02

Fig. 5. Blocking scores of each model with different experts on local
routes, with lower blocking scores equivalent to higher route completion

Analyzing the results of MMFN (Image) and MMFN
(VectorNet) in Table II further shows that vectorizing the
HD map is superior to using images to represent the HD
map which can be seen as one of the ablation studies.
Possible reasons for it are twofold. One is that convolutional
neural networks (CNNs) used in MMFN (Image) are not
originally designed to capture long-range geometry structures
as discussed in [21], while VectorNet can extract more map
element features instead. The other one is that the map
elements in VectorNet offer some information more directly
like orientation or semantic labels, so the agent can give
more accurate commands with a clearer understanding of
the surroundings.

In Table II, MMFN (Radar) fails to compete with MMFN
(Image), MMFN (VectorNet), and even with Transfuser [7],
though it has one more radar sensor compared with the
other 3 models. It is demonstrated in Fig. 5 that blocking
frequently happens in MMFN (Radar), which means the
additional use of radar makes the agent more alert to poten-
tially dangerous driving scenarios. One possible reason for
the unsatisfactory performance may be that the embeddings
of radar data are not good enough to clearly interpret the
messages from the raw radar points, and thus it may mislead
other types of sensor data in fusion layers.

D. Online Leaderboard

There are two tracks in the CARLA online leaderboard,
the sensor track, and the map track. Since the HD map is used
in this method, in Table III, we mainly compare our model

TABLE III
ONLINE LEADERBOARD RESULTS

Methods Sensors DS ↑ RC ↑ P ↑
MMFN? (Ours) 1 Cameras + 1 LiDAR 22.8 47.22 0.63

NEAT [8] 3 Cameras 21.83 41.71 0.65
AIM-MT [8] 1 Cameras 19.38 67.02 0.39

T4AC+? [30] 1 Cameras + 1 LiDAR 18.75 75.11 0.28

TransFuser [7] 1 Cameras + 1 LiDAR 16.93 51.82 0.42

Pylot? [1] 2 Cameras + 1 LiDAR 16.7 48.63 0.5

CaRINA? [31] 2 Cameras + 1 LiDAR 15.55 40.63 0.47
? means the agent use the HD Map

with several top models in the map track, but a few models in
the sensor track are also evaluated for a more comprehensive
comparison. Unlike the experiments in Section IV-C, all
the routes and scenarios in the online leaderboard are not
public for the sake of fairness. The models are ordered by
DS as it is the most important metric to evaluate a model.
Another metric P in this table is the infraction penalty
defined by the leaderboard, which is initialized as 1 and
will be subtracted by different infraction penalties during
evaluation. The results in Table III are all copied from the
online leaderboard before the date 25/02/2021.

In the online leaderboard, among all the models which use
the HD map data in the map track, our model shows the best
performance. Compared with other models using multiple
sensors in the sensor track, our model has a higher infrac-
tion penalty coefficient represented by P , especially even
with relatively low RC. Our agent intends to behave more
conservatively in complicated driving scenarios, resulting in
fewer infractions.

V. CONCLUSION

In conclusion, our proposed approach shows the effective
use of the additional HD map data in the end-to-end driving
task. It also proves that using VectorNet to represent this
data achieves superior driving performance to using a BEV
raster image. We explored how to represent all the sensor
data and proposed a Multi-Modal-Fusion-Network (MMFN)
to use camera images, LiDAR point clouds, an OpenDRIVE
map, and radar as the network inputs for the end-to-end
autonomous driving. Furthermore, the expert presented in



this work also contributes to the agent’s performance.
We hope that this work may arouse the interest in the

research community about using HD maps, radar, and other
sensors in end-to-end driving. The performance of our model
could be further enhanced by setting up more rules for the
expert to abide by. As suggested in [12], [14] and [22],
considering more maneuvers of the expert or replacing our
agent with a costly deep reinforcement learning agent [32]
could be helpful in improving the performance. Our future
work will also include designing sub-tasks, like classification
and segmentation using cameras or LiDAR, before the output
layers to help the agent to learn the final driving task more
quickly and accurately.
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