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Abstract— In this paper, we discuss a framework for teaching
bimanual manipulation tasks by imitation. To this end, we
present a system and algorithms for learning compliant and
contact-rich robot behavior from human demonstrations. The
presented system combines insights from admittance control
and machine learning to extract control policies that can
(a) recover from and adapt to a variety of disturbances in
time and space, while also (b) effectively leveraging physical
contact with the environment. We demonstrate the effectiveness
of our approach using a real-world insertion task involving
multiple simultaneous contacts between a manipulated object
and insertion pegs. We also investigate efficient means of
collecting training data for such bimanual settings. To this
end, we conduct a human-subject study and analyze the effort
and mental demand as reported by the users. Our experiments
show that, while harder to provide, the additional force/torque
information available in teleoperated demonstrations is crucial
for phase estimation and task success. Ultimately, force/torque
data substantially improves manipulation robustness, resulting
in a 90% success rate in a multipoint insertion task. Code and
videos can be found at https://bimanualmanipulation.
com/

I. INTRODUCTION

Manipulation still remains a critical challenge of robotics [1].
Over the past decades, there has been tremendous progress in
endowing robots with motor skills for grasping and dexterity.
However, the vast majority of work in this field focuses on
scenarios involving a single robot arm and tightly controlled
physical interactions with the environment. With decreasing
prices, as well as the proliferation of collaborative and
humanoid robotics, there is increased need for techniques
that enable reliable, efficient and safe bimanual manipula-
tion. Bimanual robots need to perform manipulation tasks
that involve multiple points of contact and dynamic force
exchange with objects (and humans) in their surroundings,
e.g., lifting a box, inserting a tight-fitting part, unscrewing a
bottle cap, or reacting to a human push. However, making
early or premature contact with a target object may create
forces that seriously jeopardize the manipulation process. In
addition to physical interaction with their surroundings, the
individual robot arms in a bimanual setup may themselves
be exchanging forces and torques through manipulated ob-
jects. These forces may lead to oscillations, instabilities and
damage to the underlying hardware. Consequently, compliant
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Fig. 1. Overview of the bimanual insertion task in which the two robots
need to jointly insert the bracket onto four pins. The phase plots and detailed
pictures show how our method is capable of adjusting the bracket’s position.

control policies are required that allow bimanual robots to
(a) deal and adapt to a wide variety of disturbances in space
and time, and (b) effectively leverage physical contact to
their advantage. Yet, designing control frameworks that can
bridge these (potentially conflicting) requirements can be
challenging and time-consuming. To date, only few publi-
cations have addressed such challenges underlying bimanual
manipulation [2].

In this paper, we present a system for imitation learning
of compliant bimanual manipulation policies. We describe a
robotic setup in which human demonstrations of the task
are recorded across a variety of sensing modalities. The
setup leverages principles of admittance control to enable
contact-rich and dynamic demonstrations without the risk of
collisions, damage or wear-and-tear. In turn, the recorded
data is used to learn Interaction Primitives which encode
the demonstrated behavior in time and space. At runtime,
interaction primitives are used to identify the temporal task
progress as a function of external perturbations, as well as
the optimal robot response to these perturbations and envi-
ronmental conditions. In cases where physical perturbations
affect task execution, the robot is able to account for it by
performing corrective actions in either time or space. Since
the presented approach is Bayesian in nature, it allows for
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powerful spatio-temporal inference from multimodal datas-
treams.

The main objective of this paper is to provide insights
and solutions regarding a number of technical and theoretical
considerations that have to be taken into account for contact-
rich manipulation tasks in bimanual setups. We argue that
four key components influence the performance of a system
for imitation learning in bimanual manipulation. Specifically,
we will discuss methodologies for a) data collection, b) mo-
tor skill learning, c) task phase estimation, and d) compliance
through sensing and control. A critical conclusion in this
regard is the importance of task phase estimation and
phase monitoring during behavior execution.

II. RELATED WORK

Bimanual manipulation requires the accurate coordination
of multiple robot manipulators in the same real-time cycle.
Early approaches largely focused on planning techniques in
order to generate kinematic configurations that are feasible
for both involved arms [3]. Due to the computational costs,
more recent work [4] introduced precomputed reachability
analysis and medial axis transforms to efficiently generate
candidate robot configurations. In a similar vein, the work
in [5] presents a certifiably-complete manipulation planner
for assembly tasks involving two robots. However, such
planning-based approaches assume quasi-static motions and
do not provide the responsiveness needed for contact-rich,
dynamic manipulation tasks. An alternative approach is to
use machine learning techniques in order to extract reactive
manipulation policies. The work in [6] used reinforcement
learning (RL) in a low-dimensional space of synergies in
order to find policies that optimally coordinate both arms.
Amadio et al. [7] leverage symmetries in the kinematic struc-
ture to reduce the sample complexity of the trial-and-error
process underlying reinforcement learning. Despite these
optimizations, RL is a time-consuming process that does
not leverage existing human knowledge about such bimanual
tasks as found in industrial applications. In addition, RL
on real robot platforms comes with a substantial burden of
repeatedly resetting the experiment to its initial state, as well
as wear-and-tear on robots and sensors. By contrast, imitation
learning promises to use only a limited set of human expert
demonstrations in order to extract an underlying policy. The
work in [8] uses such an approach to learn primitives for
bimanual manipulation. However, the work largely focuses
on how to sequence individual primitives in order to realize
a long-horizon task. Our work is closest related to the
work in [9] and [10] in which Dynamic Motor Primitives
(DMP) are used to learn bimanual manipulation policies from
demonstrations. For an excellent overview article on robot
learning for manipulation, we refer the reader to [2].

III. METHODOLOGY

In this section, we will introduce our system for imitation
learning in bimanual settings and discuss a variety of consid-
erations regarding data collection, learning and compliance.
The system learns compliant bimanual manipulation policies

from human demonstrations. Without loss of generality, we
will focus on a specific task wherein two robot arms are
required to first lift a bracket, which features four align-
ment grommets. Once lifted, the bracket is to be carefully
inserted onto a set four pegs via the four grommets. Due to
the multiple distributed positions, task execution typically
involves substantial physical contact between the bracket
and the pegs. Accordingly, after first contact, the bracket
position and orientation may have to be repeatedly corrected
for successful insertion. For an overview of this task see
Fig. 1.

A. Data Collection for Bimanual Manipulation

An important first consideration when learning such a
delicate manipulation task is the collection of training data.
Our system provides two alternative approaches to data col-
lection, namely kinesthetic teaching [11] and tele-operation,
as can be seen in Fig. 3. Kinesthetic teaching allows the
human expert to provide demonstrations through physical
guidance. In the bimanual setup, this can be achieved by
either directly touching the involved robots or by moving the
manipulated object, thereby applying forces on the attached
hands of the robot. Alternatively, a Space-Mouse can be
used for data collection. A Space-Mouse is a 6 degree-of-
freedom (DoF) input device that was first developed for the
control and teleoperation of robot arms in space, in particular
for the Robot Technology Experiment on the Spacelab D2
mission [12]. Accordingly, its design and functionality is
optimized for the demands of manipulation tasks. As can
be seen in Fig. 2, a number of sensing modalities are con-
tinuously recorded during training, i.e., force-torque values,
joint angle readings, tool center points, as well as the position
and orientation of the manipulated object.

B. Motor Skill Learning and Temporal Inference

Given the recorded set of demonstrations, a key next step
is to extract a policy or motor skill that generalizes the
observed behavior to new situations. A variety of methods
can be used for this purpose. Behavioral cloning (BC) with
neural networks [13] and Probabilistic Motor Primitives
(ProMP) [14] are among the most prominent methods.
However, the above methods purely focus on the spatial
aspects of motor control, as do most other techniques for
imitation learning of motor skills. As a result, robots are
not empowered to reason about the temporal evolution of
a task and how time progresses. However, for successful
bimanual manipulation in contact-rich tasks, robots need to
constantly monitor and reevaluate the temporal progress of
task execution. As a result of force interactions between the
robot and the environment, as well as between the individual
manipulators, motor commands may not get accurately exe-
cuted. Such a situation may be due to a variety of conditions
such as physical obstructions, friction, an externally applied
force, etc. To overcome such bottleneck situations, it is
critical that the robot generates motor commands that are
temporally-adequate until all obstacles are overcome.
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Fig. 2. Overview of the proposed system: sensing data acquired from a number of multimodal sensors is used to learn a Bayesian Interaction Primitive.
In case of misalignment, temporal phase estimation and its progression is used with an admittance controller to overcome obstruction.

Temporal Inference: In our framework, we adopt a
methodology for temporal reasoning inspired by work on
human-robot interaction (HRI) [15]. In HRI scenarios, robots
need to constantly re-estimate the current temporal phase
rather than relying on a predefined internal clock for its pro-
gression. In this context, the term phase describes the relative
temporal position within a task, i.e., the phase variable may
be zero at the beginning of a task and one when the task is
finished. In HRI, phase estimation is performed by observing
the human partner’s movements and, in turn, inferring the
most likely position along the time dimension. The work
in [16] showed that this procedure is akin to performing robot
localization in time rather than space. Bayesian Interaction
Primitives (BIP) [17] is an imitation learning approach for
HRI which leverages this insight to perform both spatial and
temporal reasoning.

In our system, we use BIP in realtime to infer the spatial
and temporal state of the execution of the manipulation
task. However, rather than estimating the phase by observing
an external, human partner, we use the multimodal sensing
sources on the robot itself, e.g., force-torque and joint angles.
An example of this process can be seen in Fig. 2. In this
example, a bracket is carefully placed on four pegs. In the
first two images, the object appears stuck on-top of the pegs
and insertion cannot proceed successfully. In the plots below
the image sequence, we see the estimated phase along with
the corresponding variance (i.e. the uncertainty in estimation)
visualized as a Gaussian distribution. We notice that the
phase estimate roughly remains constant. In the final image,
we see that the physical obstruction has been overcome.
Accordingly, the phase estimate now moves forward in time.
This ability to estimate the phase allows the robot to carefully
monitor the progress of a task so as to determine whether
to continue task execution or to perform a refinement action.
Note that in a BIP the spatial and temporal inference go hand
in hand – the robot determines both what to do and when to
do it.

C. Bayesian Interaction Primitives

Our overall goal in this paper is to learn a bimanual
manipulation policy that can generate accurate robot controls
from observed states. Each recorded demonstration Y ∈

Fig. 3. Data Collection for imitation learning. Left: direct, physical contact
allows kinesthetic teaching. Right, the robot arms are controlled via a space
mouse. In the above example, the user controls the tool center point of the
two robots.

RD×T contains T observations with a D-dimensional feature
vector. Given the current state of the robot, the policy should
generate optimal control signals that mimic the behavior of
the human demonstrator. However, in the context of human-
robot interaction and physical contact with the environment,
it is also critical that the manipulation policy adapts to
external perturbations. This may be, for example, a push
from a human partner or forces generated from premature
contact with the environment.

To learn such a policy, we use Ensemble Bayesian In-
teraction Primitives (EnBIP) [17] (1) and learn a genera-
tive probabilistic model over the training demonstrations.
However, instead of immediately using time-discretized data,
EnBIP transform the recorded demonstrations into a time-
invariant representation by performing a basis function de-
composition. Such decompositions have been popularized
in [10], and have since been used in a number of motor
primitive formulations [14], [15]. Applying the basis function
decomposition, we now approximate each state dimension
Yd
t = Φᵀ

φ(t)w
d+εy through a linear combination of B basis

functions Φφ(t) ∈ RBd

with corresponding basis weights
wd ∈ RBd

. Note the shift into a relative time measure
known as phase φ(t) ∈ R, where 0 ≤ φ(t) ≤ 1, as well as
the approximation error εy . Intuitively, this allows the model
to represent demonstrations with different lengths with the
virtual length φ(t). The above decomposition generates d
weight vectors w of the same length B and is therefore a

1Code available at https://github.com/ir-lab/intprim
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practical first step towards efficient encoding and modelling
of the recorded data in a compact fashion. Concatenating all
basis weight vectors for the individual dimensions then forms
the compressed representation w = [w0ᵀ, . . . ,wDᵀ] ∈ RB
of a given trajectory where B =

∑D
d B

d. In turn, we can
now extract a probability distribution p(w) over all given
demonstrations. Sampling from this distribution generates a
sample trajectory containing all observed sensor states and
robot controls in the bimanual task. Similarly, we can also
condition on previous states of the robot to yield a posterior
distribution p(wt|Y1:t,w0) over future states and controls.

However, a critical insight in BIP is the interplay between
temporal and spatial reasoning. An estimation error can be
the result of either errors in time or space. So far, inference
assumes that the current time step or phase are known.
This is typically only the case, when the robot’s behavior is
unencumbered by physical interactions with humans or the
environment. To enable such adaptation, BIP reformulates
the problem as a joint spatio-temporal inference – time and
space are coupled and are jointly estimated. This insight is
realized by forming a new state vector s = [φ, φ̇,w]. The
state vector holds both a spatial component, contained in the
basis function weights w, as well as temporal components
in the form of the phase φ and the phase velocity φ̇. The
temporal variables φ and φ̇ describe where we are in time and
how fast we are progressing with the task. Hence, generating
the posterior:

p(st|Y1:t, s0) ∝ p(yt|st)p(st|Y1:t−1, s0). (1)

now yields both the information about the spatial and tem-
poral aspects of robot control, since these are encoded in
st. Performing the above inference step can efficiently be
done via recursive filtering. More specifically, we use an
Ensemble Kalman Filter (EnKF) as proposed in [18]. A
major advantage of EnKF is its ability to model complex
nonlinear distributions without having to specify any para-
metric family. The initial distribution is immediately formed
by the provided demonstrations – no fitting to a parametric
family of densities is needed. In addition, EnKF can be used
with nonlinear transition functions and observation functions.
As a result, linearization errors as found in other filters can be
avoided. When compared to particle filters (PF) [19], EnKF
avoid the problem of sample degeneracy and are typically
more sample-efficient, i.e., need less ensemble members,
than PF.

We start by defining an ensemble X of E members shown
by X = [x1, . . . ,xE ]. Optimally we want to sample the
initial ensemble X0 directly from the prior x0 ∼ p(w0) for
all x0 ∈ X0; however, since we do not have direct access
to p(w0), as a data-driven method, it is standard to instead
sample from observed training demonstrations. Random se-
lection on ensemble members is reasonable as the ensemble-
based filtering approach provides robustness against possible
non-Gausian uncertainties, provided the number of ensemble
members is not less than the number of example demonstra-
tions E ≤ N . As a two-step Bayesian estimation method,
our first step approximates p(wt|y1:t−1,w0) by propagating

each ensemble member forward one time step with:

xjt|t−1 = g(xjt−1|t−1) + εx, 1 ≤ j ≤ E, (2)

with constant-velocity state transition operator g(·), and
noise error εx. Next, the ensemble members are updated from
the observation and the nonlinear observation operator h(·):

HtXt|t−1 =
[
h(x1

t|t−1), . . . , h(x
E
t|t−1)

]ᵀ
, (3)

HtAt = HtXt|t−1 (4)

−

 1

E

E∑
j=1

h(xjt|t−1), . . . ,
1

E

E∑
j=1

h(xjt|t−1)

 ,
The deviation of each ensemble member from the sample
mean HtAt and the observation noise matrix R can then be
used to compute the innovation covariance with:

wt =
1

E − 1
(HtAt)(HtAt)

ᵀ + R. (5)

The Kalman gain is likewise calculated directly from the
ensemble, with no need to specify an explicit covariance
matrix, with

At = Xt|t−1 −
1

E

E∑
j=1

xjt|t−1, (6)

Kt =
1

E − 1
At(HtAt)

ᵀw−1t . (7)

As is typical in recursive filtering, partial observations
are sufficient to optimally estimate the full state, which we
leverage to generate a posterior over unobservable latent
variables, i.e. robot controls. Since the posterior is over
weights w it defines the controls for all future time steps.

By performing this inference scheme in each time step,
we can generate posterior distributions that are conditioned
on a multitude of sensors. In Fig. 9, for example, we can
see the effect of conditioning an execution on high sensor
readings from the force-torque sensor. In this specific case,
the robot learned to change direction away from this force
exchange.

D. Admittance Control

The last layer of our stacked control system is composed of
a Cartesian admittance controller (suitable for a UR position
controlled robot) with a variable target pose pd ∈ R6 and
target velocity ṗd ∈ R6. The pose p is the concatenation
of the robot’s Cartesian position and rotation. Internally,
rotations are computed with quaternions; however, for no-
tational simplicity, we use Cartesian rotations. While the
interaction primitive is performing inference over both robots
jointly, the admittance controllers are running separately on
each of the two robots with different hyper parameters. The
use of admittance control is critical in order to avoid force
accumulations due to the closed kinematic-chain, contact
with the environment, or force interactions with a human
user.

For simplicity, the following description of the controller
describes the setup for a single robot. Fundamentally, the
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admittance controller implements the virtual dynamics cal-
culating the external force and torque fext ∈ R6 in Cartesian
space.

M ¨̃p+D ˙̃p+Kp̃ = fext (8)

where the hyper-parameters are the virtual inertia M ∈
R6×6, virtual Cartesian stiffness K ∈ R6×6, virtual damping
D ∈ R6×6, and pose error p̃ = p − pd with current
pose p. These parameters are set differently for each of the
two robots to account for their individual dynamics. Given
the desired control signal pd from the interaction primitive,
target velocity ṗd of zero, and external force and torque
measure fext, the robots’ control signal p̈d is computed from
equation 8 as follows

p̈d = p̈−M−1
(
D ˙̃p+Kp̃

)
+M−1fext (9)

The resulting target position p and velocity ṗ is calculated
through integration from p̈d. This calculation is done sep-
arately for each robot and is sent to be executed with an
inverse kinematics to get the desired joint angles for each
robot.

IV. EVALUATION

We evaluate our approach in two separate settings. In the
first setting, a single, simulated robot is placing a bracket
with two grommets onto two pins (see Fig. 4). In this setup,
a single 6 Degree of Freedom (Dof) UR5 robot is equipped
with a force-torque sensor between the flange of the arm
and a parallel jaw gripper, tasked with placing one of two
different brackets with varying tolerances (1mm and 5mm)
onto two pins. The simulated environment is implemented
in MuJoCo [20]. In a second, bimanual setup on two real
robots (as previously introduced in Fig. 1), a UR5 robot and
a UR10 robot with 6Dof each are used. The two robots are
equipped with force-torque sensors located between the end-
effector and the gripper. However, while the UR5 robot uses
a parallel jaw gripper, the UR10 includes an adaptive three
finger gripper for increased stability during the grasp, thereby
preventing undesired tilting of the object.

In both settings (single-arm in simulated and dual-arm
in real experiments), we utilize a path planner with pre-
determined way points to pick up the bracket from slightly
randomized position to perform the initial lift while ensuring
different grasping poses. The initial bracket position is varied
within a margin of ±1 cm. However, approaching the pins, as
well as the final insertion task is performed via the described
imitation learning model. Sufficiently precise manipulation
is required to successfully insert the bracket given the 1 and
5 mm tolerance in simulation and 6 mm tolerance per pin in
the real world bimanual setup. Note that this task does not
cover Transition or Interference fits with potentially negative
tolerances. In the simulated task, forces largely stem from
contacts with surrounding objects while in the real-world
task, forces may also be exchanged between the two robot
arms during manipulation.

In the following sections, we evaluate the proposed system
with respect to the different components, i.e., data collection,
motor skill learning, as well as compliance and dynamic
phase estimation. We also compare our method with a
behavior cloning (BC) and ProMP [14] baseline. The latter
is another common method derived from Dynamic Motor
Primitives; however, it requires separate methods for spatio-
tempora alignment of the motion.

A. Data Collection

To collect the required data for training the model, we use
30 demonstrations for the simulated and real-world setup
each. For the simulated environment, 30 demonstrations
are collected from pre-programmed and slightly randomized
Bézier curves that alter the curvature of the generated motion,
utilizing a 1mm tolerance bracket. Using the bracket with
the smaller tolerance for training purposes is expected to
also yield a successful model for the bracket with larger
tolerances.

Similar to the simulated setup, 30 demonstrations are
collected in the real-world setup. Fundamentally, demonstra-
tions are collected from eight human subjects for a total of
four datasets, utilizing either the Space-Mouse, or kinesthetic
teaching. Additionally, one dataset each is collected with
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varying starting positions of the bracket within a margin of
three centimeters. With the Space-Mouse, the participants
control the position of the bracket, inherently moving the
two robots via the reference poses pref of each robot’s
admittance controller through a fixed transformation from
the bracket’s pose. When using kinesthetic teaching, the
underlying admittance controllers allow the participants to
freely move the bracket inside the overlapping workspace of
the robots by continuously updating the controller’s reference
pose with the bracket’s sensed position. To familiarize the
participants with the intricacies of each training method,
each participant had the opportunity to provide an initial,
unrecorded demonstration.

1) Kinesthetic vs. Space-Mouse Data: A fundamental
difference between the training methods is the availability
of force-torque sensor data. When using kinesthetic teaching,
external forces are induced by the human teacher during the
demonstration, rendering sensed force-torque data unusable
for subsequent skill learning. In contrast, collected force-
torque data when using the Space-Mouse can be used for
skill learning as only contact forces with the environment
and forces resulting from the interaction of the two robots
are measured.

Figure 5 shows a comparison of the demonstrations
collected with kinesthetic teaching (blue) and the Space-
Mouse (red) on the real robot. Generally demonstrations
collected by using kinesthetic teaching result in smoother
motion, shorter trajectories and reduced final adjustments
prior to the final insertion. Prior to the final insertion of
the pins, demonstrations collected with the Space-Mouse
have a variance of 2.173 cm of the bracket location, while
demonstrations collected with kinesthetic teaching show a
significantly lower variance 0.886 cm. The need for final
adjustments is also reflected in the average trajectory length
of 44 and 14 seconds for the Space-Mouse and kinesthetic
method, respectively.

2) NASA TLX Workload: In addition to evaluating the
collected data itself, we also evaluated how the human par-
ticipants perceive the workload of providing demonstrations

Men. D. Phys. D. Temp. D. Perf. Effort Frustration Score
Metric

0

20

40

60

80

100

Va
lu

e 
[N

or
m

al
iz

ed
] Space-Mouse

Kinesthetic

Fig. 6. Nasa TLX Workload evaluation. Metrics are weighted by how
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Dataset Variations
Collection Method Extended With F/T Data Perturbed Success

1 Space-Mouse 100.0%
2 Space-Mouse X 13.33%
3 Space-Mouse X 90.0%
4 Space-Mouse X X 20.0%
5 Space-Mouse X 100.0%
6 Space-Mouse X X 70.0%
7 Space-Mouse X X 93.3%
8 Space-Mouse X X X 90.0%

9 Kinesthetic 100.0%
10 Kinesthetic X 0.0%
11 Kinesthetic X 100.0%
12 Kinesthetic X X 73.33%

TABLE I
EVALUATION RESULTS ON THE REA-WORLD BIMANUAL SETUP

with each teaching method. While workload is a subjective
measure and varies between different participants, the NASA
Task Load Index [21], [22] provides a methodical assessment
of the workload a user is experiencing when completing
a task. We evaluate six categories: mental, physical, and
temporal demand, as well as perceived performance, required
effort and the users’ frustration using each of the training
modalities. However, since every user has a different sub-
jective assessment of how much each category influences
the overall perceived workload, weights for each category
are derived prior to the assessment to further increase the
sensitivity of the metrics across multiple subjects.

Figure 6 shows the results of the workload assessment
across eight users. Particularly the perceived performance
as well as the frustration of the participants are significantly
increased when using the Space-Mouse. This results is an in-
teresting dichotomy: despite higher frustration, successfully
completing the task with the Space-Mouse significantly in-
creased the participants’ perception of performance. Overall,
participants rated using the Space-Mouse as approximately
twice as labour-intensive as kinesthetic teaching, with means
of 59.33 and 30.88 respectively.

While the analysis of the data as well as the perceived
workload from the users, positions kinesthetic teaching as
favorable, its major drawback, however, is the inability to
record meaningful force-torque sensor data.

B. Motor Skill Learning

Table I shows the results of EnBIP on the real-world
bimanual insertion task. We evaluated our approach with



Model Tolerance Disturbance Success

1 ProMP 5mm 100.0%
2 ProMP 5mm X 0.0%
3 ProMP 1mm 33.33%

4 EnBIP 5mm 100.0%
5 EnBIP 5mm X 100.0%
6 EnBIP 1mm 90.0%

TABLE II
RESULTS IN SIMULATED EXPERIMENTS

demonstrations accounting for varying starting positions
(column Extended Dataset), usage of force-torque data (col-
umn Force Sensor), and variable starting positions of the
bracket (column Varied Position). A test is counted as
successful if all four grommets are placed on the correct
pin and both robots released the bracket. The success rate is
reported over 30 evaluations.

Using either dataset, a successful motor skill can be
learned when the bracket is in a fixed starting position, result-
ing in a 100% success rate (lines 1, 5, 9, and 11 in Table I),
even when the datasets are extended via demonstrations with
varying starting positions of the bracket. However, when
varying the starting position of the bracket during testing, we
observe a 30% drop (lines 6 and 12) in success rate. This can
be attributed to the robots not being able to accurately sense
the obstacle when attempting final insertion. When adding
the force-torque sensor data, which is exclusively available
in the dataset collected with the Space-Mouse, the success
rate increases to 90%, (line 8 of Table I). Adding force-torque
sensor data is therefore critical for robustness when varying
starting positions of the bracket and results in an overall
performance improvement of 20%, compared to a setting in
which no force-torque data is used (line 6 compared to line
8). As a result, while kinesthetic teaching produces cleaner
data and is easier for participants to perform, the availability
of force-torque data dramatically increases robustness in
contact-rich tasks.

C. Dynamic Phase Estimation
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Fig. 7. Baseline comparison with
varying starting pose

To compare the impact
of online phase estimation
in the presence of exter-
nal disturbances, we com-
pare EnBIP to ProMP on
two different brackets in
the simulated environment.
Figure 4 shows the task in
simulation on the top, as
well as the current (red)
and history of previous
(blue) phase estimate. Just
after introducing an exter-
nal force in picture two,
our model only slightly in-
creased its uncertainty during the reverse motion (step 3);
however, in step five where the robot has placed the bracket
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Fig. 8. Phase progression in three scenarios: Undisturbed (top), External
force (middle), and small tolerances (bottom) in the simulated environment.

on the pins, the uncertainty has increased just before the
final insertion was made. A similar behavior to the latter can
also be seen in Figure 1 in the real-world experiment. This
example shows the crucial influence of phase estimation and
correction for successful task completion.

Figure 8 shows the estimated phase progression over 30
trials in the simulated environment of Figure 4 for three dif-
ferent scenarios: At the top, the bracket with 5mm tolerance
is placed on the two pins without any external disturbance,
expecting a diagonal line from phase 0 to 1. The middle
figure introduces an external force applied between 4.5 and
7.5 seconds. The applied force is drawn from a normal
distribution with a mean of 1.75 Newton and a variance of
0.5 Newton. Gray lines show the actual phase estimation
of the 30 trials in addition to the mean (red) and variance
(blue). Even though the motion is disturbed, the model is
able to gracefully recover by adjusting the phase, ultimately
succeeded in 100% if the tasks (Table II line 4 and 5). Finally,
the lowest plot shows the phase progression with the 1mm
tolerance bracket without any disturbances, besides the ones
occurring directly upon insertion of the pins. This bracket
requires a higher precision, thus while a straight diagonal line
from start to end would be expected, the model adjusts the
bracket’s position on the pins for an extended period of time.
Ultimately the model succeeds in 90% of the trials while
failures are due to prematurely estimating task completion,
or not finding the pins (Table II line 4 and 5).

Table II shows a comparison with ProMP in the simulated
environment, utilizing a fixed phase progression that is
sampled uniformly across the lengths of the training demon-
strations. Line 5 shows a significantly improved success rates
over ProMP in line 2 when external forces are applied to the
system, underlining the importance of phase estimation.

While the model is able to recover from external perturba-
tions, within reasonable limits, it is crucial that the recovery
actions follow the demonstrated behavior. Figure 9 shows
two scenarios in which either an external force, or an error in
the joint sensors were introduced. In both cases, the model is
able to adjust the motion accordingly (red lines) as compared
to the demonstrated behaviors (blue lines), underlining our
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Fig. 9. Generalization capabilities of our IntPrim model. Conditioned on the
initial object pose, the model predicts similar trajectories over consecutive
runs (blue), however, introducing disturbances to the F/T sensors (top) or
joint position sensors (bottom) causes the model to recondition the motion
(red), following the general motion trend, but unable to complete the task.

model’s ability to adapt to these perturbations due to their
connection learned in the EnBIP.

D. Baseline Comparison

We also compare our model against a BC [13] and a
ProMP [14] baseline in the real-world bimanual insertion
task, as shown in Figure 7. Similar to Bayesian Interaction
Primitives, ProMPs are also derived from Dynamic Motor
Primitives [10]. However, they do not include joint spatial
and temporal reasoning. Instead, separate methods, such as
Dynamic Time Warping (DTW) [23] may have to be used for
temporal reasoning. For the purposes of our comparison, we
used ProMPs in conjunction with DTW which resulted in a
success rate of 20%. BC did not successfully complete any of
the 30 attempts. By comparison, BIC achieves a success rate
of 90%. These results highlight again the role of dynamic
phase estimation in successful task completion.

V. CONCLUSION

In this paper, we introduced a framework for learning
compliant bimanual policies from human demonstrations
in contact-rich environments. Our approach combines the
capabilities of admittance control and machine learning
in order to enable efficient use of contacts with the
environment while being able to adapt to a variety of
external disturbances. We show that spatio-temporal
inference plays a major role in creating safe, reliable and
efficient control signals for physical interaction with objects
and humans in a complex bimanual insertion task. Using the
introduced methodology we achieve a success rate of 90%.
Further, we have conducted a user study to identify optimal
data collections interfaces. Our study shows that participants
largely preferred kinesthetic teaching to teleoperation with
a Space-Mouse; however, the multimodal data from the
Space-Mouse provides crucial information for significantly
improved task performance of the learned policy.

Limitations: While our approach is sample-efficient and
can adapt to a range of perturbations, it is limited by the
quality of the training data. The demonstrated behavior is
assumed to be near-optimal in order to allow for precise
phase estimation. Accordingly, the current system needs to

be extended to better adjust for demonstrations from naive
teachers [24].
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