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Abstract— The past decade has amply demonstrated the
remarkable functionality that can be realized by learning
complex input/output relationships. Algorithmically, one of the
most important and opaque relationships is that between a
problem’s structure and an effective solution method. Here, we
quantitatively connect the structure of a planning problem to
the performance of a given sampling-based motion planning
(SBMP) algorithm. We demonstrate that the geometric rela-
tionships of motion planning problems can be well captured by
graph neural networks (GNNs) to predict SBMP runtime. By
using an algorithm portfolio we show that GNN predictions of
runtime on particular problems can be leveraged to accelerate
online motion planning in both navigation and manipulation
tasks. Moreover, the problem-to-runtime map can be inverted
to identify subproblems easier to solve by particular SBMPs.
We provide a motivating example of how this knowledge may
be used to improve integrated task and motion planning on
simulated examples. These successes rely on the relational
structure of GNNs to capture scalable generalization from
low-dimensional navigation tasks to high degree-of-freedom
manipulation tasks in 3d environments.

I. INTRODUCTION

Motion planning, a fundamental problem in robotics, seeks
a collision-free path from an initial robot state to a given goal
state. One of the most successful classes of algorithms for
this problem is Sampling Based Motion Planners (SBMP)
in which random configurations of the robot are generated
and paths (or edges) between two sample configurations are
generated using a collision checker to ensure that they are
collision-free. The resulting graph is a discrete representation
of the free configuration space (c-space) of the robot, and a
successful path search through this graph yields a collision-
free path from the initial to the goal configuration of the
robot [1]. There are many SBMP variants such as RRT
[2], RRTConnect [3], and PRM [4] which have different
strengths and weaknesses. They all, however, share the same
fundamental characteristic of relying on randomly generated
states to construct a path. Despite theoretical guarantees of
eventual convergence for many of the SBMPs, their random
nature makes it difficult to determine how successful a
motion planner will be for a given problem.

Recently, neural networks have been used to address some
of these deficiencies in what may be called Neural Guided
Motion Planning (NGMP) – see Section II for a brief survey
of NGMP. Most of these techniques have focused on using
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neural networks to learn good configuration space sampling
distributions for SBMPs. Much less work has been done
on meta-level NGMP in which neural networks are used
to predict the effectiveness of a given SBMP for a given
problem. We address this by using neural networks for the
speed prediction problem where we predict expected comple-
tion time of a SBMP for a given motion planning problem.
We do this by training graph neural networks (GNNs) on
graphical representations of both 2D navigation problems
and high degree-of-freedom motion planning problems for
manipulator arms in 3D scenes within the iGibson simulation
environment for robot training [5]. Conversely, we also show
that GNNs can accurately predict the problem with the lowest
expected completion time among randomly generated sets of
test problems for a given SBMP.

An important potential application for this latter prediction
is Task And Motion Planning (TAMP) where a robot is
required to solve a high-level task such as stacking objects.
A solution to a TAMP problem consists of a sequence of
discrete actions which complete the objective. Each action
must be completed with a feasible continuous motion. Coor-
dinating the high-level discrete task planning task with the
low-level motion planning is a challenging problem. Often,
a hierarchical approach is taken in which a task planner
generates a sequence of actions and IK-solvers and motion
planners are used to generate trajectories which implement
these actions [6]. Accurate prediction of runtimes would be
helpful for efficiently solving TAMP problems. The lack of
a priori knowledge regarding the expected completion time
of a motion planner can result in significant time loss as the
failure of a motion planner to solve a subproblem within
a given amount of time will trigger re-planning at the task
level until sufficiently simple motion planning problems are
generated by the task planner. Conversely, the knowledge
that a problem is easily solved by a given SBMP can be
used to guide an appropriate sequence of actions at the the
task planning level.

In this paper we explore several related questions:
1) can we predict the runtimes of SBMP solvers from the

characteristics of the planning problem?
2) can the geometric relationships inherent in planning

problems be leveraged to make such predictions scal-
able?

3) can a quantitative understanding of the characteris-
tics/runtime relationship be exploited to improve upon
existing motion planners by using portfolios of solvers?

4) can runtime prediction also improve task and motion
planning?
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Our key contribution is to demonstrate affirmative answers
to all these questions.

We begin in subsection II by situating our contributions
within the context of recent work combining neural models
and motion planners. With this background, in section III
we develop a graph neural network (GNN) model reflecting
the geometric structure of planning problems and use this
as a foundation to address the above questions in section
IV. Firstly, in section IV-A we validate the performance of
GNNs as classifiers on a navigation task to enable an accurate
problem-dependent prediction permitting the construction of
SBMP algorithm portfolios. Section IV-B then extends the
GNN classification to predict algorithm runtimes and shows
that we can a priori identify the hardness of a problem for
a given planner. In this section we then sketch how this
ability might be used to aid in a stylized example of task
and motion planning. Lastly, in section IV-D we demonstrate
that GNNs, unlike occupancy grid methods, scale well to
higher-dimensional planning problems by considering an arm
manipulation task in a realistic setting.

II. RELATED WORK

Given the pressing need for fast motion planning, recent
research has explored the use of neural models trained offline
to accelerate online planning. In the context of SBMPs,
a natural approach to this, and the one that has received
the most attention, is to use neural networks to learn a
configuration sampling distribution which builds a well-
tuned search graph that focuses search effort on regions
likely to be on the solution path. To do so, examples of
successful motion planning paths are generated offline to
train a neural network to model a conditional distribution
over the configuration space. Most commonly, these models
condition on a problem description in the voxelized form
of an occupancy grid or point-cloud [7][8][9].1 Pleasingly,
with this approach, configuration samples may be passed into
any SBMP to construct the graph in the usual fashion. This
permits the application of this method to a wide variety of
low-dimensional problems that may be more amenable to
one SBMP or another. Our work is orthogonal to this neural
sampling approach, and may be combined with it.

Other approaches rely on the neural network to directly
predict a path. This can be done by training a neural network
to predict the next point in a solution path given the current
one [10]. These methods forgo SBMP algorithms and instead
use the predictions of the neural network directly along
with some additional logic (although they may utilize SMBP
algorithms as backup planners). Again, such methods may
be combined with our work.

Another avenue for neural-guided motion planning that has
received less attention is what may be referred to as meta-
level neural-guided motion planning. In meta-level neural-
guided motion planning, neural networks are used to make

1We learn from these works to avoid discretization of the geometry (as in
occupancy grids) and adopt a sparse relational approach which scales better
with dimensionality.

Fig. 1: A 2-Layer EdgeConv GNN. Each EdgeConv layer
applies Eq. (3) to its input graph to produce an output graph.
The Readout function is applied to the output of each layer
according to Eq. (2) and the result is concatenated to obtain
the output

predictions about a motion planning algorithm. This gen-
erally involves predicting the performance of an algorithm
for a given problem. [11] has explored the optimal stopping
time problem for anytime motion planners. In this problem,
neural networks predict the time at which an anytime motion
planner (in this case RRT* [12]) should stop running in order
to achieve the optimal trade off between solution quality and
time according to a weighted score function. In this case, it
is assumed that the algorithm has already found a solution
and the question being addressed is determination of the
continued runtime to improve the solution. In our work, we
address a different meta-level problem, namely, how long it
will take an SBMP to find a solution for a given problem and
how might we exploit this information? Such, performance
prediction has been addressed in other domains [13] and we
explore its use in SBMP through problem-specific selection
of algorithms from within a portfolio of SBMP algorithms.

III. THE MODEL

The structure of a motion planning problem is relational.
Objects in the environment are well-defined and have clear
geometric relationships with each other and with the robot.
The robot itself is naturally described with a transform tree
of related coordinate frames. These relationships may be
captured in a graph where nodes represent objects or parts
of the robot and where labelled edges indicate pairwise
geometric relationships. To reflect this structure for effective
generalization, we rely on a graph neural network (GNN)
architecture. GNNs are a type of neural network that take
graph input and generalize convolutional neural networks
with filters that act on each graph node using information
from neighbouring nodes [14][15].

Each node v (and possibly the edges) in the input has an
associated input feature vector, hv , which is refined through
a layerwise mapping with neighbouring feature vectors. The
outputs of the kth layer of a GNN are given by the following



(a) An example problem from the 2D dataset (b) Graph representation of problem (a)

Fig. 2: A sample navigation problem from the 2D dataset with the corresponding graph representation used as input for the
GNN. Node features include the position, orientation (in radians), width, height, and a one-hot label indicating the object
type; i.e. start, obstacle, or goal.

general formulation [16]:

a(k)v = AGGREGATE(k)({h(k−1)u : u ∈ N(v)})
h(k)v = COMBINE(k)(h(k−1), a(k−1))

(1)

where N(v) is the set of neighbours of v. GNNs may also
be used to learn global properties, hG, of the entire graph.
In this case, node features for a layer are aggregated using
a READOUT function as follows

h
(k)
G = READOUT ({h(k)v : v ∈ G}). (2)

GNNs have had application to diverse fields such as chem-
istry, computer vision, and knowledge graph completion and
many different architectures have been developed [17]. For
our experiments, we use the EdgeConv architecture [18].

In EdgeConv, the AGGREGATE and COMBINE opera-
tions are combined into the following:

h(k)v =
∑

u∈N(v)

θ(k)(h(k−1)v , h(k−1)u − h(k−1)v ). (3)

Here, θ(k) is a Multi-Layer Perceptron (MLP), a type of
neural network with multiple layers in which every neuron
in one layer is connected to every neuron in the following
layer. The MLP takes as input the features of the target
node and the difference of features between the target node
and its neighbouring node. The EdgeConv architecture is
advantageous in that it uses both local and global data
to update the features, ideal for geometric problems such
as motion planning. For our readout function we use a
sum. When considering the output of the whole graph, we
apply the readout to each layer in the graph network and
concatenate the result. This allows us to capture important
features found at each layer of the graph network. Fig. 1
provides a visual overview.

To our knowledge, GNNs have seen limited application to
motion planning problems. However, several methods using
GNNs have been developed and tested on low dimensional
problems [19]. These methods use GNNs by forming graphs
from a collection of points in the configuration space of
a motion planning problem. Each point and edge is given

features such as it’s position and whether or not it’s occupied.
Using these graphs, GNNs were used to predict a variety of
targets, such as the set of graph nodes critical for a search
algorithm or heuristics that can be used to guide the search.

Unlike the previously discussed examples, we train our
GNNs on graph representations of the workspace instead of
the c-space. The advantage of this is that the geometry of
c-space is highly complex and often only implicitly defined
whereas sparsity in the workspace is explicit. This allows
us to represent 3D motion planning problems quickly with
relatively small graphs even when there are high number of
degrees of freedom involved. Using sensor readings, a robot
can build a graph representing the environment to be used
with our GNN model quickly, rather than having to build
a potentially complicated model of the configuration space.
Updating this graph as the robot moves is simple as the
features of existing nodes can be updated to represent the
new location of various objects and nodes can be added as
the robot approaches new objects.

To apply GNNs to motion planning problems, we rep-
resent objects in the workspace as nodes in the graph with
connections between nodes added based on spatial proximity.
Objects in the workspace are either obstacles to be avoided
or links of the robot. Nodes are given features representing
the geometric information of the object as well as a label
indicating the type of object. Fig. 2 gives an example of
the graph construction for the 2D navigation dataset (details
of features are given in IV-A). The graph topology for the
EdgeConv network is generated using a k-nearest neighbours
approach in which each node is connected to the k neigh-
bours it is spatially closest to. k is a hyperparameter that is
chosen experimentally. For example, in our 2D navigation
dataset k was selected to be 3 meaning that in Fig. 2 the
graph is fully connected. Future work may experiment with
other graph topologies, for instance, in some cases, particular
background knowledge on specific problems may be used to
hand-design the graph topology.

In order to make a problem prediction, the GNN is applied
to the input graph and its output is then fed through a final
fully-connected network to produce the final prediction. For



TABLE I: Total expected completion time (in seconds) of
1000 test set navigation problems using an SBMP chosen
by various predictors.

Predictor Expected Total Runtime
Perfect 368
GNN 389

Fully-connected 397
RRTConnect 429

2D navigation problems, the graph representation is sufficient
to capture the entire problem information. This is done by
representing both the initial and final position of the moving
object as nodes in the graph. This method of representation
could also be used for our 3D motion planning dataset by
including 2 nodes for each robot link, one representing the
initial position of the link and one representing the final
position of the link. However, to reduce the graph size, as
well as to provide the network with additional information
about the motion planning problem that could be useful, we
instead add nodes for only the initial position of each link
and include the initial and goal states of the configuration
space in the problem description. When this is the case,
we use an additional fully-connected network to process
this information. We then use the output of the GNN and
the fully-connected network as input into the final fully-
connected layers of the network, see Fig. 6. Full details of
node features and network architecture for each experiment
are given in the results section.

IV. RESULTS

We present results on two canonical types of motion plan-
ning: i) 2D navigation tasks in cluttered environments and
ii) motion-planning for a 7 degree-of-freedom manipulation
task in 3D environments. For each type of task we evaluate
the computational savings accruing from problem-specific
algorithm selection from a portfolio of four SBMPs. Next,
we demonstrate that runtime prediction may also be used to
identify problems that are likely to be hard for a given al-
gorithm and use this as a proof-of-concept to accelerate task
planning. Finally, we turn to higher-dimensional planning for
manipulators and demonstrate that the relational structure of
GNNs permits scaling to larger problems. The SBMPs we
investigate are all RRT-derivatives, but given that our method
is agnostic to the choice of algorithm, it could be applied to
any SBMP or even motion planning algorithms that are not
sampling based. All networks were trained using PyTorch
with the PyTorch geometric package used for the GNNs
[20][21].

A. Navigation: portfolios of SBMPs

The first problem we examine is the prediction of the
fastest SBMP for a given problem. Given a set of SBMPs,
for each motion planning problem, we want to be able to
choose the SBMP with the fastest expected runtime. We test

TABLE II: Cumulative expected completion time (in sec-
onds) of SBMPs on 2D navigation problems predicted to be
the fastest by various predictors among a randomly chosen
set of test problems.

Predictor RRTConnect RRT TRRT lazyRRT
Perfect 32 64 102 156
GNN 56 90 143 181

Fully-connected 87 147 189 244
Least obstacles 381 433 483 1350

Random 497 536 729 1406

the ability of GNNs to solve this problems against fully-
connected networks, a naive, and a perfect predictor on a
2D narrow gap navigation dataset.

These motion planning tasks require moving a block from
a starting position to a goal position through a number of
narrow gaps. Random problems are generated as follows:
The block positions consist of an x, y location in [0, 0.9] ×
[0, 0.9] and a rotation angle, θ in (−π, π]. The angle and x
position of the initial and final states are randomized in each
problem while the initial y position is set to 0 and the final y
position is set to 0.9. One to three vertical barriers stretching
the entire height of the workspace are placed at random x
positions. Most placements are controlled to allow sufficient
room between blocks for feasible navigation although some
are left uncontrolled in order to generate a small number of
infeasible problems to aid in training. Gaps of various widths
are placed in each of these barriers at randomized heights.
See Fig. 2 for an example problem and feature description.
5000 random problems are generated and solved with four
RRT variants (RRT [2], RRTConnect [3], TRRT [22] and
lazyRRT [23]) using OMPL [24]. We run each algorithm
40 times (with default parameters) on a given problem and
record the average completion time of each algorithm. The
timeout is set to 3 seconds.

Different SBMPs are suited to different kinds of motion
planning problems, and the variance (across algorithms) in
runtime on a given problem can be significant. Thus, in real-
time and computation-bound settings there is the potential
of speeding planning with a computationally cheap selection
of a well-suited SBMP. We could address this problem by
regressing algorithm runtime on problem features, but this
unnecessarily complicates prediction; we only really require
an ordering amongst algorithms, or more simply the best
performer from a pre-specified algorithm portfolio.

We apply GNNs to this problem by training a classifier
to predict the optimal algorithm for a given problem. The
GNN maps from the learned node features across the entire
planning graph to a four-component one-hot label indicating
which of (RRT, RRTConnect, lazyRRT, TRRT) has the
fastest expected runtime for the problem. As shown in Fig. 2,
the input node features include the x and y position of the ob-
ject, its rotation angle, width, height and a three-component
one-hot label indicating whether the node represents an initial
position, an obstacle, or the goal position. We place edges
using the 3-nearest neighbours of each node. Our neural net-



TABLE III: Expected cumulative runtime of RRTConnect (in
seconds) for solutions to TAMP problems selected by various
predictors.

Predictor RRTConnect
Perfect 1.97
GNN 6.13

Fully-connected 12.88
Least obstacles 61.32

work consists of a 2-layer edge convolutional GNN followed
by a 2-layer fully-connected network and a final softmax
layer. The first edge-convolutional layer uses a 2-layer MLP
with 512 and 512 neurons respectively, the second edge-
convolutional layer uses a 2-layer MLP with 256 and 256
neurons respectively. The SELU activation function was used
for the hidden nodes. In order to compare the effectiveness
of the GNN on this problem to other networks, we trained
another neural network predictor using a fully-connected
architecture. The input to this network consisted of an
occupancy-grid representation of the workspace along with
the initial and goal state. To generate output, the occupancy
grid is fed into a 2-layer fully-connected network of 512
and 256 hidden neurons, the initial and goal state is fed into
a 2-layer fully-connected network of 100 and 50 neurons,
and finally, the output of each of these is concatentated and
fed into a final 2-layer network of 400 and 200 neurons
before the output softmax layer. This network architecture
was based on the networks used to train a neural sampler
in [7]. A grid search was performed on both the GNN and
the fully-connected network to find good hyperparameters.
The networks were trained using the ADAM optimizer with
negative log-likelihood loss and a 80/20 training/test split on
the dataset. We tested the networks by using them to predict
the fastest algorithm for each problem in the test set.

Table I summarizes the expected times of the learned
predictors and compares it to other candidates. The perfect
predictor is the lowest possible cumulative runtime that
selects the best algorithm for each problem. We see that
the GNN predictor comes very close to this best-possible
cumulative runtime. For these problems, the single fastest
planner is RRTConnect which achieved the fastest time in
about 80% of examples. Consequently, we show the runtime
resulting when RRTConnect is always selected. Even in this
unbalanced dataset, the GNN predictor is able to markedly
improve upon the dominant RRTConnect. Across a more
balanced portfolio (with all solvers similarly comparable) we
expect larger benefits from GNN-based SBMP portfolios.

B. Navigation: problem prediction

The next experiment we conduct is to examine the ability
of a GNN to predict the expected runtime for a single
algorithm on a given problem. We measure the effectiveness
of this by presenting the trained GNN with a set of test
problems and using it to predict the fastest. The previous
experiments assessed the ability of GNNs to predict the
fastest algorithm for a given planning problem. Next, we

TABLE IV: Cumulative expected completion time (in sec-
onds) of RRTConnect on iGibson (7DOF) motion planning
problems predicted to be the fastest by various predictors
among a randomly chosen set of test problems.

Predictor RRTConnect
Perfect 890
GNN 1382

Least obstacles 1941
Random 2306

explore the utility of the inverse problem: given a SBMP
method, can we identify problem characteristics that might
make it easier to solve? We answer this question affirmatively
and suggest an application to task and motion planning
(TAMP). We provide a proof-of-concept demonstration that
TAMP may be accelerated through offline learning of the
problem/runtime relationship.

We again train a GNN on the navigation dataset but
use the expected completion time of a given algorithm as
the target instead of the one-hot label indicating the fastest
algorithm. The network architectures used are identical to
the previous experiments but with the softmax layer replaced
with a single linear neuron. Both a GNN and a occupancy-
grid-based fully-connected network were trained for each
of the four algorithms. To test the predictions we sampled
between 2 and 10 problems from the test set and used
the neural predictors to predict the problem with fastest
solution. We repeated this for 1000 iterations and added up
the actual expected completion time of each prediction to get
a total expected completion time for all 1000 predictions. We
compared this to the total expected completion time using
several other predictors. As baseline predictors we used a
perfect predictor which always predicts the fastest problem,
a random predictor which selects a random problem, a naive
predictor which selects the problem with the fewest obstacles
(if there are multiple problems with the minimum number of
obstacles then a random one is chosen).

The results for each algorithm are displayed in Table II
The results indicate that neural networks, and in particular,
the GNN, are able to learn the relationship between problem
structure and expected run time well enough to make useful
predictions about the fastest problem among a set of test
problems. We note that, while both neural networks are
able to significantly reduce the total expected completion
time over both the naive and random predictors, the GNN
outperforms the fully-connected network. In spite of the
opaque nature of the dataset the neural models are able to
predict the relative difficulty of problems. Next, we explore
whether this learned problem difficulty can be leveraged to
reduce the need for replanning in the task sequencing phase
of TAMP.

C. Navigation: TAMP

In this experiment we again test the ability of a GNN to
predict motion planning problems that are expected to be
solved quickly but rather than choosing the fastest amongst



(a) navigation element 1 (b) navigation element 2 (c) navigation element 3

Fig. 3: An example problem triple with valid transitions according to the TAMP constraints. Note that the x-interval and
orientation quadrant must match between navigation elements but the y coordinate does not.

an arbitrary set of test problems we carry this experiment
out in a more realistic TAMP setting.

A proof-of-concept TAMP validation in the navigation
setting is constructed by asking for a three-element com-
posite motion sequence of primitive elements with con-
straints restricting the sequencing of elements. The com-
posite motion is specified with an initial condition defin-
ing a range of allowed starting x-positions and rotation
angles and a goal state specifying a range of required
x-positions and rotation angles. Additionally, sequencing
constraints specify which navigation elements can follow
one another. To model the kinds of constraints that would
arise in real TAMP problems we partition the x-interval
[0, 0.9] into 9 equal segments, [0, 0.1), [0.1, 0.2), ..., [0.8, 0.9]
and the rotation angle space, [−π, π] into quadrants,
[−π,−π/2), [−π/2, 0), [0, π/2), [π/2, π). The initial condi-
tions are then equivalent to a required starting (x-segment,
quadrant) pair for the first navigation element and a required
terminal (x-segment, quadrant) pair for the final (third)
navigation element. The sequencing constraints require that
the final (x-segment, quadrant) of one navigation element
is the same as the starting (x-segment, quadrant) of the
following navigation element. For example, an initial con-
dition might specify: element 1 start = ([0.7, 0.8), [0, π/2)),
element 3 goal = ([0, 0.1), [−π,−π/2)) and a valid triple

Fig. 4: The iGibson fetch-griper robot in a kitchen environ-
ment with a selection of the objects labelled by type. Motion
planning problems involve moving the gripper from positions
like the one shown in this figure to other random positions

could satisfy, element 1, start = ([0.7, 0.8), [0, π/2)),
goal = ([0.1, 0.2), [−π,−π/2)), element 2, start =
([0.1, 0.2), [−π,−π/2)), goal = ([0.6, 0.7), [−π/2, 0)),
and element 3, start = ([0.6, 0.7), [−π/2, 0)), goal =
([0, 0.1), [−π,−π/2)). Fig. 3 illustrates a feasible triple.
We tested our predictors on this problem by seeing if we
can approximate the runtime of a navigation element triple
satisfying the sequencing constraints. To do so we use our
test set as the collection of potential navigation elements,
this is the same environment used in the previous problem
consisting of 1-3 narrow gaps. We randomly generate an
initial condition and return all problem triples from the test
set satisfying the initial and transition conditions. From this
set the triple with the fastest expected completion time using
RRTConnect is identified (using the information recorded in
the test set). We then used various heuristics (learned GNN,
learned fully-connected, and least obstacles) to predict the
fastest elements within each triple to assemble the composite
triple. This prediction of total composite runtime can then be
compared with the minimum fastest possible triple identified.
We repeated the process 100 times and took the sum to record
the excess time taken by the heuristics.

Table III shows the results. We see that using neural
networks to predict problem runtime usually identifies near-
optimal triple sequences thereby greatly reducing the time
taken to solve the TAMP problem.

Fig. 5: Graph connections of a single node in an example
problem of our 3D dataset. The 4 nodes with the closest
positions to the example node are its neighbours. It is the
neighbour of an additional 5 nodes whose neighbours are
also determined using the k-nearest neighbours method



D. Manipulation: problem prediction

For our final experiment we are again predicting the fastest
planning problem amongst a test set but instead of a simple
2D navigation problem, we are testing the ability of a GNN
to predict fast motion planning problems in a complex 3D
environment.

Moving from a 2D navigation environment to a 7-DOF
manipulation task in 3D environments would normally in-
volve a large increase in the number of required parameters
for a neural network to learn the problem. In particular,
occupancy grid representations of the workspace result in
an increase in the number of input neurons by an order of
magnitude or more. In contrast, by using GNNs we are able
to represent manipulation planning problems assembled from
nodes with a comparable number of input features to the 2D
navigation problems. In the 3D case, objects are represented
by nodes with features including its 3D position (3 parame-
ters), quaternion representation of orientation (4 parameters),
the height, width, and length of its axis-aligned bounding box
(3 parameters), and a 3 dimensional 1-hot label indicating
object type. This gives nodes with 13 features versus the 8
features used for nodes in the 2D problem. We use this fact to
test the ability of GNNs to predict the expected completion
time of an algorithm on 3D motion planning problems. To
accomplish this, we use a dataset generated using the iGibson
environment [5]. We used the fetch-motion-planning.yaml
configuration of iGibson. In this environment, a fetch-gripper
robot with a 7 degree of freedom(DOF) arm is placed inside
a house with several rooms including a kitchen and a living
room. Various objects are contained within the rooms, such
as cabinets, dishwashers, and ovens (see Fig 4). We place the
robot in a number of positions that are adjacent to a sufficient
number of obstacles (usually between 6 and 11). From there,
we randomly selected an initial and goal joint configuration
for the robot and used OMPL to solve the problem with
RRTConnect 40 times and recorded the average completion
time. Our input graph consisted of nodes for each object in
the vicinity of the robot including the links of the robot.
Unlike the 2D problem, in the 3D problem we only include
the initial position of the robot as nodes in the input graph.
Because most robot links are inactive, representing both the
final and initial position of each link as graph nodes results
in a number of nodes with identical features. We therefore
only include the initial position of the robot links in the
workspace as nodes in the graph. In order to capture the
full problem description in the input, the initial and final
joint positions of the robot were included in addition to the
graph as inputs. The GNN component is identical to the
previous problem with each node in the graph connected
to it’s 4 nearest neighbours (see Fig. 5 for an example of
the connections for a node in a given problem). The full
network thus involves a GNN to process the input graph, a
fully-connected network to process the initial and final joint
configurations, and a final fully-connected network which
takes the output of the previous two networks and produces
the final output (see Fig. 6). The features of the graph nodes

are as listed above with the one-hot label indicating whether
the object is an obstacle, an active robot link (one that is
involved in the motion planning problem), or an inactive
robot link. The fully connected network consisted of 2 layers
of 512 and 256 hidden units, and the final fully connected
layer was 1000 hidden units. The training dataset consisted
of 7000 examples. The network was tested as before by
using it to predict the fastest problem among a selection
of problems from the test set. This was repeated 1000 times
and the total expected time for the predictions was recorded
and compared to predictions made by a perfect predictor, a
least-obstacles predictors, and a random predictor. The fully-
connected occupancy-grid predictor is not shown as it does
not scale to this problem.

The results are found in table IV. The motion planning
problems generated in iGibson were more difficult than the
navigation problems and a timeout of 10 seconds was used.
Again, the GNN prediction accurately assesses problem dif-
ficulty. This demonstrates the potential of runtime predictors
for use in TAMP frameworks such as PDDLstreams [25] in
realistic planning domains.

V. CONCLUSIONS AND FUTURE WORK

We have demonstrated the ability of neural networks to
capture (though offline training) the structure of motion
planning problems sufficient to predict the likely runtime of
given SBMP algorithms. GNNs are particularly well-suited
and show better predictive accuracy and scaling with prob-
lem size than voxelized representations of the environment.
Accurate runtime prediction is then leveraged to demon-
strate the promise of planner portfolios which dynamically
select the planner which is a best match to a particular
planning problem. Planning portfolios may be very useful
in the compute-bound settings common to many robotic
platforms. Moreover, through a simplified proof-of-concept
we have shown that runtime prediction might also accelerate

Fig. 6: Network architecture for the the 7 degree-of-freedom
arm manipulation planning dataset. The EdgeConv node is
used to represent the EdgeConv layers with architecture
represented in Fig 1



integrated task and motion planning of complex motions by
identifying more easily solved motion planning subproblems.

Our results and experiments clearly demonstrate the poten-
tial of harnessing the learning power of GNNs for extracting
the relationship between a motion planning problem and
the SBMP algorithm used to solve the problem. This is an
important first step towards future work that must assess the
computational benefits in practical settings. The application
to task and motion planning is particularly interesting given
the difficulty of TAMP. Many interesting questions remain
regarding this use-case; most prominently, our simulated
TAMP problem did not explore the possible role that ex-
pected runtimes might serve in heuristically guiding search
over task plans.

Quantification of the benefits of the relational structure
GNNs should be explored more fully. How well do the
predictions learned from one workspace transfer to markedly
different workspace geometries? The compositional nature of
GNNs means that they should be better suited to this transfer
learning than fully-connected networks but this requires
further validation. The direct representation of the workspace
as a graph provides direct insight into the interpretability
of GNN runtime predictors. As an example, removing a
node corresponding to an obstacle and rerunning the network
allows for quantification of the effect of the obstacle on
runtime. Recent work on explainability methods for GNNs
(see [26] for a survey) may offer further clues to the
operation of GNNs on workspace graphs and facilitate the
design of architectures having improved generalizability.

Lastly, we note that all our experiments focused on the
training of networks to learn the runtime of a given single
robot. This is because the input to the neural network only
contains information about the environment and the motion
planning problem but not the structure of the robot itself.
Future work might include robot-specific information such
as joint type into robot nodes thereby allowing the network
to learn the relationship between the structure of the robot
and the speed of an SBMP for a given motion planning
problem.
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