
Multi-Robot Path Planning Using Medial-Axis-Based Pebble-Graph Embedding
Liang He1†, Zherong Pan3, Kiril Solovey2, Biao Jia4, and Dinesh Manocha4

Abstract— We present a centralized algorithm for labeled,
disk-shaped Multi-Robot Path Planning (MPP) in a continuous
planar workspace with polygonal boundaries. Our method
automatically transform the continuous problem into a discrete,
graph-based variant termed the pebble motion problem, which
can be solved efficiently. To construct the underlying pebble
graph, we identify inscribed circles in the workspace via a
medial axis transform and organize robots into layers within
each inscribed circle. We show that our layered pebble-graph
enables collision-free motions, allowing all graph-restricted
MPP instances to be feasible. MPP instances with continuous
start and goal positions can then be solved via local navigations
that route robots from and to graph vertices. We tested
our method on several environments with high robot-packing
densities (up to 61.6% of the workspace). For environments
with narrow passages, such density violates the well-separated
assumptions made by state-of-the-art MPP planners, while our
method achieves an average success rate of 83%.

I. INTRODUCTION

We propose a centralized approach for Multi-Robot Path
Planning (MPP) for planar workspaces with polygonal ob-
stacles. This problem has a wide range of applications such
as warehouse management [1], computer games [2], and
crowd modeling [3], which require the coordination of a large
swarm of robots within a limited computational budget. MPP
plans must be computed within a couple of milliseconds for
an interactive game and an automatic warehouse needs to
answer thousands of queries on a daily basis. Unfortunately,
solving general MPP problems is NP-hard [4, 5, 6] and
practical algorithms based on sampled roadmaps [7] and
conflict-based search [8] quickly become intractable for more
than a few robots. Follow-up research relies on additional as-
sumptions on environment shapes and/or robot arrangements
to attain practical performance.

A. Related Work

We review the three assumptions most relevant to our
work. To begin with, graph pebbling [9, 10, 11] lays the
theoretical foundation of discrete structure in MPP problems.
It assumes that robots are restricted to vertices and move
along the edges of a graph. Prior work established fast
algorithms to verify and construct feasible solutions for
sub-classes of pebble-graphs [9, 11]. Certain regular grids
are endowed with complete results [12, 13, 8, 14] and
near-optimal solutions [15, 16] although exact optimality is
intractable to attain [17]. However, building a pebble-graphs
for workspaces with complex boundaries is still challenging,

1Liang He is with Department of Computer Science, University of
North Carolina at Chapel Hill. {lianghe.hust@gmail.com} 2Kiril Solovey is
with the Technion, Israel Institute of Technology. {kirilsol@technion.ac.il}
3Zherong Pan is with Lightspeed & Quantum Studio, Tencent America.
{zrpan@tencent.com} 4Biao Jia and Dinesh Manocha are with Department
of Computer Science and Electrical & Computer Engineering, University
of Maryland at College Park. {biao,dm@cs.umd.edu}

because regular grids cannot cover narrow passages and
sharp features as illustrated in Figure 1 (b).

Some methods [18, 19, 20, 21, 22, 23] use random
sampling to build discrete graphs that capture the structure
of the continuous problem. Some of these methods have
completeness guarantees, that is, if a graph leading to feasible
solutions exists, they can ultimately build one. However, to
the best of our knowledge, those approaches do not scale
well with the number of robots.

Lastly, the well-separated assumption [24, 25, 26, 27]
partially addresses the shortcomings of the above methods.
By assuming robots (as well as their goal positions) are
sufficiently separated from each other and the obstacles, each
robot can find paths to their goal regardless of the order
of movements of other robots. Unlike graph-pebbling, the
well-separated assumption can be verified and established for
an arbitrary workspace easily, after which feasibility can be
guaranteed. On the downside, the large separation distance
can limit the number of robots.

B. Main Results

We propose a new method to construct pebble-graphs for
arbitrary workspaces without using sampling-based methods.
As illustrated in Figure 1 (c), our method relies on the
medial-axis transform [28] to identify a series of inscribed
circles with center points connected into skeleton curves. We
then organize robots into discrete layers inside each inscribed
circles, as illustrated in Figure 1 (d). We show that our
robot arrangement allows both translational and rotational
pebble motions. Following an idea similar to [11], we prove
that all the MPP instances restricted to our pebble-graph are
feasible as long as the number of graph vertices is larger than
the number of robots. Finally, our method can inherently
extend to continuous start and goal positions by moving
robots to and from closest graph vertices via local navigation
algorithms [29].

Our method works well in workspaces with complex
obstacles and boundary shapes. We have conducted sys-
tematic comparisons with [16] in 5 different environments,
each having 30 − 160 randomized MPP instances. For the
benchmark with narrow passages, our method achieves a
100% success rate on an average robot density between
30−71% of the workspace, while such a high density violates
the well-separated assumption in [25] and the method in [16]
can fail whenever agents fall inside these narrow passages.

II. PROBLEM STATEMENT AND APPROACH OVERVIEW

We formalize 2D labeled MPP problems. We define W ⊆
R2 as the 2D workspace and assum that the boundary of
workspace, ∂W , is piecewise linear. We have a set of N disk-
shaped robots initially centered at s1, . . . , sN with identical

ar
X

iv
:2

00
2.

11
89

2v
4 

 [
cs

.R
O

] 
 1

9 
Ju

l 2
02

2



(a) (b)
(c)

(d) (e)

Fig. 1: (a): We have two robots moving from start (red) to target (green) positions. (b): Prior work such as [30] assumes
that robots can move on a regular grid (black edges). (c):To extract the skeletons (yellow), our method first computes a
medial axis transform, each point on which is the center of an inscribed circle. (d): Our method embeds the pebble-graph
into W by picking two inscribed circles, in which robots are arranged into loops (separated by yellow loop boundaries). We
further use subsets of the skeleton as paths connecting inscribed circles. Generally speaking, si and ti do not coincide with
the planned positions in the inscribed circles and we use local navigation to move robots there (arrows). (e): The topology
of the embedded graph consists of six connected loops, on which a robot can move to a neighboring vacant position and
robots on a loop can perform rotational motions (black edges).

unit radii, and we denote B(•) as a unit circle centered at •.
The robots have distinct goal positions t1,··· ,N . Our method
aims at finding a continuous path for each robot connecting
si and ti, where the disk-shaped regions of any two robots do
not overlap for any given time instance and no robot collides
with obstacles.

Having defined the problem, we provide an overview of
our approach. The first step of our algorithm is pebble-graph
embedding (Section III). The pebble-graph is embedded into
W with the help of Blum’s medial axis analysis, which
can be performed through robust algorithms such as [31].
The medial axis analysis extracts two crucial pieces of
information from a continuous workspace: skeleton lines and
inscribed circles, as illustrated in Figure 1 (c). An inscribed
circle, denoted as C, is defined as a circular subset of the
workspace that touches the boundary of the workspace at
least two points, and skeleton lines are derived by connecting
centers of inscribed circles. These two pieces of information,
skeleton lines and inscribed circles, are crucial because they
allow the structure in W to move and accommodate robots:
robots can reside in inscribed circles and move along sub-
paths of skeleton lines. As illustrated in Figure 1 (d), we
design an algorithm to select a subset of inscribed circles
where robots can be arranged into connected loops such that
they can move to nearby vacant positions or rotate along
loops in a collision-free manner as illustrated in Figure 1 (e).
By construction, our pebble-graph is topologically identified
with the setting considered in [11]. Our second step is motion
planning (Section IV), where we compute a series of motions
to answer arbitrary MPP queries. In other words, robots
can perform arbitrary position permutations restricted to the
graph vertices. Finally, start and goal positions might not
coincide with graph vertices, and we use unlabeled, local
navigations to move robots between their start/goal positions
and graph vertices (Section V).

III. PEBBLE-GRAPH EMBEDDING

The first step of our method finds M > N graph vertex
positions using the greedy Algorithm 1. These vertices
should be close to robots’ start positions, so that robots
can be moved to vertices with a high success rate via local
navigation algorithms such as [29]. We further assume each
robots’ goal position set is close to its start position set,
so goal positions can be ignore in the graph construct step.

Our method maintains: 1) a set of considered robot start
positions X initialized to be empty; 2) a set of remaining
positions initialized to be {s1, · · · , sN}; 3) a set of con-
sidered inscribed circles C initialized to be empty. During
each iteration, an arbitrary position in the remaining set is
picked, e.g. si. By the definition of inscribed circles, B(si)
must be contained in at least one inscribed circle, and we
select the circle whose center is closest to si, denoted as
C(si). (To find C(si), we sample the skeleton lines at regular
intervals and extract inscribed circles centered at sample
points, giving a discrete circle set C̄.) We then move si from
the remaining set to the considered set X and move C(si)
into the circle set C. Further, if there is another sj in the
remaining set such that B(sj) ⊂ C(si), we also move sj

into the considered set. We terminate when the remaining
set is empty. Note the success of our method depends on the
order of choosing positions in the remaining set. To increase
the success rate, we propose executing the algorithm multiple
times using randomly shuffled start positions and return the
first successful result. The resulting circle set would be used
to construct our discrete loop graph using a BuildGraph
function.

Remark 1. The result of Algorithm 1 is a graph G = 〈V, E〉
with M vertices corresponding to V = {v1,··· ,M} and
edges E constructed in the BuildGraph function. If G is not
connected, has only one loop, or M ≤ N , then we im-
mediately return failure because our pebble motion planner
(Section IV) relies on these pre-conditions. Otherwise, we
will use local navigation (Section V) to move robots from
s1,··· ,N to N out of M positions. If robots get stuck during
local navigation, we also return failure.

In the following, we analyze the relationship between
loops and derive geometric conditions of a graph embed-
ding, such that robot motions are collision-free. Since two
loops can belong to different inscribed circles or different
layers of the same inscribed circle, we use the subscript to
index circles and superscript to index loops inside a circle.
For example, Cia indicates the ith loop (starting from the
innermost one) of the ath circle.

A. A Single Circle

We refine the details of the BuildGraph function, which
arranges robots into loops within inscribed circles, ensuring



Algorithm 1: Convert W into G
1: Perform Blum’s medial axis analysis [31] for W
2: A discrete candidate circle set C̄
3: Initialize considered set X← ∅
4: Initialize selected circle set C← ∅
5: Initialize G ←< ∅, ∅ >
6: for i = 1, · · · , N do
7: if si /∈ X then
8: Find C(si)← argmin

B(si)⊆C∈C̄
‖center(C)− si‖

9: C← C ∪ {C(si)}
10: G ←BuildGraph(C)
11: for j = 1, · · · , N do
12: if sj /∈ X ∧B(sj) ⊆ C(si) then
13: X← X ∪ {sj}
14: if Disconnected(G) ∨ |V| ≤ N ∨#Loop(G) ≤ 1 then
15: if Maximal trial number not reached then
16: Random shuffle si, X← ∅,G ←< ∅, ∅ >
17: Goto Line 5
18: else
19: Return Failure
20: else
21: Return Success

that translational and rotational motions are collision-free.
We denote the ith loop as Ci ∈ R2, where the 0th loop is
the innermost loop. We use subscripts to distinguish different
circles and superscripts to distinguish different loops. We
have an upper bound on the number of loops C can hold
as 0 ≤ i ≤ b(r(C) + 1)/2c, where r(C) is the radius.
In addition, we denote #(R) as the number of prescribed
positions that can be put into some subset region R ⊆ R2

without any collisions between positions or with ∂W .
We begin with the simplest case where there is only one

C in G. Although a single robot can be put into C0, we let
#(C0) = 0 because our pebble motion planner requires each
loop to have at least 3 positions (see Section IV for more
details). For other loops, we have #(C1) = 6 and for i > 1
we have:

#(Ci) =
⌊
(2π − 2 sin−1 1

i
)/(2 sin−1 1

2i
)

⌋
+ 2. (1)

60◦ sin−1 1
i

2i

2

Fig. 2: We illustrate the
angles defining #(C1) and
#(Ci) for i > 1. Our goal
is to make sure the capsule-
shaped region (blue) con-
tains only the two robots.

As illustrated in Figure 2,
Equation 1 allows a capsule-
shaped region between Ci and
Ci−1 to contain only the two
positions, allowing a pebble mo-
tion to be performed between
the two loops. A pebble or ro-
tational motion inside a sin-
gle Ci can be performed within
Ci without affecting any other
loops by having all the positions
trace out a circular arc along
the centerline of Ci. In sum-
mary, the procedure to convert

a single inscribed circle C into
a graph G is Algorithm 2. Note that Algorithm 2 requires
that b(r(C) + 1)/2c ≥ 2, since our pebble motion planner
requires more than one loop in G. In addition, Equation 1
allows #(Ci) positions to be placed along the centerline of
Ci that are at least 2 apart, positions of different layers are
non-overlapping.

(a) (b) (c)
v

v′
v

v′
v′

v

v′

v

Fig. 3: To perform a pebble motion along v↔ v′, we first move
robots in Ci continuously to: (a) align the capsule region (blue); (b)
perform the swap; (c) move robots in Ci backward.

Each pebble or rotational motion in Ci can be performed
by moving robots along the centerline of Ci without affecting
other layers. To realize pebble motions between two robots
v and v′ of neighboring layers (Line 9 of Algorithm 2),
we first rotate robots continuously in Ci to make sure that
the capsule-shaped region between B(v) and B(v′) does
not contain other robots, as illustrated in Figure 3. After the
pebble motion, we rotate robots in Ci back to their original
positions.

Algorithm 2: BuildGraph for a single C

1: if
⌊
r(C)+1

2

⌋
< 2 then

2: Return G =< ∅, ∅ >
3: for 1 ≤ i ≤

⌊
r(C)+1

2

⌋
do

4: . Pick positions that are at least 2 apart
5: Pick #(Ci) positions along the centerline of Ci
6: Insert the #(Ci) positions into V
7: Insert #(Ci)− 1 edges into E
8: if i > 1 then
9: Choose v,v′ belonging to i, i− 1th loop

10: Insert v↔ v′ into E
11: Return G

B. Two Overlapping Circles
Next, we discuss the case where two circles Ca,b are

overlapping, which might result in loop sharing. Since the
interiors of different layers in the same circle are disjointed,
we always have the following decomposition of the domain:

#(Ca ∪ Cb) ≥
∑
i #(Cia − Cb) +

∑
j #(Cjb − Ca) +

∑
i,j #(Cia ∩ C

j
b ), (2)

where the inequality can be strict since we exclude robots
that can cross the boundary of sub-domains. We choose to
construct our graph using the lower bound on the righthand
side. As illustrated in Figure 4, the three terms on the
righthand side can be derived analytically by considering 4
different cases. These four cases are distinguished by the
distance between center vertices of Ca and Cb, denoted as
D. In addition, we require that the center of Ca is outside Cb
and vice versa:

D ≥ max(r(Ca), r(Cb)). (3)



(a) (b) (c) (d)

Fig. 4: We illustrate 4 critical cases between two loops of
overlapping inscribed circles.

1) Case I: The first case is illustrated in Figure 4 (a), and
it happens if the following condition holds:

D ≥
√

(2i+ 1)2 − 1 +
√

(2j + 1)2 − 1 (4)
In this case, we cannot fit any circle in the overlapping area,
i.e. #(Cia ∩ C

j
b ) = 0. The capacity of Cia is reduced to:

#(Cia − Cjb ) =

⌊
2π − 2 cos−1 D2+(2i)2−(2j+2)2

4iD

2 sin−1 1
2i

⌋
+ 1, (5)

and a symmetric equation applies to Cjb . Although the two
loops overlap, they are not connected in G because Cia ∩ C

j
b

is too narrow to perform pebble motions. It is trivial to show
that rotational motions can be performed in either Cia or Cjb .
We can convert this case by building two loops for Cia and
Cjb without adding edges to E .

2) Case II: The second case is illustrated in Figure 4 (b),
which happens if Equation 4 does not hold but we have:

D ≥ 2i+ 2j. (6)

In this case, we still have #(Cia ∩ C
j
b ) = 0 and Equation 5

holds. However, Cia ∩ C
j
b is now wide enough to allow an

robot to travel in the blue region of Figure 4 (b) to swap
with a vacant position, which also utilizes the blue region.
Therefore, we can insert an edge into EI between two loops.

3) Case III: The third case is illustrated in Figure 4 (c),
which happens if Equation 6 does not hold but we have:

D ≥ 2i+ 2j − 2. (7)

In this case, we have #(Cia ∩ C
j
b ) = 2 and we have:

#(Cia − Cjb ) = (Equation 5)− 2.

Moreover, the two robots in Cia ∩ C
j
b can be swapped if one

of them is vacant and rotational motions can be performed
in either Cia or Cjb . Therefore, we can construct two loops
for Cia and Cjb , let them share two robots in Cia ∩C

j
b , and the

edge between them.
4) Case IV: The last case is illustrated in Figure 4 (d),

and it happens if we have:
max(r(Ca), r(Cb)) ≤ D < 2i+ 2j − 2. (8)

In this case, we have #(Cia ∩ C
j
b ) = 2, but #(Cia − Cb) has

a new expression:

#(Cia − C
j
b ) =

⌊
2 cos−1 D2+(2i)2−(2j−2)2

4iD

2 sin−1 1
2i

⌋
+ 1 + Equation 5. (9)

Similar to case III, we can construct two loops for Cia and
Cjb , let them share two robots in Cia ∩ C

j
b , but the two loops

do not share any edges.
Note that we have computed #(Cia − C

j
b ) in the four

cases but we need #(Cia − Cb) in Equation 2, which can
be computed by excluding each layer Cjb from Cia (the
details are similar to the four cases and omitted for brevity).
We summarize our method to convert W to G for two
overlapping circles in Algorithm 3. This algorithm inserts
vertices corresponding to each term of the righthand side

of Equation 2 in Line 2 and Line 5, respectively, and then
inserts edges to connect loops. Note that we only need to
insert inter-loop edges in Case II, as is done in Line 14.

Algorithm 3: BuildGraph for two circles Ca,b

1: for 1 ≤ i ≤
⌊
r(Ca)+1

2

⌋
and 1 ≤ j ≤

⌊
r(Cb)+1

2

⌋
do

2: Insert #(Cia ∩ C
j
b ) vertices into V

3: for pass=1, 2 do
4: for 1 ≤ i ≤

⌊
r(Ca)+1

2

⌋
do

5: Insert #(Cia − Cb) vertices into V
6: Add #(Cia − Cb) +

∑
j #(Cia ∩ C

j
b ) edges to E

7: if i > 1 then
8: Choose v,v′ belonging to i, i− 1th loop
9: Insert v↔ v′ into E

10: Swap a, b
11: for 1 ≤ i ≤

⌊
r(Ca)+1

2

⌋
and 1 ≤ j ≤

⌊
r(Cb)+1)

2

⌋
do

12: if Case II holds then
13: Choose v,v′ from i, jth loop of Ca,b, respectively
14: Insert v↔ v′ into E
15: Return G

Informally, we justify the correctness of Algorithm 3.
First, since each summand in Equation 2 corresponds to
pairwise disjointed regions, the embedding is collision-free.
Second, it is trivial to show that pebble or rotational motions
within a single circle can be performed in the same way as
in Section III-A. In addition, pebble motions between two
overlapping loops are only required in Case II, which can
also be safely performed, as shown in Figure 4 (b). Note
that we might not get a valid pebble graph in two scenarios:
1) when some loop might not have 3 vertices; 2) when two
circles are not connected, leading to disconnected G.

C. More Than Two Circles

We can combine the two previous cases to derive the
final BuildGraph procedure. We assume that K inscribed
circles C1,··· ,K are used and our algorithm is based on the
assumption that, for any three (pairwise distinct) circles
Ca, Cb, Cc, we have:

Ca ∩ Cb ∩ Cc = ∅. (10)
As a result, we have the following inequality:

#(
⋃K
a=1 Ca) ≥

∑
a,i #(Cia −

⋃
b 6=a Cb) +

∑
b<a

∑
i,j #(Cia ∩ C

j
b ), (11)

θ

Fig. 5: We illustrate
the procedure to compute
#(Cia −

⋃
b 6=a Cb).

which is valid only when Equa-
tion 10 holds. We can compute
each of the terms in Equation 11
analytically. For a term of type
#(Cia ∩ C

j
b ), we can compute

it using the four cases in Sec-
tion III-B. For a term of type
#(Cia−

⋃
b 6=a Cb), we use a pro-

cedure illustrated in Figure 5,
where we first identify all the tangent cases (red circle) using
triangular relationships (black), then find the angles between
tangent cases (θ), and finally compute the number of spheres



that can be put into the interval between neighboring tangent
cases as

⌊
θ/(2 sin−1 1/(2i))

⌋
+ 1.

Algorithm 4: BuildGraph for C1,··· ,K
1: for 1 ≤ a < b ≤ K do
2: for 1 ≤ i ≤

⌊
r(Ca)+

2

⌋
and 1 ≤ j ≤

⌊
r(Cb)+1

2

⌋
do

3: Insert #(Cia ∩ C
j
b ) positions into V

4: for 1 ≤ a ≤ K do
5: for 1 ≤ i ≤

⌊
r(Ca)+1

2

⌋
do

6: Insert #(Cia −
⋃
b 6=a Cb) positions into V

7: Insert #(Cia −
⋃
b 6=a Cb) +

∑
b6=a

∑
j #(Cia ∩ C

j
b )

8: edges into E
9: if i > 1 then

10: Choose v,v′ belonging to i, i− 1th loop
11: Insert v↔ v′ into E
12: for 1 ≤ a < b ≤ K do
13: for 1 ≤ i ≤

⌊
r(Ca)+1

2

⌋
and 1 ≤ j ≤

⌊
r(Cb)+1

2

⌋
do

14: if Case II holds then
15: Choose v,v′ from i, jth loop of Ca,b
16: Insert v↔ v′ into E
17: if There is τ satisfying Equation 12 then
18: Set i =

⌊
r(Ca)+1

2

⌋
and j =

⌊
r(Cb)+1

2

⌋
19: Choose v,v′ from i, jth loop of Ca,b
20: Insert v↔ v′ into E
21: Return G

(a) (b)

Fig. 6: A tunnel along the medial axis is added between two
distant loops (a), so that an agent can be moved to a nearby vacant
position by first rotating in the two loops and then moving the agent
along the tunnel (b).

However, as shown in Section III-B, two scenarios might
lead to invalid pebble-graphs that also apply for multiple
circles. First, there may be invalid loops with less than 3
positions. In Section III-B, we eliminate this case by having
two circles’ centers outside each other, but this cannot be
done for multiple circles. Second, two circles might be too
far apart, leading to disconnected G. This later scenario can
be mitigated with the help of a medial axis. For two circles
Cs,t, their centers are on the medial axis. If we can find a
sub-path τ : [0, 1]→ R2 along the medial axis such that:

τ(0) ∈ Ca ∧ τ(1) ∈ Cb∧

(τ ⊕B(0))− (Cs ∪ Ct) ⊆ W −
K⋃

a=1

Ca,
(12)

then we can insert an edge into EI between the outermost
loops of Cs and Ct. Here ⊕ is the Minkowski Sum, i.e. we
require the path to have no interference with any obstacle
or other circle. When performing pebble motions along
τ , we follow the procedure illustrated in Figure 6. The
motions can be performed in a collision-free manner when
Equation 12 holds. The procedure to convert the K circles
into G is summarized in Algorithm 4. This algorithm adds
vertices corresponding to each term of the righthand side
of Equation 10 in Line 3 and Line 6, respectively. It then

adds three kinds of edges: 1) loop edges (Line 8); 2) inter
loop edges (Line 11 and Line 16); and 3) medial axis edges
(Line 20).

IV. PEBBLE MOTION PLANNING

We allow robots to perform two types of movements on
the pebble graph: 1) cyclic permutation of robots in a single
loop; 2) movement of robot to an adjacent vacant position
(either in the same loop or in an adjacent loop). This setting
is similar to prior work in [17], but that method focuses
on checking the feasibility, while we ensure feasibility of
arbitrary robot configuration change on the graph under the
assumption that the graph vertices are not fully occupied. Our
pebbling motion planner does not differentiate between loops
of the same circle or loops of different circles (because such
differences have been taken care of in Section III). Therefore,
we only use a global superscript to index loops. For the ith
loop, the set of vertices is denoted as ViL. These vertices are
connected by a set of edges denoted as E iL.

Formally, the topology of a pebble-graph G =< V, E >
successfully constructed from Algorithm 1 is simple, undi-
rected, and connected. Different loops can be interpreted as
a partition of V as follows:

V =

K⋃
i=1

ViL, |ViL ∩ V
j
L| ∈ {0, 2}. (13)

The partition of vertices induces a partition of edge set E as
follows:

E = EI ∪
K⋃
i=1

EiL, EiL ∩ EI = ∅, |EiL ∩ EjL| ∈ {0, 1}. (14)

Specifically, we assume that the vertices can be partitioned
into K > 1 loops, where K is the number of loops in the
graph. We also require that E iL is the unique loop connecting
ViL and that E iL is a simple loop (with no repeated vertices).
Note that, under these definitions, each loop must have at
least 3 vertices, i.e. |ViL| ≥ 3. This is necessary because our
motion planner moves robots by swapping the positions of
two neighbors connected by a graph edge, where we need a
third position as a buffer to accommodate temporary robots
(see our extended version [32] for more details). Finally, we
allow two loops to overlap; however, if the ith loop and
the jth loop overlap, we require that they share exactly 2
vertices. As a result, two loops can also share a common
edge (this is why we have |ViL ∩ V

j
L| ∈ {0, 2} and |E iL ∩

EjL| ∈ {0, 1}). This corresponds to Case III of Section III-
B. In summary, a successful graph returned by Algorithm 1
satisfies the following conditions:

Definition 1 (Pebble Graph). A pebble graph G is a simple,
undirected, and connected graph satisfying Equation 13 and
Equation 14 with K > 1 such that, through each group of
vertices in ViL (i = 1, · · · ,K), there is a simple, closed path
formed by edges in E iL.

On such a graph, we could follow similar reasoning as
[9, 11] to verify feasibility for all the MPP instances and
construct the corresponding motion plans, as summarized in
the following result:



Theorem 1 (Pebble-Graph Feasibility). On a pebble-graph
G with |V| = M > N , we assume si = vi and ti = vσ(i),
where σ(•) is an arbitrary permutation. there exists a finite
sequence of pebble or rotational motions to move robots from
si to ti for all i = 1, · · · , N , and the length of the motion
sequence is O(|V|2).

We prove Theorem 1 constructively in our extended ver-
sion [32] by converting the permutation into a sequence of
pairwise position swaps between two neighboring vertices,
and we use the proof to construct a planning algorithm to
solve MPP instances in our extended version [32].We then
show that each swap can be accomplished by a O(|V|)-
sequence of motions. We further show that the amortized
length of motion sequence for permuting the position of two
arbitrarily distant vertices is also O(|V|). Therefore, the total
length of motion sequence to solve the pebbling problem
is O(|V|2). To accomplish each position swap, we need
to move the vacant vertex, which is not occupied by any
robot, near the to-be-swapped vertices. We could optimize
the motion plan by moving the vacant vertex along the
shortest path. It is convenient to pre-compute the all-pair
shortest paths, which costs O(|V|3). This step dominates the
complexity of computing the motion sequence.

Bench. Method
Metric Precomp. Planning Total Succ. Makespan Traj. Length

Figure 7 (a)/600
Ours 2 313 316 100% 73×600 178×600
[16] - 333 333 100% 81×600 171×600
[25] - 258 258 - - -

Figure 7 (b)/710
Ours 2 451 453 100% 82×710 163×710
[16] - 432 432 100% 76×710 166×710
[25] - 357 357 - - -

Figure 7 (c)/170
Ours 4 212 216 100% 33×170 122×170
[16] - 208 208 82% 28×170 118×170
[25] - 205 205 - - -

Figure 7 (d)/130
Ours 3 128 131 100% 26×130 132×130
[16] - 122 122 100% 23×130 136×130
[25] - 107 107 - - -

TABLE I: We compare the performance of different tech-
niques. From left to right: benchmark/robots number, algo-
rithm name, time to construct the pebble graph (in seconds);
time to compute the MPP motion plan (in seconds); total
computation time (in seconds); rate of success; makespan
(average makespan of each robot × number of robots);
trajectory length (average trajectory length of each robot ×
number of robots). All numbers are averaged over 50 random
trials. Note the makespan (measured in the number of pebble
steps) is incomparable with the trajectory length (measured
in the unit length traveled by each robot).

V. LOCAL NAVIGATION

In general, robot start/goal positions do not coincide with
the graph vertices and we use local navigations to move
robots to/from graph vertices. To this end, we propose a
heuristic method based on RVO [29] and CAPT [14]. The
RVO algorithm resolves local collisions between robots,
and CAPT further uses the Hungarian algorithm to solve
unlabeled navigation problems by assigning robots to goal
positions. Since our graph vertices do not coincide with robot
start/goal positions, we use a similar technique to assign each
si/ti to some graph vertex. This assignment can be arbitrary
in our method because robots can be moved to any graph
vertices and permuted later, while we propose computing

an as-close-as-possible assignment via optimal transport by
solving the following mixed integer linear programming:

argmin
z
ij
s ∈{0,1}

N∑
i=1

M∑
j=1

zijs ‖si − vj‖

s.t.
N∑

j=1

zijs = 1 ∧
N∑
i=1

zijs = 1,

where zijs = 1 implies assigning si to vj . After the
assignment is computed, we can move each si to vj using
RVO. An identical procedure is used to assign ti to vj with
decision variables denoted as zijt . Finally, the graph vertex
permutation can be determined from zijs and zijt . We set
σ(j) = j′ if zijs = 1 and zij

′

t = 1 for some i.

VI. EXPERIMENTS

We evaluate the performance of our method on a set of
5 benchmarks. The algorithm is implemented in C++ and
tested on a desktop machine with an Intel Core i7 CPU
running at 3.30GHz with 16GB of RAM. We have also
compared our algorithm with [16, 25], which are recently
proposed methods for centralized motion planning in contin-
uous workspaces. Our method can compute motion plans for
up to 200 robots in less than 10 seconds shown in Figure 7
(a) and (b), where the cost of pebble-graph embedding
(Algorithm 1) is marginal and the majority of computation
is spent on scheduling pebble motions on the graph. The
detailed timing and trajectory qualities of the three methods
are summarized in Table I. These results are derived by
performing 50 random trials and taking the average. For
each random trial, the robots’ start positions are randomly
sampled.

Our first benchmark is illustrated in Figure 7 (a), where
we compare our method and prior work [16] under different
robot densities. The robots’ start positions are shown in red
and their goal positions are derived by randomly permuting
the starts. For 100 robots, our method takes 8 seconds to
compute the motion plan (including pebble-graph construc-
tion and pebble motion planning, but not local navigation),
while it takes 10 seconds to compute the motion plan using
[16]. We then increase the number of robots to 200 in
Figure 7 (a), where our algorithm still takes 8 seconds to
find a motion plan, while the computational cost of [16] is 18
seconds using a rectangular grid as the graph. We can further
increase the number of robots up to 600, resulting in robots
occupying 47% of |W|, and the motion plan can be computed
within 313 seconds. We have tried a similar benchmark
(Figure 7 (b)) with a different obstacle setup, where the
overall computation time of our method is 2 seconds for
70 robots. We can increase the number of robots up to 710,
occupying 55% of |W|, for which our method computes a
motion plan within 453 seconds. Our third benchmark in
Figure 7 (c) involves a maple-shaped boundary with a narrow
passage and our forth benchmark contains irregular obstacles.
Both [16, 25] fail for these irregular cases. This is because the
regular grid used by [16] does not fit into the narrow space
and the well-separated assumption of [25] does not hold, In
contrast, our method succeeds in computing a motion plan



(a) (b) (c) (d)

Fig. 7: We highlight the 4 most challenging benchmarks. (a): A rectangular workspace with 600 robots; (b): Another
obstacle setup with 710 robots. The two benchmarks (ab) are also used in [16], where robots’ goal positions are derived
by permuting their start positions. (c): A maple-shaped workspace with highly irregular boundaries and 100 robots; (d): A
rectangular workspace with irregular obstacles and 130 large robots. For (c) and (d), robots’ start positions are in red and
goal positions are in blue.

Fig. 8: A similar scenario to one used in [25], where robots
need to give way to each other by revolving. The robots’
start and end positions are in red and blue, respectively.

within 220 seconds for 170 robots in Figure 7 (c) and 130
robots in Figure 7 (d), with a success rate of 100% over all
20 executions.

Furthermore, we implement a similar scenario to [25],
but unlike their experiments, the robots in our experiments
are randomly placed. As a results, some robots do not have
sufficient free space to accomplish a revolving motion, which
is needed in [25] to find feasible motion plans. However,
our method successfully moves robots into inscribed circles
via local navigation, and revolving motions can still be
performed. These behaviors are illustrated in the video and
the overall computation time is less than 3 seconds.

In Figure 9, we have profiled the success rate of our
method and [16] under different scenarios and robot den-
sities. Note that our method relies on a randomized, greedy
Algorithm 1 to construct the pebble graph, so it is possible
to improve our success rate by running Algorithm 1 multiple
times using different random seeds until a solution is found,
as in Line 15 to Line 17 of Algorithm 1.

VII. CONCLUSION AND LIMITATIONS

We presented a new method to bridge the gap between
continuous MPP planning and discrete pebble-graph mo-
tion. We first use medial axis analysis to extract crit-
ical information from the workspace, i.e. skeleton lines

100 200 300 400 500
#Robot

40

60

80

100

Su
cc

es
s R

at
e

Success Rate - #Robot

Fig.7 (c) Ours
Fig.7 (d) Ours
Fig.7 (c) [16]
Fig.7 (d) [16]

Fig. 9: We compare the changes in success rate over 50
random runs of our method and [16], under different robot
densities. In cases of high density, our method exhibits a
much higher success rate, especially with a narrow passage,
as seen in Figure 7 (c).

and inscribed circles. Using this information, we con-
vert the free space into a pebble-graph via embedding.

Fig. 10: In the extreme
case, densely packed robots
take up 68% of W .

We show that motion planning
on the pebble-graph is always
feasible under mild assumptions
and general MPP instances can
be reduced to graph pebbling
problems via local navigation.
We conduct experiments using a
set of 5 challenging benchmarks
and achieve a 100% success rate
under robot densities less than
37%. In Figure 10, the robots
take up 68% of the free space,
which implies that our method
can work under extreme robot densities. The major limitation
of our method lies in the overly conservative conditions
derived in Section III which can leave some gap regions
between robots. In large open areas, regular grids can have
better space coverage [16]. Our future work would consider
hybrid graph embedding techniques that combine multiple
space tiling patterns, and we plan to derive improved bound-



ary conditions for neighboring inscribed circles to accommo-
date more robots. Another limitation is that, our Algorithm 1
only considers robots’ start positions, and ignores their goals.
This works well if the goal set is derived by permuting the
start positions (as in Figure 7 (ab)), but the local navigation
can fail if goal sets are far from the start positions (as in
Figure 7 (cd)).

REFERENCES

[1] H. Ma, J. Li, T. Kumar, and S. Koenig, “Lifelong multi-
agent path finding for online pickup and delivery tasks,”
in Proceedings of the 16th Conference on Autonomous
Agents and MultiAgent Systems, International Foundation
for Autonomous Agents and Multiagent Systems, 2017,
pp. 837–845.

[2] M. Samvelyan, T. Rashid, C. Schroeder de Witt, G. Far-
quhar, N. Nardelli, T. G. Rudner, C.-M. Hung, P. H. Torr,
J. Foerster, and S. Whiteson, “The starcraft multi-agent chal-
lenge,” in Proceedings of the 18th International Conference
on Autonomous Agents and MultiAgent Systems, Interna-
tional Foundation for Autonomous Agents and Multiagent
Systems, 2019, pp. 2186–2188.

[3] A. Malinowski, P. Czarnul, K. Czurylo, M. Maciejewski, and
P. Skowron, “Multi-agent large-scale parallel crowd simula-
tion,” Procedia Computer Science, vol. 108, pp. 917–926,
2017.

[4] J. Hopcroft, J. Schwartz, and M. Sharir, “On the complexity
of motion planning for multiple independent objects; pspace-
hardness of the ”warehouseman’s problem”,” The Interna-
tional Journal of Robotics Research, vol. 3, no. 4, pp. 76–88,
1984.

[5] R. A. Hearn and E. D. Demaine, “Pspace-completeness
of sliding-block puzzles and other problems through the
nondeterministic constraint logic model of computation,”
Theor. Comput. Sci., vol. 343, no. 1–2, 72–96, Oct. 2005.

[6] P. Spirakis and C. K. Yap, “Strong np-hardness of moving
many discs,” Information Processing Letters, vol. 19, no. 1,
pp. 55–59, 1984.

[7] D. Le and E. Plaku, “Cooperative multi-robot sampling-
based motion planning with dynamics,” Proceedings of
the International Conference on Automated Planning and
Scheduling, vol. 27, no. 1, pp. 513–521, 2017.

[8] G. Sharon, R. Stern, A. Felner, and N. R. Sturtevant,
“Conflict-based search for optimal multi-agent pathfinding,”
Artificial Intelligence, vol. 219, pp. 40–66, 2015.

[9] V. Auletta, A. Monti, M. Parente, and P. Persiano, “A linear-
time algorithm for the feasibility of pebble motion on trees,”
Algorithmica, vol. 23, no. 3, pp. 223–245, 1999.

[10] D. Moews, “Pebbling graphs,” Journal of Combinatorial
Theory, Series B, vol. 55, no. 2, pp. 244–252, 1992.

[11] J. Yu and D. Rus, “Pebble motion on graphs with rota-
tions: Efficient feasibility tests and planning algorithms,”
in Algorithmic foundations of robotics XI, Springer, 2015,
pp. 729–746.

[12] T. S. Standley and R. Korf, “Complete algorithms for
cooperative pathfinding problems,” in Twenty-Second Inter-
national Joint Conference on Artificial Intelligence, 2011.

[13] G. Sharon, R. Stern, A. Felner, and N. R. Sturtevant, “Meta-
agent conflict-based search for optimal multi-agent path
finding.,” SoCS, vol. 1, pp. 39–40, 2012.

[14] M. Turpin, N. Michael, and V. Kumar, “Concurrent assign-
ment and planning of trajectories for large teams of inter-
changeable robots,” in 2013 IEEE International Conference
on Robotics and Automation, 2013, pp. 842–848.

[15] J. Yu, “Average case constant factor time and distance
optimal multi-robot path planning in well-connected envi-
ronments,” Autonomous Robots, 2019.

[16] J. Yu and D. Rus, “An effective algorithmic framework
for near optimal multi-robot path planning,” in Robotics
research, Springer, 2018, pp. 495–511.

[17] J. Yu and S. M. LaValle, “Optimal multi-robot path planning
on graphs: Structure and computational complexity,” ArXiv,
vol. abs/1507.03289, 2015.

[18] K. Solovey and D. Halperin, “K-color multi-robot motion
planning,” The International Journal of Robotics Research,
vol. 33, no. 1, pp. 82–97, 2014.

[19] A. Krontiris, R. Shome, A. Dobson, A. Kimmel, and K.
Bekris, “Rearranging similar objects with a manipulator
using pebble graphs,” in 2014 IEEE-RAS International Con-
ference on Humanoid Robots, IEEE, 2014, pp. 1081–1087.

[20] M. Otte and N. Correll, “Dynamic teams of robots as ad hoc
distributed computers: Reducing the complexity of multi-
robot motion planning via subspace selection,” Autonomous
Robots, vol. 42, no. 8, pp. 1691–1713, 2018.

[21] A. Atias, K. Solovey, O. Salzman, and D. Halperin, “Ef-
fective metrics for multi-robot motion-planning,” The Inter-
national Journal of Robotics Research, vol. 37, no. 13-14,
pp. 1741–1759, 2018.

[22] D. Dayan, K. Solovey, M. Pavone, and D. Halperin, “Near-
optimal multi-robot motion planning with finite sampling,”
in IEEE International Conference on Robotics and Automa-
tion, ICRA 2021, Xi’an, China, May 30 - June 5, 2021,
IEEE, 2021, pp. 9190–9196.

[23] R. Shome, K. Solovey, A. Dobson, D. Halperin, and K. E.
Bekris, “dRRT*: Scalable and informed asymptotically-
optimal multi-robot motion planning,” Autonomous Robots,
vol. 44, no. 3, pp. 443–467, 2020.

[24] A. Adler, M. De Berg, D. Halperin, and K. Solovey,
“Efficient multi-robot motion planning for unlabeled discs
in simple polygons,” in Algorithmic foundations of robotics
XI, Springer, 2015, pp. 1–17.

[25] I. Solomon and D. Halperin, “Motion planning for multi-
ple unit-ball robots in rd,” in International Workshop on
the Algorithmic Foundations of Robotics, Springer, 2018,
pp. 799–816.

[26] K. Solovey, J. Yu, O. Zamir, and D. Halperin, “Motion
planning for unlabeled discs with optimality guarantees,” in
Robotics: Sciences and Systems, 2015.

[27] S. Tang and V. Kumar, “A complete algorithm for generating
safe trajectories for multi-robot teams,”

[28] J. Giesen, B. Miklos, and M. Pauly, “The medial axis of the
union of inner voronoi balls in the plane,” Computational
Geometry, vol. 45, no. 9, pp. 515–523, 2012.

[29] J. Van Den Berg, S. J. Guy, M. Lin, and D. Manocha, “Re-
ciprocal n-body collision avoidance,” in Robotics research,
Springer, 2011, pp. 3–19.

[30] J. Yu and S. M. LaValle, “Optimal multi-robot path planning
on graphs: Complete algorithms and effective heuristics,”
IEEE Transactions on Robotics, vol. 32, no. 5, pp. 1163–
1177, 2016.

[31] H. Blum and R. N. Nagel, “Shape description using
weighted symmetric axis features,” Pattern recognition,
vol. 10, no. 3, pp. 167–180, 1978.

[32] L. He, Z. Pan, B. Jia, and D. Manocha, “Efficient multi-agent
motion planning in continuous workspaces using medial-
axis-based swap graphs,” ArXiv, vol. abs/2002.11892, 2020.


	I Introduction
	I-A Related Work
	I-B Main Results

	II Problem Statement and Approach Overview
	III Pebble-Graph Embedding
	III-A A Single Circle 
	III-B Two Overlapping Circles
	III-B.1 Case I
	III-B.2 Case II
	III-B.3 Case III
	III-B.4 Case IV

	III-C More Than Two Circles

	IV Pebble Motion Planning
	V Local Navigation
	VI Experiments
	VII Conclusion and Limitations

