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Abstract— Robots with multi-fingered grippers could per-
form advanced manipulation tasks for us if we were able to
properly specify to them what to do. In this study, we take
a step in that direction by making a robot grasp an object
like a grasping demonstration performed by a human. We
propose a novel optimization-based approach for transferring
human grasp demonstrations to any multi-fingered grippers,
which produces robotic grasps that mimic the human hand
orientation and the contact area with the object, while alleviat-
ing interpenetration. Extensive experiments with the Allegro
and BarrettHand grippers show that our method leads to
grasps more similar to the human demonstration than existing
approaches, without requiring any gripper-specific tuning. We
confirm these findings through a user study and validate the
applicability of our approach on a real robot.

I. INTRODUCTION

To assist people in their daily activities, a robot would
need to manipulate objects in specific ways, dependent on
its current task, e.g. it should not handle a knife in the same
way for cutting vegetables as for handing it to a person with
reduced mobility. A human could teach such specificities
to a robot by demonstrating the task to reproduce. In this
work, we focus on the task of grasping rigid objects, as
illustrated in Figure 1. Reproducing exactly a human grasp is
impossible for a robot, because a robotic gripper is usually
quite different from a human hand: different size, number
of fingers, actuation, etc. (see Figure 2 for a comparison).
Instead, the robot should grasp objects like the human did.

Most existing grasp retargeting approaches [1], [2], [3]
rely on handcrafted correspondences between the human
hand and the robotic gripper, either in terms of joints,
surfaces, or key vectors, and they do not consider the object.
Some other methods such as ContactGrasp [4] refine the
grasps produced by GraspIt! [5] by optimizing the contact
surface and reranking them. However, such approach is
slow as it takes tremendous time and effort to generate and
refine grasp candidates. It can moreover lead to significant
differences with the human grasp.

The fundamental problem is that the exact meaning of
“grasping like a human” is not well defined. In this study
we nonetheless introduce some generic proxies for grasp
similarity, namely the contact surface and the grasp ori-
entation. Indeed, the affordance [6] of a grasped object
is typically dependent on the open space surrounding this
object. Grasping an object from a similar orientation, with
a similar contact surface on the object as in the human
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Fig. 1. Grasping like humans. Given an input human grasp (left), our
method outputs a configuration of a multi-fingered gripper grasping the same
object like the human demonstration. We experiment with the Allegro (top)
and BarrettHand (bottom) grippers.

demonstration should therefore in general enable to perform
with this object similar actions as the human. In this paper,
we investigate how well the use of these proxies enable to
produce robotic grasps similar to human demonstrations.

To do so, we propose a multi-step optimization-based
method that takes a human grasp demonstration as input –
represented by a 3D mesh of the object and a parametric
MANO model of the hand pose [7] – and returns the
configuration of the corresponding robotic grasp. We define
an objective function that encourages similar contact surfaces
and global orientation for the human and the robotic grasps,
while penalizing interpenetrations of the gripper and the
object. To avoid local minima, we perform a multi-stage op-
timization where the gripper global position and orientation
are initialized similarly to the human demonstration. Fingers
are then closed by minimizing the distance between the
fingertips and contact areas on the object, before optimizing
for our full objective function in a last step. To validate the
genericity of our approach, we experiment with two off-the-
shelf robotic hands: the Allegro [8] and the BarrettHand [9]
grippers (see Figure 2).

We evaluate our method using human grasps from the
YCB-affordance dataset [10] with various quality metrics,
and we also perform a user study to compare qualitatively
our approach with related methods. Both evaluations show
that our approach allows to predict reasonable grasps that
are better – and more similar to the human demonstration
– than existing state-of-the-art grasp retargeting methods. In
the end, we validate the applicability of the approach in the
real world on a Panda robotic arm.

In summary, the main contributions of this work are:
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Fig. 2. Comparison between different grippers at the same scale with a
human hand (left), Allegro (middle) and BarrettHand (right). Note that the
size of the gripper and in particular the fingers are significantly different.
The blue vector represents the normal vectors of the human hand and robot
hands, the green vector represents the forward vector (best seen in color).

(1) A novel objective function consisting of four losses
which encourages a valid grasp while capturing the similarity
between the human hand grasp and robot gripper grasp. (2)
A novel multi-step optimization-based pipeline to transfer
a human grasp demonstration to any multi-fingered gripper.
(3) An extensive quantitative and qualitative evaluation and
comparison between our approach and other related methods.

II. RELATED WORK

In this section, we review various works related to grasping
like humans with multi-fingered grippers.

Grasp prediction: Predicting potential grasps for a
given object is a classical research topic, illustrated by the
seminal GraspIt! simulator [5]. Most recent approaches [11],
[12], [13], [14], [15] focus on learning-based techniques,
with some approaches [16], [12] modeling reachability con-
straints in the scene.

Grasping from demonstration: Learning from demon-
stration is also an important paradigm in robotics [17], [18],
[19], [20]. It aims at teaching a particular task to a robot
from a few examples of a human performing a similar task.
Most current approaches for learning from demonstration
in the context of object manipulation focus on complex
manipulation tasks with simple parallel-jaw grippers [21],
[22]. On the contrary, we focus in this study on simpler
manipulation tasks (static grasping) but with more complex
multi-fingered grippers – that could allow more advanced
grasps and manipulations.

Pose retargeting: A solution to transfer a human grasp
demonstration to a robotic gripper it to define some fixed
correspondences between the human hand and the robotic
gripper. DexPilot [1] and DexMV [2] use some handcrafted
motion retargeting techniques to do so. Similarly, Contact-
Transfer [3] relies on fixed correspondences between the
surface of the human hand and the robotic gripper. The
applicability of such approaches is arguably limited however
because the human hand and the gripper may have signifi-
cantly different characteristics in practice. For instance, the
Allegro gripper has only 4 fingers and is about 1.6 times
larger than a typical human hand (see Figure 2). Moreover,
these approaches do not consider the object being grasped.

Contact-based retargeting: More related to our work
are approaches trying to predict robotic grasps sharing sim-
ilar contact areas with the object as in the human demon-
stration, without requiring explicit correspondences between
fingers of the human and the robot. In [23], Zhu et al.
propose to annotate functional parts of the objects – i.e.,
where humans would grasp the object or not – to generate
potential grasps for these objects. Recently, ContactGrasp [4]
was proposed and uses GraspIt! [5] to generate a set of grasps
that are iteratively refined and reranked such that the contact
areas of the gripper on the object become closer to the ones
of the human grasp. This approach has several drawbacks
however. First, it is about 40 times slower than our method
as it has to generate and refine hundreds of grasp candidates
each time. Second, GraspIt! mainly generates power grasps,
and thus the refined grasps have similar properties. Third,
by focusing only on contact areas, ContactGrasp can produce
grasps in which the gripper is occluding some important parts
for the affordance of the grasped object. In comparison, our
proposed optimization approach is faster and leads to grasps
more similar to human ones, thanks to a simple yet effective
initialization and thanks to additionally taking into account
the grasp orientation.

III. GRASPING LIKE HUMANS

In this section, we describe our optimization-based ap-
proach to generate a robot grasp ‘similar’ to a given human
grasp. After formalizing the problem and notations (Sec-
tion III-A), we introduce the optimized objective function
in Section III-B and detail all the steps of our approach in
Section III-C.

A. Problem and Notations

We consider as input a rigid object grasped by a human
hand. We represent the object by a 3D mesh Mob ject , and we
adopt the MANO [7] model to represent the pose of the hand
by a global rigid transformation (Rhand , thand) ∈ SO(3)×R3

relative to the object and by its local joints configuration
θhand ∈ SO(3)20. Similarly, we assume that a kinematic
model of the robotic gripper is available. We aim to predict a
global pose (Rrobot , trobot)∈ SO(3)×R3 relative to the object
and some joints configuration θrobot ∈Rn describing a static
grasp with this gripper similar to the human demonstration
(n = 16 for Allegro, n = 7 for Barrett). We formulate this as
an optimization problem and minimize an objective function
L (Rrobot , trobot ,θrobot) representing the dissimilarity of the
robotic grasp with the human demonstration.

B. Objective Function

Our objective function L is composed of a contact-
heatmap loss LC that incites contacts on the object to
be similar, a hand orientation loss LO, as well as losses
that penalize interpenetration with the object LI and self-
penetration of the gripper LS, i.e.:

L = λCLC +λOLO +λILI +λSLS (1)



Fig. 3. Contact heatmaps on the object mesh corresponding to a human
(top) and robotic (bottom) grasp. Our optimization-based approach tries
to minimize the discrepancy between these heatmaps. Red color denotes
regions close to the hand/gripper while blue color denotes regions far from
the hand/gripper.

with weights experimentally set to λC = 10,λO = 10,λI =
0.5 and λS = 1. We detail these terms in the following
paragraphs.

a) Contact Heatmap Loss LC: Intuitively, grasps are
similar if their contact regions on the target object are similar.
Based on this observation, we propose an object-centric
contact heatmap loss term, which encourages the contact
regions of the input human hand and the robotic gripper
on the object to be similar. Specifically, we represent the
contact regions of the human hand and the robot gripper
by scalar contact heatmaps H on the object. At each vertex
oi ∈Mob ject of the object mesh, we define the values of these
heatmaps as{

Hhand(oi) = exp(−d(oi,Mhand)/τ)

Hrobot(oi) = exp(−d(oi,Mrobot)/τ)
(2)

where d(oi,M ) denotes the L2-distance of oi to the set of
vertices of the mesh M , and where τ is a constant used
to define contacts in a soft manner (i.e. H(oi) = 1 when
d(oi,M ) = 0, and H(oi)≈ 0 when d(oi,M )>> τ). In our
experiments, we use uniformly sampled meshes and choose
τ = 0.01m. Figure 3 shows examples of contact heatmaps
for different human grasps.

We define our object-centric contact heatmap loss as the
L1-distance between these generated heatmaps:

LC = ∑
oi∈Mob ject

|Hhand(oi)−Hrobot(oi)| (3)

b) Hand Orientation Loss LO: Grasps have high sim-
ilarity if the hands are oriented similarly towards the object,
thus resulting in a similar free space around the object,
and thus potentially to a similar affordance. Therefore, we
introduce a loss to encourage the orientation of the hand and
the gripper to be similar. To this end, for each human/robot

hand model, we define two unit vectors which are inherent
to the model, the forward vector f and the normal vector
n. Examples of these two vectors for different models are
shown in Figure 2. The normal vector n is defined as the
unit normal vector of the palm surface. The forward vector
f is defined as the unit vector that is parallel to the palm
surface and pointing to the ‘pushing’ direction. We define
the hand orientation loss as the L1-distance between these
two unit vectors:

LO = |nrobot −nhand |+ | frobot − fhand | (4)

c) Gripper-Object Interpenetration Loss LI: To avoid
interpenetration while ensuring realistic contacts between the
robotic gripper and the object, we take inspiration from
Müller et al. [24] and add a loss

LI = α1Lpush +β1Lpull + γ1Lnormal (5)

to our objective function. It consists of three weighted terms.
• The first term Lpush aims at avoiding interpenetration by
pushing the penetrated parts of the robotic gripper towards
their nearest surface on the object mesh. To do so, we
consider Urobot ⊂Mrobot the set of vertices on the robotic
gripper mesh that are inside the object mesh, and Uob ject ⊂
Mob ject the set of vertices on the object mesh that are inside
the robotic gripper mesh. In practice, we detect these two
sets of vertices using the generalized winding numbers [25].
We define

Lpush = ∑
oi∈Uob ject

tanh
(

d(oi,Mrobot)

α2

)
+∑
rk∈Urobot

tanh
(

d(rk,Mob ject)

α2

)
(6)

to penalize interpenetration.
• The second term Lpull encourages contacts for points of
the gripper closer than a threshold δ to the object, while
being constant for points farther away:

Lpull = ∑
rk∈Mrobot

tanh
(

min(d(rk,Mob ject),δ )

β2

)
(7)

We use δ = 2mm in practice.
• To further ensure realistic contacts, a third term is added
that encourages normals of both meshes to be opposite at
contact locations V = {rk ∈Mrobot |d(rk,Mob ject)< δ}:

Lnormal = ∑
rk∈V

1+ 〈N(rk),N(ok
i )〉 (8)

where N(·) denotes the unit normal vector at a given vertex,
and ok

i = argminoi∈Mob ject d(rk,oi) denotes the closest point
on the object for any vertex rk ∈ V . Hyperparameters values
are experimentally set to α1 = 2.4, β1 = 7, γ1 = 0.001, α2 =
4cm, β2 = 6cm.

d) Gripper Self-penetration Loss LS: LI considers
griper-object penetration, but some configurations of the
gripper could also lead to self-penetration between different
gripper components such as its fingers. We thus add a loss
to avoid self-penetration. To this end, we use the exact same
loss as Lpush but apply it between the gripper mesh and
itself, resulting in a loss LS.



Fig. 4. Overview of our pipeline for transferring human hand grasp to robot gripper grasp. We first initialize the gripper with open fingers at the
location of the hand. We then initialize the fingers position on the object surface by minimizing the distance between the fingertips and the contact regions
of the human demonstration. At last, we refine the grasp by minimizing the overall objective function.

C. Optimization Pipeline

Our objective function of Equation (1) admits many local
minima, and several optimization terms admit zero gradient
when the gripper is far from the object. Having a good
initialization is therefore important, and we thus propose a
multi-step optimization pipeline whose overview is shown
in Figure 4. It consists of 3 steps: (a) initializing the robotic
gripper with open fingers around the same location as the
human hand, (b) closing the fingers until contact with object,
(c) refining all degrees of freedom.

(a) Open Gripper Initialization: Because of the hand
orientation loss LO, the optimal global position and ori-
entation of the gripper (Rrobot , trobot ) is likely to be close
to the global position and orientation of the human hand
(Rhand , thand) in the object coordinate system. This is why
we initialize the gripper position and orientation at the same
position and orientation as the human hand. At this stage,
we assume that the rest of the parameters, i.e., the angle of
the finger joints correspond to a fully-open position and we
thus refer to this stage as ‘open gripper initialization’.

(b) Fingers Initialization: To initialize the fingers and
make the fingers touch the object at the right place, we
first detect the contact region of the human grasp, then we
minimize the distance between the fingertips and their nearest
contact region using the gripper-object interpenetration loss
LI defined in Equation (5) with the self-penetration loss LS.
In this way, we can put the fingers of the robot hand to their
closest region of contact and at the same time avoid gripper-
object interpenetration and self-penetration.

(c) Refining the Results: We finally run the full opti-
mization from this initialization. We use AdamW [26] as
our optimizer, the initial learning rate is set to 0.001 for
the translation Trobot and 0.01 for rotation Rrobot and pose
parameters θrobot . Each grasp is optimized for 100 iterations.
The learning rate decreases by 10 at iteration #50. During the
optimization, we use the rotation parametrization introduced
in [27].

IV. EXPERIMENTS

In this section, after presenting datasets and metrics (Sec-
tion IV-A), we provide the results of an ablation study in
Section IV-B and a comparison to the state of the art in
Section IV-C. We then describe a user study (Section IV-D)

that validates that our approach leads to grasps more similar
to the human demonstrations than the state of the art.

A. Datasets and Metrics

To measure performance, we consider the human grasps
from the YCB-Affordance dataset [10]. For the 52 objects
of the YCB-Objects [28], different types of human grasps
are manually annotated and refined using GraspIt! [5]. This
leads to a diversity in terms of grasps, including not only
power grasps but also pinch grasps, etc., as shown by
the annotations of the grasp categories provided with the
dataset [10] and illustrated in the top row of Figure 6.

For evaluation, we measure both the grasps quality using
the Grasp ε-quality metric, which corresponds to the radius
of the largest ball centered at the origin which can be
enclosed by the convex hull of the wrench space [29], as
commonly used in, e.g., [30], [11], [28]. We also report the
Max Penetration Depth, i.e., the maximum distance between
a vertex of the gripper that is inside the object and its closest
vertex on the object, and the Penetration Volume, i.e., the
estimated volume of penetration between the two meshes.
In addition to these grasp quality metrics, we propose two
metrics that are used to measure the similarity between
the human hand grasp and the robot gripper grasp: the
Contact Heatmap Difference that measures contact similarity
and the Orientation Difference that measures similarity in
terms of contact angle. We use the metric LC introduced in
Section III-B to evaluate numerically the Contact Heatmap
Difference and LO for the Orientation Difference.

B. Ablations

We first ablate our approach in Table II for the Allegro
gripper. To start with, we replace the second step of our
optimization pipeline by another finger closing strategy in-
spired by [10]: starting from an open configuration of the
gripper, we discretize the gripper configuration space and
pick iteratively for each finger joint the bin corresponding
to the most closed configuration that does not penetrate the
object. We observe that this significantly degrades the grasp
ε-quality, the penetration volume and the contact heatmap
similarity.

We then ablate the losses of the final optimization step of
our approach by removing them one by one. Removing the



TABLE I
COMPARISON OF OUR APPROACH WITH STATE-OF-THE-ART METHODS. † INDICATES METHODS THAT USE DIFFERENT HYPERPARAMETERS FOR

DIFFERENT GRIPPERS. FOR GRASPIT!, WE GENERATED 100 GRASPS PER HUMAN DEMONSTRATION AND SELECTED THE ONE WITH THE LOWEST

ORIENTATION DIFFERENCE AND CONTACT HEATMAP DIFFERENCE, i.e., THE LOWEST LC +LO LOSS.

Grasp Max Penetration Penetration Orientation Contact Heatmap
ε-quality ↑ Depth (cm)↓ Volume (cm3)↓ Difference ↓ Difference ↓

A
lle

gr
o

H
an

d

DexPilot† [1] 0.535 2.91 5.04 0.011 0.176
ContactGrasp† [4] 0.460 3.53 6.94 1.818 0.195
GraspIt! (best LC +LO) [5] 0.345 2.76 1.27 0.420 0.254
Ours 0.466 2.57 4.89 0.001 0.153

B
ar

re
tt

H
an

d ContactGrasp† [4] 0.523 4.65 6.28 2.003 0.225
GraspIt! (best LC +LO) [5] 0.354 4.52 0.88 0.714 0.258
Ours 0.566 4.09 2.91 0.001 0.166

contact similarity loss LC significantly degrades the contact
heatmap difference from 0.153 to 0.189, while also impacting
negatively the grasp ε-quality metric and the interpenetration.
Additionally removing the loss on the angle similarity LO
leads to grasps that are even less similar and leads to
higher penetration volume. Furthermore, removing the self-
penetration loss LI degrades the grasp ε-quality even more.
We finally evaluate the performance of our approach without
the global optimization (the third step of our pipeline) in the
last row, to show its importance for achieving good grasps.

C. Comparison with the state of the art

We compare our approach to the state of the art and
report performances for the Allegro gripper as well as for
the BarrettHand gripper in Table I. We also show various
examples in Figure 6.

As a first approach, we compare to a manually-defined
mapping between the human hand and the Allegro gripper
using a re-implementation of DexPilot [1]. Note that this
approach would require new manual annotations for another
type of robotic gripper. As a second approach, we use Con-
tactGrasp [4] that proposes to refine and rerank the grasps
generated by GraspIt! by exploiting contact information.
For each object, GraspIt! generates grasps from different
directions around the object (we consider 100 grasps in
practice). The generated grasps are fed to the ContactGrasp
pipeline with the contact region heatmaps generated using
the code provided by the authors. In the end, we consider
the best-ranked robotic grasp for each reference human
grasp. As a third approach, we use GraspIt! [5] to generate
100 different grasps for an object and select the one that
minimizes the sum of Orientation Difference and Contact
Heatmap Difference.

While DexPilot obtains a higher ε-quality metric than our
approach with the Allegro gripper, the grasps are actually less
realistic as there are larger interpenetrations with the object,
as illustrated in the left example of Figure 6. Additionally,
the grasp similarity in terms of both orientation and contact
heatmap is lower than our approach. Note also that DexPilot
is not generic in that it has been handcrafted for the Allegro
gripper. We also compare our method to the best grasp
from ContactGrasp [4], which uses different hyperparameters

Fig. 5. Real-world experiments. Left: input human demonstration.
Middle: corresponding Allegro grasp prediction. Right: execution.

for the two grippers. We observe that our approach leads
to higher quality grasps, with less interpenetrations, and
with higher similarity with the input human grasps. This is
particularly true for the orientation similarity as illustrated
in the examples of Figure 6: while ContactGrasp optimizes
for similar contact regions, it does not enforce the gripper
to approach the object from a similar direction, which can
lead to grasps with significantly different properties than the
human grasps in terms of free space around the object. Lastly,
our method outperforms GraspIt! on every metric except for
the penetration volume.

Running time.: We evaluated all the methods on a
machine with 20 Intel(R) Core(TM) i9-9900X CPUs and
one NVidia GeForce RTX 2080Ti card. Our approach takes
about 1 minute for a given grasp. For comparison, our
implementation of DexPilot takes about 1 second but does
not consider the geometry of the object, and ContactGrasp
takes on average 43 minutes for one input human grasp as
it first requires to generate 100 robotic gripper grasps using
GraspIt! before refining all of them.

D. User Study

We aim at enabling robots to grasp like humans, but the
metrics above do not necessarily express this notion well.
We therefore conducted a user study to better evaluate the
similarity between human and robotic grasps. It is difficult
for people to quantitatively evaluate this similarity, thus we
resorted to a comparative evaluation. We randomly selected
120 human grasps from the YCB-Affordance [10] dataset.
For each human grasp, we generated corresponding robotic
grasps using different methods and asked participants to
select the one which – in their opinion – is the most
similar to the human demonstration. For the Allegro grip-
per, we compared our method with ContactGrasp [4] and



TABLE II
ABLATION STUDY OF OUR APPROACH WITH THE ALLEGRO GRIPPER. IN THE FIRST ROW, WE REPLACE THE SECOND STEP OF OUR PIPELINE WITH

CONTACT OPTIMIZATION FOR THE FINGERS’ INITIALIZATION BY A DISCRETE CLOSING STRATEGY. IN THE ROWS BELOW, WE REMOVE THE LOSSES

ONE BY ONE. THE LAST ROW WITHOUT ANY LOSS CORRESPONDS TO THE ABSENCE OF STEP 3 OF OUR OPTIMIZATION PIPELINE.

Fingers
LI LS LO LC

Grasp Max Penetration Penetration Orientation Contact Heatmap
Init. (step 2) ε-quality ↑ Depth (cm)↓ Volume (cm3)↓ Difference ↓ Difference ↓
Discrete init. X X X X 0.294 2.59 5.83 0.011 0.213

Contact optim.

X X X X 0.466 2.57 4.89 0.001 0.153
X X X 0.438 2.70 6.32 0.001 0.189
X X 0.467 2.55 6.60 0.041 0.190
X 0.411 2.69 6.39 0.031 0.187

0.387 2.96 8.52 0.011 0.170

Fig. 6. Example of generated grasp transfers for our approach, DexPilot[1] and ContactGrasp[4]

DexPilot [1]. For BarrettHand, we compared our method
with ContactGrasp [4]. We also included an additional grasp
generated randomly using GraspIt! [5] as baseline.

We received in total 1,392 votes from 58 participants –
each participant sharing its preference regarding 24 human
grasps. Results are summarized in Table III. Overall, the
participants favored grasps produced by our method in 51%
of the cases for the Allegro gripper, and 73% of the cases
for BarrettHand. These scores are way above random chance
(25% for Allegro, 33% for BarrettHand), and they suggest
that our generated grasps are considered significantly more
similar to the human demonstrations than the grasps gener-
ated using the other evaluated methods. Further analysis of
the results showed that the preference for our method could
be explained in all cases by the smaller difference of global

TABLE III
USER-STUDY: “WHICH GRASP IS THE MOST SIMILAR TO THE HUMAN

DEMONSTRATION?”

Grasp generation method Number of votes (total: 1392)

Allegro BarrettHand

GraspIt! (random) [5] 49 38
ContactGrasp [4] 117 101
DexPilot [1] 265 -
Ours 440 383

orientation between the robot and human hands when using
our method.



E. Real World Experiments

We focus in this work on predicting static grasps that
describe the pose and joints configuration of a robotic gripper
with respect to an object. Grasping however is fundamentally
a dynamic process, involving robot motion and contact
forces. To demonstrate the usability of our approach in
real scenarios, we performed grasping experiments using
an Allegro gripper mounted on a Panda robotic arm, from
Franka Emika (see one grasp example in Figure 5, and
the attached video with 5 grasping examples on 5 different
objects). These experiments allowed to check that grasps
produced by our method are physically feasible, while being
similar to the human demonstrations. Robot perception is
out of the scope of this study, therefore we used as input
some human demonstrations from the YCB-Affordance [28]
dataset, and we manually placed the objects in known poses
before attempting the grasps with the robot. We did not
conduct any quantitative evaluations because of this manual
step. Note that state-of-the-art methods for object [31] and
hand+object pose estimation [32], [33], [34], [35], [36], [37]
could be used to overcome this limitation.

V. CONCLUSIONS

We propose a multi-step optimization-based approach for
transferring grasps from a human demonstration to a multi-
fingered robotic gripper, so as to enable a robot to grasp
like a human. The proposed approach is generic and can be
applied to arbitrary multi-fingered gripper, as shown by our
experimental evaluation with both Allegro and BarrettHand
grippers. Our results – based on quantitative metrics and
a qualitative user study – suggest that it produces grasps
significantly more similar to the human demonstrations than
state-of-the-art methods, and we validated its applicability in
the real world using an Allegro gripper mounted on a Panda
arm.
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