
Transporters with Visual Foresight for
Solving Unseen Rearrangement Tasks

Hongtao Wu∗, Jikai Ye∗, Xin Meng, Chris Paxton, Gregory S. Chirikjian

Abstract— Rearrangement tasks have been identified as a
crucial challenge for intelligent robotic manipulation, but few
methods allow for precise construction of unseen structures. We
propose a visual foresight model for pick-and-place rearrange-
ment manipulation which is able to learn efficiently. In addition,
we develop a multi-modal action proposal module which builds
on the Goal-Conditioned Transporter Network, a state-of-the-
art imitation learning method. Our image-based task planning
method, Transporters with Visual Foresight, is able to learn
from only a handful of data and generalize to multiple unseen
tasks in a zero-shot manner. TVF is able to improve the
performance of a state-of-the-art imitation learning method on
unseen tasks in simulation and real robot experiments. In par-
ticular, the average success rate on unseen tasks improves from
55.4% to 78.5% in simulation experiments and from 30% to
63.3% in real robot experiments when given only tens of expert
demonstrations. Video and code are available on our project
website: https://chirikjianlab.github.io/tvf/

I. INTRODUCTION

Prospection enables humans to imagine effects of actions
[1]. It allows humans to learn multiple tasks from very
few examples and generalize to unseen tasks efficiently by
combining skills that they have honed in other contexts. If
robots are to become efficient in learning new tasks, this
ability will be essential.

One version of prospection is visual foresight, which
predicts action effects by hallucinating the expected changes
in the robot’s observation space. This has been successfully
demonstrated in various robotic manipulation tasks [2]–[8].
However, training an accurate and reliable visual dynamics
model requires copious amounts of data. Previous work [2],
[4], [5] collects a large amount of data for training the
dynamics model. In addition, most methods focus on single-
task learning with visual foresight [2], [3], [6]–[8]. While
some prior work showcases multi-task learning [4], [5], the
ability to generalize to unseen tasks which are not present in
the training data is still missing. Moreover, the huge combi-
natorial search space of possible actions makes planning for
complex multi-step tasks computationally challenging.

In this work, we first propose a visual foresight (VF)
model which predicts the next-step observation based on

This work is supported by the National Research Foundation, Singapore,
under its Medium Sized Centre Programme - Centre for Advanced Robotics
Technology Innovation (CARTIN) R-261-521-002-592. Hongtao Wu’s PhD
tuition is supported by JHU internal funds.

* Equal contribution.
H. Wu is with The Johns Hopkins University, Baltimore, MD 21218,

USA.
J. Ye, X. Meng, and G. S. Chirikjian are with National University of

Singapore, Singapore.
C. Paxton is with NVIDIA, USA.
Address all correspondence to G. S. Chirikjian: mpegre@nus.edu.sg

Fig. 1: Overview. Given a goal (e.g., a twin tower), the robot plans motions
to construct the goal from randomly positioned blocks.

the current observation and a pick-and-place action. Unlike
previous methods which encode actions in the latent space
[2], [3], our model exploits the spatial equivariance in vision-
based manipulation tasks by encoding the pick-and-place
action in the image space. This allows our VF model to
learn efficiently and predict accurate next-step observations
even with only tens of training data. Secondly, we develop
a multi-modal action proposal module by leveraging a state-
of-the-art imitation learning method for rearrangement tasks,
the Goal-Conditioned Transporter Network (GCTN) [9].
Combining the VF model and the action proposal module
with a tree-search algorithm, we propose Transporters with
Visual Foresight (TVF), a novel goal-conditioned task plan-
ning method for rearrangement tasks that achieves zero-shot
generalization to multiple unseen tasks that are structurally
similar to the training tasks given only a handful of expert
demonstrations.

We perform experiments on both simulation and real robot
platforms and compare with the state-of-the-art baseline
method GCTN [9]. In simulation experiments, our method
achieves an average success rate of 78.5% on 8 unseen tasks
given only tens of expert demonstrations, compared to the
55.4% success rate of GCTN. In real robot experiments,
given 30 expert demonstrations, our method achieves an av-
erage success rate of 63.3% on 3 unseen tasks, outperforming
GCTN which achieves 30.0%.

The key contributions of this work are: (1) a goal-
conditioned task planning method which achieves zero-shot
generalization to unseen, long-horizon rearrangement tasks;
(2) a visual foresight model which is able to learn efficiently
from a handful of data; and (3) a multi-modal action proposal
module for more versatile action proposal.

II. RELATED WORK

A. Transporter Networks

The most relevant work is probably the Transporter Net-
works [9]–[13]. Zeng et al. [10] propose Transporter Net-
works (TN) for efficient learning of tabletop rearrangement

ar
X

iv
:2

20
2.

10
76

5v
3 

 [
cs

.R
O

] 
 2

7 
Ju

l 2
02

2

https://chirikjianlab.github.io/tvf/


Fig. 2: Transporters with Visual Foresight (TVF). Our method takes as input an orthographic top-down view of the current scene and generates multiple
actions using a multi-modal action proposal module built on GCTN [9]. We then use our proposed visual foresight (VF) model to predict the next-step
observation after taking each action. Combining the VF model and the action proposal module with a tree-search algorithm, we propose Transporters with
Visual Foresight (TVF) for robot rearrangement task planning. See Sec. IV for more details.

tasks. Seita et al. [9] build on Transporter Networks and pro-
pose Goal-Conditioned Transporter Networks (GCTN) for
handling deformable objects. However, both TN and GCTN
focus on single-task learning and do not address unseen task
generalization. CLIPort [12] extends Transporter Networks to
a language-conditioned policy that solves language-specific
tabletop tasks. Lim et al. [11] propose Sequence-Conditioned
Transporter Networks (SCTN) based on GCTN with se-
quence conditioning for accomplishing a sequence of tasks
in a single rollout. SCTN uses a human oracle to provide
different intermediate next-step goal images for GCTN to be
conditioned on throughout a rollout. Our multi-task setting
focuses on a single task for a single rollout instead of a
sequence of tasks in a single rollout. In addition, instead
of manually providing multiple intermediate next-step goals
during the rollout, in our method, only one single last-step
goal is provided and fixed throughout a rollout.

B. Visual Foresight
Research on visual foresight (VF) has become popular in

recent decades [2]–[4], [6], [14]–[16]. Finn and Levine [2]
use a convolutional LSTM architecture for video prediction
and demonstrate on a robot pushing task with model pre-
dictive control (MPC). Building on [2], Ebert et al. [14]
account for occlusion by adding temporal skip-connections to
the architecture. In [6], Huang et al. utilize a Mask-RCNN
for object segmentation and predict the transformation for
each object in the next frame. Kossen et al. [15] discover
hidden structures in images using a latent variable model
and predict the dynamics in the latent space with a graphical
neural network. Minderer et al. [16] also adopt a latent
variable model but instead use a keypoint detector for hidden
structure extraction. Paxton et al. [3] and Hoque et al. [4]
train a visual dynamics model with a huge amount of data
to infer the next-step image after taking an action and plan
based on evaluating the value of the predicted image. In
contrast to requiring copious amounts of data for training,
our method learns the visual dynamics model efficiently with
only a handful of data.

C. Task Planning

Task planning has been popular for decades in robotics
[3]–[5], [7], [17]–[25]. Task and motion planning (TAMP)
[17]–[19] solves complex tasks by integrating discrete high-
level planning with continuous low-level planning. These
methods generally rely on full knowledge about the world
and state estimation of objects, although learning has been
applied to weaken these assumptions recently [21], [24].
Another line of work uses modular perception frameworks
to obtain object states [7], [20] or latent representations of
objects [23] and proposes actions with a single-task policy
network. Our method differs from these methods by encoding
object states in a visual dynamics model instead of relying
on state estimation.

D. Multi-Task and Meta Learning

There is a growing interest in multi-task learning [11],
[26]–[30] and meta-learning [31]–[33]. Multi-task learning
has been studied in reinforcement learning settings with
shared multi-task policies [28], [29] and gating networks
[27]. Meta-learning [31]–[33] and task-to-task transfer [30]
aim to learn a policy which is able to perform well on a new
task given only a few demonstrations of that task. In contrast
to learning a policy that performs multiple training tasks or
a new task given more training data of that task, our goal
is to learn a policy that is able to perform multiple unseen
tasks that are structurally similar to the training tasks in a
zero-shot manner.

III. PROBLEM FORMULATION
We formulate the planar tabletop rearrangement task as

learning a goal-conditioned policy π that maps a current
observation ot and a goal observation og to an action at:

π(ot,og) : (ot,og)→ at (1)

The action is specified by a pair of picking and placing poses
at = (Tpick, Tplace) where Tpick, Tplace ∈ SE(2). Similar to
[10], the observation in our method is an orthographic top-
down view ot ∈ RH×W×4 of the tabletop workspace. Each



pixel corresponds to a vertical column in the workspace. The
four channels of ot are the RGB channels and the height of
the column in the workspace. We are able to map every
pixel p = (u, v) ∈ ot to a picking (or placing) position on
the table via camera-to-robot calibration. The picking and
placing actions are parameterized as Tpick = (ppick, θpick)
and Tplace = (pplace, θplace). The goal observation is the top-
down view og ∈ RH×W×4 of the goal scene. To execute at,
the robot first moves to Tpick and lowers its end effector. The
gripper is then activated to grasp the object. After the object
is grasped, the robot moves upward and then towards Tplace.
After arriving at Tplace, the robot lowers its end effector and
deactivates the gripper to release the object.

Our goal is to learn a policy that generalizes to multiple
unseen tasks in a zero-shot manner. To train π, we assume
a small dataset containing expert demonstrations of M
different tasks D = {ξi}Ni=1 is provided as training data
where ξi is an episode of a task. An episode ξi of length
Ti contains observations and actions of different steps: ξi =
{o1,a1,o2,a2, · · · ,oTi

,aTi
,oTi+1} where oTi+1 = og .

IV. METHODS

In this section, we first introduce the proposed visual
foresight (VF) model. We then describe the multi-modal
action proposal module developed from Goal-Conditioned
Transporter Networks (GCTN) [9]. Finally, we introduce
combining the VF model and the action proposal module
with a tree-search algorithm for long-horizon task planning.

A. Visual Foresight (VF) Model

Fig. 3 shows the network architecture of our VF model. It
takes as input the top-down observation ot and a pick-and-
place action at = (Tpick, Tplace), and outputs the imagined
observation of the next step ot+1 ∈ RH×W×4:

ot+1 = f(ot,at) (2)

Tpick is specified by a binary image Mpick ∈ RH×W which
is positive within a square mask centered at ppick and zero
elsewhere. To represent Tplace, we first rotate ot by ∆θ =
θplace−θpick about a pivot positioned at ppick. The rotated ot
is then cropped at ppick with a square of the same size as the
mask in Mpick. The cropped image is pasted on a zero image
at pplace to create Mplace ∈ RH×W×4. A fully convolutional
network (FCN) [34] takes as input the concatenated image
of ot, Mpick, and Mplace and outputs ot+1. The FCN is
a feed-forward neural network composed of convolution
and deconvolution blocks with residual connections [35].
Intuitively, our VF model imagines ot+1 by “cutting” ot
with a square mask at ppick, rotating the cut by ∆θ, and
“pasting” the cut by overlaying it on top of ot at pplace.

Spatial Equivariance for Efficient Learning. Our VF
model achieves high sample efficiency by utilizing a spatially
consistent input and introducing inductive biases in the
network design. In fact, the dynamics of the tabletop rear-
rangement problem are SE(2) equivariant; that is, applying
a transformation g ∈ SE(2) on ot and at will lead to an

Fig. 3: Visual Foresight (VF) Model. Our VF model predicts the next-step
observation from the current observation and a pick-and-place action. The
blue dot and the green dot indicate ppick and pplace, respectively. We train
the VF model f(ot,at) with a small amount of expert demonstrations.

identical transformation on ot+1. If we define xt = (ot,at),
the SE(2) equivariance can be written as:

f(g • xt) = g · f(xt) (3)

where g • xt
.
= (g · ot, g � at); · indicates the operation on

observation ot which transforms the pixels with g; g�at
.
=

(g◦Tpick, g◦Tplace) and ◦ is the group operation for SE(2).
More details on SE(2) equivariance of the dynamics can be
found in the supplementary materials on our project page.
By using a spatially consistent observation and encoding the
action in the image space, we are able to take advantage
of the SE(2) equivariance and conveniently implement data
augmentation by applying the same rigid transform to ot, at,
and ot+1, as seen in prior works [9], [10], [12].

In addition, encoding actions in the image space instead
of the latent space as [2], [3] allows us to use an FCN as our
network architecture and take advantage of the translational
equivariance property of the network [34]. This property is
very desirable and has been previously shown to improve
learning efficiency in vision-based manipulation [9], [10],
[12]. While we have achieved translational equivariance with
an FCN in this work, the dynamics for tabletop rearrange-
ment is in general SE(2) equivariant. We leave the investiga-
tion on using SE(2) equivariant networks as future work. In
addition, the changes of the scene in tabletop rearrangement
mostly happens locally in the vicinity of picking and placing
positions. By using a square mask positioned locally at ppick

and pplace, our VF model intuitively captures this feature –
the FCN only needs to attend to the local regions of picking
and placing in ot.

B. Multi-Modal Action Proposal

Background. Goal-Conditioned Transporter Networks
(GCTN) [9] are a powerful approach for pick-and-place
rearrangement manipulation. Their observation space is also
an orthographic top-down view of the tabletop workspace as
introduced in Sec. III. GCTN takes as input the observation
of the current scene ot and the goal scene og and outputs
a pick-and-place action at = (Tpick, Tplace). It consists of 4
FCNs. The first FCN takes as input ot and og and outputs a
dense action-value map Qpick ∈ RH×W which correlates
with the picking success. The picking position is given



Fig. 4: Multi-Modal Action Proposal. We use K-Means Clustering to
identify candidate high-level actions over which we can plan. The pixels
highlighted with yellow indicate placing actions with high-value. The green
dots in the image after K-Means Clustering are the cluster centers for the
three clusters. The three maps following show the placing actions for each
cluster.

by ppick = arg max(u,v)Qpick((u, v)|ot,og). By using a
symmetric gripper, e.g., a suction cup gripper, θpick is set to
0. For the placing action, the orientation space (i.e., SO(2))
is discretized into R bins. The final three FCNs generate the
placing action-value map Qplace ∈ RH×W×R which corre-
lates with the placing success. Qplace(u, v, r) indicates the
placing success of the action t = (u, v, 2rπ/R). The placing
action is given by Tplace = arg maxtQplace(t|ot,og, Tpick).
More details about GCTN can be found in [9].

Algorithm 1: MultiModalActionProposal(ot, og)

1 (Tpick, Qplace)← GCTN(ot, og)
2 Qmax

place ← max(u,v,θ)Qplace(u, v, θ)

3 Q̃place(u, v)← maxθ Qplace(u, v, θ)

4 θ̃(u, v)← arg maxθ Qplace(u, v, θ)
5 S ← ∅
6 foreach (u, v) do
7 if Q̃place(u, v) > αQmax

place then
8 append (u, v) to S
9 end

10 end
11 S ← Top N(S)
12 (A1, A2, ..., AK)← K Means Clustering(S)
13 for i← 1, 2, · · ·K do
14 (ui, vi)← arg max(u,v)∈Ai

Q̃place(u, v)

15 θi ← θ̃(ui, vi)
16 T iplace ← (ui, vi, θi)

17 end
18 return Tpick, T

1
place, T

2
place, ..., T

K
place

Multi-Modality with K-means Clustering. Instead of
outputting only one single action as in GCTN [9], we want
to explore more actions for multi-modality and versatility
when tackling unseen tasks. We propose multiple actions by
pairing Tpick generated by maximizing Qpick with multiple
T iplace generated from the placing action-value map Qplace

with K-Means Clustering.
The algorithm is given in Alg. 1. Specifically, given Tpick

and Qplace outputted by GCTN, we first find the maximum
value of Qplace which we denote as Qmax

place (Line 2). We then
maximize over the rotation channel to get the max rotation
map Q̃place ∈ RH×W (Line 3). The pixels with a value larger
than αQmax

place are selected and appended to a list S, where

α ∈ (0, 1) is a hyperparameter. We use α to filter out pixels
of which the values are not substantial – their corresponding
actions are considered bad proposals and will become noise
in the clustering. The top N pixel positions within S are
selected (Line 11) and used for K-Means Clustering (Line
12) to generate K clusters. For each cluster Ai, the pixel
position (ui, vi) with the maximum value of Q̃place plus its
corresponding rotation angle θi is used as the place action
T iplace for the cluster. See Fig. 4 for visualization.

Algorithm 2: TreeSearch(ot, og , dmax)

1 n0 ← [ot, 0, ∅]
2 L← ∅
3 Lprev ← [n0]
4 for i← 1, 2, · · · , dmax do
5 Lcurr ← ∅
6 foreach n in Lprev do
7 [o, d, τ ]← n
8 (Tpick, T

1
place, · · · , TKplace)←

MultiModalActionProposal(o,og)
9 for k ← 1, 2, · · · ,K do

10 o′ ← f(o, (Tpick, T
k
place))

11 τ ′ ← τ ∪ {(Tpick, T kplace)}
12 n′ ← [o′, d+ 1, τ ′]
13 Lcurr ← Lcurr ∪ {n′}

14 Lprev ← Lcurr

15 L← L ∪ Lcurr

16 return L

C. Transporters with Visual Foresight

Combining the VF model (Sec. IV-A) and the multi-modal
action proposal module (Sec. IV-B) with a full tree-search
algorithm, we propose Transporters with Visual Foresight
(TVF). Alg. 2 shows the tree search algorithm. The maxi-
mum depth dmax of the tree is a hyperparameter. Each edge
in the tree corresponds to an action. Each node n contains
the current observation o, the depth of the node d, and the
action sequence τ which leads the root node n0 to the current
node. A typical tree search iteration (Line 7-13) consists
of 2 steps: action proposal and node expansion. The action
proposal takes as input the observation of the node o and the
goal og and outputs a picking action and multiple companion
placing actions (Line 8). The VF model expands the node
by taking each pick-and-place action pair to generate the
imagined observation of the next step o′ (Line 10). o′ is
used to construct a new node for a new search iteration (Line
12). Throughout the expansion, we maintain a list L which
contains all nodes in the tree.

Alg. 3 shows the algorithm of TVF. After the tree is fully
expanded, the value of each node is given by C−L1(o,og) in
which C is a positive constant; L1(·, ·) is the mean absolute
error; o and og are the imagined observation of the node and
the goal observation, respectively (Line 5). To bias the policy
towards short search paths, the value is further multiplied
by a discount factor γd−1 which decays with the increase
of the depth d as γ ∈ (0, 1). The node with the largest



Fig. 5: Tasks. (a) Tower. (b) Inverse T-shape. (c) Row. (d) Palace. (e) Square. (f) Pyramid. (g) Plane T. (h) Plane Square. (i) Rectangle. (j) Stair 3. (k)
Stair 2. (l) Building. (m) Pallet. (n) Twin Tower. The first 6 tasks are used for training and the rest 8 tasks are unseen tasks which are not present in the
training data.

value is chosen. The robot takes the first action in the action
sequence of the node (Line 9), and then replans until the task
is accomplished or the step number exceeds the maximum
step number.

Algorithm 3: TVF(ot, og , dmax)

1 L← TreeSearch(ot, og , dmax)
2 vmax = 0
3 foreach n in L do
4 [o, d, τ ]← n
5 vtmp ← γd−1(C − L1(o,og))
6 if vtmp > vmax then
7 vmax ← vtmp

8 nbest ← n

9 (Tpick, Tplace)← FirstAction(nbest)
10 return Tpick, Tplace

V. EXPERIMENTS

In this section, we answer three questions: (1) Is TVF
able to generalize to unseen tasks in a zero-shot manner
after training on a handful of expert demonstrations? (2)
Does TVF work on real robot platforms? (3) Does the
proposed VF model produce better prediction results than
baseline methods? Ablation studies and more experiment
details can be found in the supplementary materials on the
project website.

A. Simulation Experiments

Fig. 1(a) shows our simulation experiment setup which
builds on an open-source manipulation task simulation en-
vironment Ravens [10]. A UR5 robot arm with a suction
gripper is used to perform pick-and-place actions in a 0.5×
0.5m2 tabletop workspace. Three RGB-D cameras are used
to reconstruct the top-down observation ot of the workspace.
We design 14 different block rearrangement tasks (Fig. 5). In
each task, the blocks are randomly positioned and oriented
within the workspace. All tasks require multiple steps to
finish. All tasks are multi-modal – there may be multiple
valid actions to perform in a step. A scripted oracle is written
for each task to provide expert demonstrations leading to the
goal configuration.

We divide the 14 tasks into 6 training tasks and 8 unseen
tasks which are not present in the training data (Fig. 5). For
each training task, we collect 1000 expert demonstrations.
When testing the performance on training with different

numbers of demonstrations (Sec. V-D), we sample from these
demonstrations as training data. To make the VF model more
flexible, two random actions, which pick a block on the
tabletop and place it at a collision-free pose, are also included
in the collection of each expert demonstration. Both random
actions and oracle actions are used for training the VF model;
only oracle actions are used for training the GCTN for the
multi-modal action proposal. For all the unseen tasks, we
collect 20 demonstrations for testing.

We compare our method with GCTN [9], a state-of-the-
art method for learning robot rearrangement tasks. We also
compare different variants of TVF: we vary the number
of clusters K in K-Means Clustering and the maximum
depth dmax of the tree. The cluster numbers K for TVF-
Small and -Large are 2 and 3, respectively. The tree depths
dmax are 1 and 3, respectively. Each step takes about 0.08s,
0.14s, and 1.82s for GCTN, TVF-Small, and TVF-Large
on an NVIDIA RTX 3090 GPU, respectively. We evaluate
the performance of a method with the success rate. The
maximum step number for a rollout equals the number of
blocks in the task. A trial is considered successful if the
planar translation, the z-coordinate, and the rotation about the
z-axis of all the blocks to the corresponding target poses are
less than 1cm, 0.5cm, and 15°, respectively. We train GCTN
and TVF variants with 1, 10, 100, and 1000 demonstrations
per training task (6, 60, 600, 6000 demonstrations in total).
Following [9], we use different TensorFlow seeds to train 3
models for all methods. We test each model on the test data
and report the average result of the 3 models.

B. Real Robot Experiments
Fig. 1(b) shows the setup of our real robot experiments. We

implement our method on a Franka Emika Panda robot arm
with a suction gripper. A PrimeSense Carmine 1.09 RGB-D
camera is mounted on the end-effector of the robot. As in the
simulation, the workspace is a 0.5× 0.5m2 tabletop. At the
beginning of each task, the goal block configuration is shown
to the robot and the blocks are then dissembled and placed
randomly on the table. At the beginning of each step, the
robot goes to a predefined configuration to capture the top-
down observation of the current scene. We use the height
from the observation of the picking and placing locations
to determine the height of the picking and placing actions.
IKFast [36] and MoveIt [37] are used for motion planning.
We pre-process the RGB images and heightmaps by filtering
out the background. We found that GCTN is not able to learn



TABLE I: Average Success Rates of Simulation Experiments on Unseen
Tasks. We show the average success rate (%) on the test data of unseen
tasks v.s. # of demonstrations (1, 10, 100, or 1000) per task in the training
data. Higher is better.

Method 1 10 100 1000

GCTN 1.3 55.4 49.0 54.2
TVF-Small (K = 2, dmax = 1) 1.7 71.5 62.3 72.5
TVF-Large (K = 3, dmax = 3) 2.9 78.5 71.7 85.6

well without the background filtering. More details can be
found in the supplementary materials on the project website.

C. Training Details

We implement our method with TensorFlow. Taking ad-
vantage of the spatial consistency of our method (Sec. IV-A),
we apply extensive data augmentation of random translations
and rotations to the training data to train the VF model. We
use the L1 loss and the Adam optimizer with a learning rate
of 1×10−4 and train for 60000 iterations. For the L1 loss, the
weight for the height channel is five times larger than those
for the RGB channels. To train GCTN, we use exactly the
same training setting as [9]. Both simulation and real robot
experiments are trained with the same setting as described
above.

D. Result I: Simulation Experiments

We evaluate on zero-shot generalization to unseen tasks
which are not present in the training data. We use the models
trained with the data of the 6 training tasks and test on the
8 unseen tasks in Fig. 5 without additional training. The
average success rates are shown in Tab. I. Both TVF variants
outperform GCTN on unseen tasks in all cases of demo
numbers. When there are more than 1 demo for each training
task, TVF variants outperform GCTN by a large margin.
Remarkably, TVF-Large achieves an average success rate of
78.5% when only 10 demos per task is given for training,
while vanilla GCTN achieves 55.4%. In the case of 1000
demos per task, TVF-Large achieves a remarkable average
success rate of 85.6%. For the TVF variants, the performance
improves with the increase of the complexity of the tree. The
success rates of GCTN and TVF variants are very low when
there is only 1 demo per training task and increase by a
large margin when given 10 demos per task. In general, the
performance of GCTN and TVF variants increases with the
increase of demo numbers. However, this is not always the
case: the performance of 100 demos is worse than that of 10
demos. The original GCTN paper reports similar results [9].

The success rates for each unseen task are shown in Tab. II.
In the cases of 10, 100, and 1000 demos, both TVF variants
outperform GCTN in every task. For Building with 1000
demos, GCTN achieves an average success rate of 3.3%
while TVF-Large improves the performance up to 25.0%.
Both GCTN and TVF variants are able to achieve good
results on simple tasks (e.g., Plane Square and Plane T).
But for more complicated tasks, GCTN struggles while TVF
variants perform much better. Another interesting observa-
tion is that the performance of TVF variants correlates with
that of GCTN. This is because the action proposal module

TABLE II: Success Rates of Simulation Experiments on Unseen Tasks.
We show the success rate (%) on the test data of each unseen task v.s. # of
demonstrations (1, 10, 100, or 1000) per task in the training data. * indicates
that the success rates of both TVF variants are at least 20% higher than that
of GCTN. Higher is better.

Plane Square Plane T

Method 1 10 100 1000 1 10 100 1000

GCTN 1.7 86.7 95.0 96.7 5.0 78.3 93.3 90.0
TVF-Small 3.3 98.3 96.7 100.0 3.3 90.0 100.0 98.3
TVF-Large 5.0 100.0 96.7 98.3 15.0 86.7 100.0 95.0

Stair 2 Twin Tower

Method 1 10 100* 1000* 1 10 100* 1000

GCTN 3.3 85.0 46.7 68.3 0.0 88.3 55.0 85.0
TVF-Small 6.7 98.3 71.7 90.0 0.0 98.3 85.0 93.3
TVF-Large 3.3 96.7 95.0 100.0 0.0 96.7 85.0 91.7

Stair 3 Building

Method 1 10 100 1000* 1 10 100 1000

GCTN 0.0 45.0 23.3 16.7 0.0 5.0 0.0 3.3
TVF-Small 0.0 63.3 33.3 46.7 0.0 8.3 10.0 11.7
TVF-Large 0.0 81.7 56.7 90.0 0.0 13.3 6.7 25.0

Pallet Rectangle

Method 1 10* 100 1000* 1 10* 100 1000*

GCTN 0.0 23.3 51.7 31.7 0.0 31.7 26.7 41.7
TVF-Small 0.0 60.0 61.7 65.0 0.0 55.0 40.0 75.0
TVF-Large 0.0 75.0 70.0 90.0 0.0 78.3 63.3 95.0

TABLE III: Real Robot Experiment Success Rate. We show the success
rate (%) on the test data of all the tasks in the real robot experiments. For
TVF, we use the TVF-Small variant but increase K to 3 for more action
modality. * indicates that the success rate of TVF is at least 20% higher
than that of GCTN. Higher is better.

Training Tasks Unseen Tasks

Method Row* Tower Square* Stair 2* Rectangle Twin Tower*

GCTN 60.0 90.0 70.0 40.0 50.0 0.0
TVF 100.0 100.0 90.0 80.0 50.0 60.0

is based on GCTN – if GCTN is not good, the multi-modal
action proposal will not be good either.

E. Result II: Real Robot Experiments

As we are able to train TVF with only a handful of expert
data, this makes real robot experiments possible. We collect
30 expert demonstrations for 3 training tasks (10 demos per
task) and use these data to train TVF and GCTN. We test
TVF and GCTN on both the 3 training tasks and 3 unseen
tasks. Each task is tested with 10 rollouts. The results are
shown in Tab. III and Fig. 6. Our method works in the real
world. And it outperforms GCTN in 5 of the 6 tasks and
is on par with GCTN on Rectangle. Notably, while GCTN
fails in all 10 rollouts in the unseen Twin Tower task, our
method is able to achieve a success rate of 60%.

F. Result III: Visual Foresight Model

Finally, we evaluate our VF model on predicting the
next-step observation ot+1 from the current observation
ot and action at given a small number of training data.
We compare with a baseline method, referred to as La-
tent Dynamics, which instead encodes the action in the



Fig. 6: Real Robot Experiment Results. (a) shows the results of TVF and some failure cases of GCTN. (b) shows the visual foresight prediction of
the next-step observation after taking three different actions proposed by the multi-modal action proposal module. The current observation on the left is
captured from the scene with a green star (*) in (c). Notice that the three actions are different, placing the picked block on the top of the three blocks on
the base, respectively. (c) shows a full rollout of TVF on the Rectangle task. The leftmost image shows the goal. The rest images show different steps of
the rollout.

TABLE IV: Results on Visual Foresight Models. The table shows the
results of different methods trained with 10 demos for each training task
(60 demos in total). It shows the L1 loss of the RGB color channels and
the height channel between the predicted observation and the ground truth
observation. The images are normalized. The actions are the expert actions
in the expert demonstrations. Lower is better.

Training Tasks Unseen Tasks

Method Color Height Color Height

Latent Dynamics 0.0875 0.0873 0.1441 0.1505
Ours 0.0242 0.0136 0.0691 0.0380

latent space similar to [2], [3]. Latent Dynamics also
takes as input ot and at and outputs ot+1. An en-
coder is first used to encode ot to a latent representa-
tion L ∈ R40×40×64. The pick-and-place action param-
eters (i.e., upick, vpick, uplace, vplace, sin(θplace), cos(θplace))
are tiled into a 40×40×6 map and concatenated channel-wise
with L to get L′ ∈ R40×40×70. The next-step observation
ot+1 is reconstructed from L′ with a decoder. The encoder-
decoder network architecture is an FCN similar to that in
our VF model.

We train both methods with 10 demos per training tasks
in the simulation (60 demos in total). For both methods, we
use different TensorFlow seeds to train 3 models and report
the average result of the 3 models on test data in Tab. IV.
Our VF model outperforms Latent Dynamics in both training
and unseen tasks.

VI. DISCUSSIONS & FUTURE WORK

A typical reason for the failures of GCTN is the single-
modal action proposal. In both training tasks and unseen
tasks in real robot experiments (Fig. 6(a)), we observe that
the action with the highest value of GCTN is sometimes
incorrect. And since GCTN is single-modal, it will take the
incorrect action and fail the task. On the other hand, even if
the action with the highest value is incorrect, TVF is able
to predict which actions in the multiple proposals will better
lead to the goal with the VF model and take the action.
This brings about substantial advantages on unseen tasks
compared to GCTN. See the columns highlighted with a *

in Tab. II and III. Our VF model features efficient training
which is able to predict accurate next-step observations given
only tens of training data. This is achieved by introducing
inductive biases in the network design – encoding the action
in the image space in a spatially consistent way allows our
VF model to take advantage of the translational equivariance
property of the FCN. The performance advantage over Latent
Dynamics in Tab. IV justifies our design choice.

As TVF assumes no prior knowledge of objects, we envi-
sion it can be generalized to more variable objects. Moreover,
although we focus on SE(2) tabletop rearrangement in this
paper and use FCNs as the network architecture, future work
can explore applying a more advanced architecture [38] that
preserves SE(2) equivariance to further improve sample
efficiency. Another possible direction is to extend the idea
of geometry-aware visual foresight to more general settings
(e.g., 3D workspaces described by point cloud data [39])
and develop VF models for accomplishing more challenging
tasks. In addition, our VF model is deterministic, i.e., there
is no stochasticity to address the uncertainty of robot actions.
Future work can also explore using uncertainty-aware models
(e.g., Bayesian Neural Network [40]) to model the visual
dynamics. Finally, the number of clusters K is fixed for a
particular TVF variant, i.e., the number of actions proposed
by a particular TVF variant is fixed and equals K. Future
work can investigate methods to adaptively generate different
numbers of actions according to the action-value maps Qpick

and Qplace.

VII. CONCLUSIONS

In this paper, we propose a simple visual foresight (VF)
model which is able to predict the next-step observation
from the current observation and a pick-and-place action.
The VF model is able to learn efficiently from only a
handful of training data. In addition, we propose a multi-
modal action proposal module which builds on a state-
of-the-art imitation learning method [9] for more versatile
action proposal. Combining the VF model and the action
proposal module with a tree-search algorithm, we propose



Transporters with Visual Foresight (TVF), a novel method for
rearrangement task planning from image data which is able
to achieve zero-shot generalization to unseen tasks with only
tens of expert demonstrations. Results show that our method
outperforms a state-of-the-art baseline method on average
success rates of unseen tasks in both simulation and real
robot experiments. Our proposed VF model outperforms a
baseline method when only given a small number of training
data. Robotic systems that can generalize their function to
scenarios beyond interpolations of those that are previously
seen represents a higher level of capability.

REFERENCES

[1] M. E. Seligman, P. Railton, R. F. Baumeister, and C. Sripada,
“Navigating into the future or driven by the past,” Perspectives on
psychological science, vol. 8, no. 2, pp. 119–141, 2013.

[2] C. Finn and S. Levine, “Deep visual foresight for planning robot
motion,” in 2017 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2017, pp. 2786–2793.

[3] C. Paxton, Y. Barnoy, K. Katyal, R. Arora, and G. D. Hager, “Visual
robot task planning,” in 2019 international conference on robotics and
automation (ICRA). IEEE, 2019, pp. 8832–8838.

[4] R. Hoque, D. Seita, A. Balakrishna, A. Ganapathi, A. K. Tanwani,
N. Jamali, K. Yamane, S. Iba, and K. Goldberg, “Visuospatial fore-
sight for multi-step, multi-task fabric manipulation,” arXiv preprint
arXiv:2003.09044, 2020.

[5] D. Xu, S. Nair, Y. Zhu, J. Gao, A. Garg, L. Fei-Fei, and S. Savarese,
“Neural task programming: Learning to generalize across hierarchical
tasks,” in 2018 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2018, pp. 3795–3802.

[6] B. Huang, S. D. Han, A. Boularias, and J. Yu, “Dipn: Deep interaction
prediction network with application to clutter removal,” in 2021 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2021, pp. 4694–4701.

[7] B. Huang, S. D. Han, J. Yu, and A. Boularias, “Visual foresight tree
for object retrieval from clutter with nonprehensile rearrangement,”
arXiv preprint arXiv:2105.02857, 2021.

[8] H. Suh and R. Tedrake, “The surprising effectiveness of linear mod-
els for visual foresight in object pile manipulation,” arXiv preprint
arXiv:2002.09093, 2020.

[9] D. Seita, P. Florence, J. Tompson, E. Coumans, V. Sindhwani, K. Gold-
berg, and A. Zeng, “Learning to rearrange deformable cables, fabrics,
and bags with goal-conditioned transporter networks,” in 2021 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2021, pp. 4568–4575.

[10] A. Zeng, P. Florence, J. Tompson, S. Welker, J. Chien, M. Attarian,
T. Armstrong, I. Krasin, D. Duong, V. Sindhwani et al., “Transporter
networks: Rearranging the visual world for robotic manipulation,”
arXiv preprint arXiv:2010.14406, 2020.

[11] M. H. Lim, A. Zeng, B. Ichter, M. Bandari, E. Coumans, C. Tom-
lin, S. Schaal, and A. Faust, “Multi-task learning with sequence-
conditioned transporter networks,” arXiv preprint arXiv:2109.07578,
2021.

[12] M. Shridhar, L. Manuelli, and D. Fox, “Cliport: What and where
pathways for robotic manipulation,” in Conference on Robot Learning.
PMLR, 2022, pp. 894–906.

[13] H. Huang, D. Wang, R. Walter, and R. Platt, “Equivariant transporter
network,” arXiv preprint arXiv:2202.09400, 2022.

[14] F. Ebert, C. Finn, A. X. Lee, and S. Levine, “Self-supervised visual
planning with temporal skip connections.” in CoRL, 2017, pp. 344–
356.

[15] J. Kossen, K. Stelzner, M. Hussing, C. Voelcker, and K. Kersting,
“Structured object-aware physics prediction for video modeling and
planning,” arXiv preprint arXiv:1910.02425, 2019.

[16] M. Minderer, C. Sun, R. Villegas, F. Cole, K. Murphy, and H. Lee,
“Unsupervised learning of object structure and dynamics from videos,”
arXiv preprint arXiv:1906.07889, 2019.

[17] M. Toussaint, “Logic-geometric programming: An optimization-based
approach to combined task and motion planning,” in Twenty-Fourth
International Joint Conference on Artificial Intelligence, 2015.

[18] C. R. Garrett, R. Chitnis, R. Holladay, B. Kim, T. Silver, L. P. Kael-
bling, and T. Lozano-Pérez, “Integrated task and motion planning,”
Annual review of control, robotics, and autonomous systems, vol. 4,
pp. 265–293, 2021.

[19] L. P. Kaelbling and T. Lozano-Pérez, “Hierarchical planning in the
now,” in Workshops at the Twenty-Fourth AAAI Conference on Artifi-
cial Intelligence, 2010.

[20] H. Song, J. A. Haustein, W. Yuan, K. Hang, M. Y. Wang, D. Kragic,
and J. A. Stork, “Multi-object rearrangement with monte carlo tree
search: A case study on planar nonprehensile sorting,” in 2020
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2020, pp. 9433–9440.

[21] S. Mukherjee, C. Paxton, A. Mousavian, A. Fishman, M. Likhachev,
and D. Fox, “Reactive long horizon task execution via visual skill and
precondition models,” in 2021 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2021, pp. 5717–5724.

[22] M. J. McDonald and D. Hadfield-Menell, “Guided imitation of task
and motion planning,” in Conference on Robot Learning. PMLR,
2022, pp. 630–640.

[23] A. H. Qureshi, A. Mousavian, C. Paxton, M. C. Yip, and D. Fox,
“Nerp: Neural rearrangement planning for unknown objects,” arXiv
preprint arXiv:2106.01352, 2021.

[24] Y. Labbé, S. Zagoruyko, I. Kalevatykh, I. Laptev, J. Carpentier,
M. Aubry, and J. Sivic, “Monte-carlo tree search for efficient visu-
ally guided rearrangement planning,” IEEE Robotics and Automation
Letters, vol. 5, no. 2, pp. 3715–3722, 2020.

[25] A. Hundt, B. Killeen, N. Greene, H. Wu, H. Kwon, C. Paxton, and
G. D. Hager, ““good robot!”: Efficient reinforcement learning for
multi-step visual tasks with sim to real transfer,” IEEE Robotics and
Automation Letters, vol. 5, no. 4, pp. 6724–6731, 2020.

[26] R. Caruana, “Multitask learning,” Machine learning, vol. 28, no. 1,
pp. 41–75, 1997.

[27] K. Mülling, J. Kober, O. Kroemer, and J. Peters, “Learning to
select and generalize striking movements in robot table tennis,” The
International Journal of Robotics Research, vol. 32, no. 3, pp. 263–
279, 2013.

[28] D. Kalashnikov, J. Varley, Y. Chebotar, B. Swanson, R. Jon-
schkowski, C. Finn, S. Levine, and K. Hausman, “Mt-opt: Continuous
multi-task robotic reinforcement learning at scale,” arXiv preprint
arXiv:2104.08212, 2021.

[29] R. Yang, H. Xu, Y. Wu, and X. Wang, “Multi-task reinforcement
learning with soft modularization,” arXiv preprint arXiv:2003.13661,
2020.

[30] A. Hundt, A. Murali, P. Hubli, R. Liu, N. Gopalan, M. Gombolay, and
G. D. Hager, “” good robot! now watch this!”: Repurposing reinforce-
ment learning for task-to-task transfer,” in 5th Annual Conference on
Robot Learning, 2021.

[31] C. Finn, T. Yu, T. Zhang, P. Abbeel, and S. Levine, “One-shot
visual imitation learning via meta-learning,” in Conference on Robot
Learning. PMLR, 2017, pp. 357–368.

[32] Y. Duan, M. Andrychowicz, B. C. Stadie, J. Ho, J. Schneider,
I. Sutskever, P. Abbeel, and W. Zaremba, “One-shot imitation learn-
ing,” arXiv preprint arXiv:1703.07326, 2017.

[33] T. Yu, C. Finn, A. Xie, S. Dasari, T. Zhang, P. Abbeel, and S. Levine,
“One-shot imitation from observing humans via domain-adaptive
meta-learning,” arXiv preprint arXiv:1802.01557, 2018.

[34] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2015, pp. 3431–3440.

[35] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016, pp. 770–778.

[36] R. Diankov, “Automated construction of robotic manipulation pro-
grams,” 2010.

[37] S. Chitta, I. Sucan, and S. Cousins, “Moveit!” IEEE Robotics &
Automation Magazine, vol. 19, no. 1, pp. 18–19, 2012.

[38] M. Weiler and G. Cesa, “General e (2)-equivariant steerable cnns,”
Advances in Neural Information Processing Systems, vol. 32, 2019.

[39] N. Thomas, T. Smidt, S. Kearnes, L. Yang, L. Li, K. Kohlhoff,
and P. Riley, “Tensor field networks: Rotation-and translation-
equivariant neural networks for 3d point clouds,” arXiv preprint
arXiv:1802.08219, 2018.

[40] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra, “Weight
uncertainty in neural network,” in International conference on machine
learning. PMLR, 2015, pp. 1613–1622.



Fig. 7: Tabletop Rearrangment. When the current observation and the
pick-and-place action are transformed by g ∈ SE(2), the next-step obser-
vation will also be transformed by the same g.

SUPPLEMENTARY MATERIAL

The supplementary material is organized as follows:
• Sec. A discusses more details on the equivariance prop-

erty of the dynamics of tabletop rearrangement.
• Sec. B shows detailed results on both training and

unseen tasks in simulation. It also contains ablation
studies which compare more TVF variants.

• Sec. C shows results of simulation experiments with
more variable objects.

• Sec. D describes more experiment details.

A. SE(2) Equivariance of Dynamics

We assume a pre-defined 2D frame is attached to the
infinite tabletop plane. All the coordinates and poses defined
below are relative to this frame. Our observation is the
orthographic top-down view ot : R2 → R4 of the whole
tabletop workspace where ot(u, v) gives the observed RGB
and height value at position p = [u, v]T ∈ R2. g ∈ SE(2)
can be parameterized with g = (R(θ),q) in which q =
[∆u,∆v]T ∈ R2 represents the translation; R(θ) represents
the rotation:

R(θ) =

[
cos θ − sin θ
sin θ cos θ

]
(4)

The group action of SE(2) on p ∈ R2 and its inverse are
defined respectively as:

g � p .
= R(θ)p + q (5)

g−1 � p .
= R(θ)−1p−R(θ)−1q (6)

We define the group action of SE(2) on ot as g · ot(p)
.
=

ot(g
−1 � p). We denote xt = (ot,at) where at =

(Tpick,Tplace) ∈ SE(2) × SE(2). The group action of
SE(2) on at is defined as g � at

.
= (g ◦ Tpick, g ◦ Tplace).

◦ is the group operation of SE(2) defined as g1 ◦ g2
.
=

(R1R2, R1q2 + q1). We then define the group action on xt
as g •xt

.
= (g ·ot, g�at). The SE(2) equivariance property

of the dynamics function f : xt → ot+1 can be written as:

f(g • xt) = g · f(xt) (7)

Intuitively, Eq.7 describes the following property of the dy-
namics of tabletop rearrangement: if the current observation

and the picking and placing poses are transformed by g ∈
SE(2), the next-step observation should also be transformed
by g (Fig. 7). Our visual foresight (VF) model achieves
translational equivariance by using a fully convolutional
network (FCN) as the network architecture. We leave the
extension to SE(2) equivariance as future work. A promising
direction is to represent the input (i.e., the observation and
action) in a way such that it is compatible with an SE(2)
equivariant network architecture.

B. Detailed Simulation Experiment Results

In Tab. VIII & IX, we show full testing results on
6 training tasks and 8 unseen tasks. We show both the
success rate and rate of progress for each task. For the
rate of progress, partial credit is also given to trials which
are partially completed. The rate of progress is defined as
#of blocks in target poses

#of blocks .
TVF variants outperform GCTN in general, even with

only one-step foresight (TVF-Small). The advantage of TVF
variants over GCTN is more substantial on unseen tasks.
With the increase of demo number per task, the success rates
of all methods grow in general. A substantial performance
improvement is observed when the demo number per task
increases from 1 to 10. When the demo number increases
further, the improvement is modest. Given 100 and/or 1000
demos per task, the success rates for some tasks even
decrease with the increase of demo number. Similar results
are also reported in [9]. With the increase of tree depth,
TVF-Large outperforms TVF-Small in general.

Similar conclusions can also be drawn from Tab. X-XII
where we show more results on more TVF variants. In these
tables, we name each method with three letters “K”, “M”,
and “G”, which represent the number of clusters in K-Means
Clustering, the number of steps expanded by the multi-modal
action proposal module, and the number of steps expanded
by GCTN. TVF-Small and -Large correspond to TVF-K2-
M1-G0 and TVF-K3-M3-G0, respectively. One additional
observation from these tables is that the performance does
not always improve with the increase of depth. This counter-
intuitive result will be explained in the next paragraph.
Another conclusion is that using more clusters for the action
proposal improves performance in general.

The reason why in some cases the performance does not
improve together with the increase of tree depth is threefold:

1) If all the proposed actions are wrong at a given depth,
the performance will not improve with the increase of
tree depth.

2) If the task can be finished within very a few steps,
larger tree depth will not improve results.

3) If the prediction of the dynamics model becomes
unreliable as the tree grows, larger tree depth may
deteriorate the performance.

Therefore, to achieve better results with larger tree depth,
the action proposal module and the dynamics model should
improve simultaneously. One future direction is to improve
the generalization capability.



Fig. 8: VF Model Experiments on Variable Object Shapes and Colors. We show a rollout on the test data of each of the two tasks, Square and Row.
Current Observation shows the RGB image and heightmap of the current step. The yellow and green stars indicate the picking position and placing position,
respectively. Ground Truth Next-Step Observation shows the ground truth next-step RGB image and heightmap. Predicted Next-Step Observation shows
the predicted next-step RGB image and heightmap of the next step. The actions are expert actions.

C. Experiments on Variable Objects

We perform simulation experiments with more variable
objects. In particular, we experiment on two rearrangement
tasks, Square and Row, containing a block, a cuboid, and
a cylinder (Fig. 8). The colors of the objects in the two
tasks also vary. In Square, the block, cuboid, and cylinder
are painted red, blue, and green, respectively. In Row, the
block, cuboid, and cylinder are painted blue, green, and
red, respectively. 10 demos per task are provided as the
training data (20 demos in total). Similar to the simulation
experiments in V-D, two random actions, which pick an
object on the tabletop and place it at a collision-free pose, are
also included in the collection of each expert demonstration.
We use this data to train the VF model and the GCTN
for multi-modal action proposal. Both random actions and
oracle actions are used for training the VF model; only oracle
actions are used for training the GCTN for the multi-modal
action proposal.

We first evaluate our VF model on the test data of these
two tasks and compare with the baseline method Latent
Dynamics. Qualitative results of our VF model are shown
in Fig. 8. Quantitative results are shown in Tab. V. Our
VF model is able to retain the data efficiency and perfor-
mance with variable object shapes and colors. It outperforms
Latent Dynamics by a large margin. From Fig. 8, our VF

model is able to predict accurate next-step RGB images and
heightmaps given current observation and the pick-and-place
action. We have also observed that the color prediction of our
VF model is worse than that tested on data that contains only
red blocks in Sec. V-F (L1 loss of 0.0296 compared to 0.0242
in Tab. IV; lower is better). This is expected because there are
more colors in this experiment, making color prediction more
challenging. The height prediction is better than that tested
on data with only red blocks (L1 loss of 0.0100 compared to
0.0136 in Tab. IV). This is also within expectation because
there are only two tasks in this experiment while there are
six tasks in Sec. V-D.

We also test the TVF-Small variant on the test data of these
two tasks. We compare with GCTN. Results are shown in
Tab. VI. TVF-Small outperforms GCTN on both tasks. In
both tasks, the success rates of TVF-Small are higher than
80%. Our task planning method is able to retain the data
efficiency and performance on tasks with variable objects
and colors.

D. More Experiment Details

To collect training data in real robot experiments (Sec. V-
E), we implement an efficient way for a human expert to
teleoperate the robot to pick and place blocks. See Fig. 9
and its caption for a detailed description of data collection



TABLE V: Visual Foresight Prediction Results of Experiments on
Variable Object Shapes and Colors. The table shows the visual foresight
prediction results of testing our VF model and Latent Dynamics on the
test data with variable objects and colors. Both methods are trained with 10
demos per training task (20 demos per task). The table shows the L1 loss of
the RGB channels and the height channel between the predicted observation
and the ground truth observation. The images are normalized. The actions
are expert actions. Lower is better.

Method Color Height

Latent Dynamics 0.1082 0.0935
Ours 0.0296 0.0100

TABLE VI: Success Rates of Experiments on Variable Object Shapes
and Colors. The table shows the success rates (%) of testing TVF-Small
and GCTN on two tasks with variable objects and colors. Each task is tested
on 20 rollouts.

Method Square Row

GCTN 81.7 68.3
TVF-Small (Ours) 85.0 81.7

(a) (b) (c) (d) (e) (f)

Picking Position

Placing Position

(g) (h) (i)

Fig. 9: Real Robot Data Collection of a Step. (a) In each step of a rollout,
the robot arm moves to the top of the workspace and captures the top-down
view RGB image and heightmap. (g) shows the captured top-down RGB
image. The top-down image will then show up on the computer and a
human expert clicks on two points on the image to specify the picking and
placing positions, respectively. (h) shows the clicked points. (b) The robot
then moves to the picking position and picks up the block. (c) It then moves
towards the placing position. (d) Before placing, the human expert manually
specifies the placing rotation angle. (e) Finally, the robot places the block
down at the placing position. (f) The robot moves to capture the top-down
view and start a new step. If the task is completed, this view will be saved
as the goal. (i) shows the top-down RGB image of the observation in (f).
The process is repeated until the task is completed.

of a step. Fig. 10 shows the data collection of a rollout.
The top-down RGB image and heightmap, the picking and
placing positions, and the placing rotation angle of each step
are collected during a rollout. The top-down RGB image
and heightmap at the end of the rollout are also collected
as the goal. To increase data variability, two random actions
are also collected in each rollout similar to the simulation
experiments in Sec. V-D. The human expert teleoperates
the robot to pick a block and place it at a random pose
which is collision-free. We perform a background filtering
for both RGB images and heighmaps during data collection
and testing. Specifically, we convert RGB to HSV and set
thresholds on the height and V value. For each filtered pixel,
we set the RGB and height value as zero. We find that GCTN
is not able to learn well on real data without the background

Picking Position Placing Position

(a) (b) (c) (d)

(e) (f) (g)

Fig. 10: Real Robot Data Collection of a Rollout. (a), (b), (c), and (d)
show the top-down RGB images from the initial to the end of a rollout.
The task is Tower. (e), (f), and (g) show the picking and placing positions
of the three steps specified by the human expert. Random actions are not
shown.

TABLE VII: Hyperparameters

Hyperparameter Value

Learning Rate (VF) 1× 10−4

Minibatch Size (VF) 1
Training Steps (VF) 6× 104

Learning Rate (Latent Dynamics) 1× 10−4

Minibatch Size (Latent Dynamics) 1
Training Steps (Latent Dynamics) 6× 104

Tree Value Coefficient C (TVF) 1
Discount Factor γ (TVF) 0.99
K-Means Clustering Threshold Coefficient α (TVF) 0.01
Top N number in K-Means Clustering N (TVF) 100
Number of Rotation Bin for GCTN R (GCTN) 36

filtering.
Tab. VII shows the hyperparameters we use for training

our VF model, GCTN, and Latent Dynamics in the paper.
More details can be found in our project website: https:
//chirikjianlab.github.io/tvf/

https://chirikjianlab.github.io/tvf/
https://chirikjianlab.github.io/tvf/


TABLE VIII: Simulation Experiment Results on Training Tasks. We show the average success rate (%) / rate of progress (%) on the test data of each
training task v.s. # of demonstrations (1, 10, 100, or 1000) per task in the training data. Higher is better.

Row Square

Method 1 10 100 1000 1 10 100 1000

GCTN 8.3/35.0 98.3/99.4 95.0/98.3 100.0/100.0 0.0/34.2 93.3/96.7 65.0/84.2 93.3/96.7
TVF-Small 11.7/42.2 100.0/100.0 95.0/98.3 100.0/100.0 1.7/37.1 90.0/95.0 80.0/90.8 98.3/99.2
TVF-Large 15.0/42.2 100.0/100.0 95.0/98.3 100.0/100.0 3.3/40.0 100.0/100.0 90.0/97.1 100.0/100.0

T-shape Tower

Method 1 10 100 1000 1 10 100 1000

GCTN 1.7/34.2 80.0/93.3 95.0/98.7 95.0/98.7 3.3/32.8 100.0/100.0 98.3/98.3 100.0/100.0
TVF-Small 3.3/36.2 90.0/95.8 96.7/99.2 95.0/97.5 5.0/42.8 100.0/100.0 100.0/100.0 100.0/100.0
TVF-Large 1.7/37.1 96.7/98.7 96.7/99.2 96.7/98.7 5.0/42.8 100.0/100.0 100.0/100.0 98.3/98.9

Pyramid Palace

Method 1 10 100 1000 1 10 100 1000

GCTN 0.0/31.4 73.3/93.1 83.3/96.7 81.7/95.6 0.0/32.4 61.7/88.8 78.3/95.2 85.0/96.4
TVF-Small 1.7/34.7 75.0/93.3 85.0/96.1 61.7/88.1 0.0/36.9 75.0/91.9 80.0/95.7 80.0/96.0
TVF-Large 0.0/34.2 80.0/92.8 81.7/95.6 66.7/89.2 0.0/33.8 71.7/92.6 85.0/96.9 83.3/95.5

TABLE IX: Simulation Experiment Results on Unseen Tasks. We show the average success rate (%) / rate of progress (%) on the test data of each
unseen task v.s. # of demonstrations (1, 10, 100, or 1000) per task in the training data. Higher is better.

Plane Square Plane T

Method 1 10 100 1000 1 10 100 1000

GCTN 1.7/43.8 86.7/96.3 95.0/98.7 96.7/98.7 5.0/39.4 78.3/92.8 93.3/97.8 90.0/96.7
TVF-Small 3.3/45.0 98.3/99.6 96.7/99.2 100.0/100.0 3.3/43.3 90.0/96.7 100.0/100.0 98.3/99.4
TVF-Large 5.0/45.0 100.0/100.0 96.7/99.2 98.3/99.2 15.0/46.1 86.7/95.6 100.0/100.0 95.0/98.3

Stair 2 Twin Tower

Method 1 10 100 1000 1 10 100 1000

GCTN 3.3/38.3 85.0/95.0 46.7/82.2 68.3/89.4 0.0/25.8 88.3/94.7 55.0/71.9 85.0/95.8
TVF-Small 6.7/43.9 98.3/99.4 71.7/90.6 90.0/96.7 0.0/34.2 98.3/98.9 85.0/90.0 93.3/97.5
TVF-Large 3.3/40.0 96.7/97.8 95.0/97.8 100.0/100.0 0.0/32.5 96.7/98.1 85.0/91.7 91.7/96.1

Stair 3 Building

Method 1 10 100 1000 1 10 100 1000

GCTN 0.0/30.6 45.0/86.4 23.3/67.5 16.7/76.9 0.0/26.3 5.0/55.3 0.0/57.0 3.3/54.3
TVF-Small 0.0/38.6 63.3/91.1 33.3/75.3 46.7/85.0 0.0/30.3 8.3/58.7 10.0/66.3 11.7/64.7
TVF-Large 0.0/32.8 81.7/94.7 56.7/86.9 90.0/97.2 0.0/26.3 13.3/58.0 6.7/60.0 25.0/68.3

Pallet Rectangle

Method 1 10 100 1000 1 10 100 1000

GCTN 0.0/31.5 23.3/82.5 51.7/78.5 31.7/84.0 0.0/31.1 31.7/84.7 26.7/68.3 41.7/79.4
TVF-Small 0.0/34.2 60.0/91.5 61.7/83.5 65.0/94.0 0.0/35.3 55.0/88.1 40.0/77.2 75.0/89.7
TVF-Large 0.0/32.1 75.0/94.4 70.0/91.7 90.0/97.5 0.0/30.8 78.3/94.2 63.3/86.4 95.0/98.6



TABLE X: Ablation Study (10 Demos). We show the average success rate (%) on the test data of unseen tasks. The number of demonstrations per task
in the training data is 10. Higher is better.

Method Plane Square Plane T Stair 2 Twin Tower Stair 3 Building Pallet Rectangle

TVF-K2-M1-G0 98.3 90.0 98.3 98.3 63.3 8.3 60.0 55.0
TVF-K2-M2-G0 100.0 86.7 93.3 98.3 70.0 3.3 65.0 55.0
TVF-K2-M3-G0 100.0 85.0 93.3 95.0 70.0 8.3 56.7 55.0
TVF-K2-M4-G0 100.0 85.0 93.3 95.0 63.3 6.7 68.3 61.7
TVF-K2-M4-G1 100.0 85.0 93.3 98.3 65.0 8.3 66.7 58.3

TVF-K3-M1-G0 100.0 88.3 100.0 98.3 68.3 3.3 76.7 76.7
TVF-K3-M2-G0 100.0 88.3 96.7 90.0 76.7 3.3 66.7 76.7
TVF-K3-M3-G0 100.0 86.7 96.7 96.7 81.7 13.3 75.0 78.3
TVF-K3-M4-G0 100.0 86.7 96.7 95.0 71.7 10.0 70.0 86.7
TVF-K3-M4-G1 100.0 86.7 96.7 95.0 76.7 13.3 68.3 86.7

TABLE XI: Ablation Study (100 Demos). We show the average success rate (%) on the test data of unseen tasks. The number of demonstrations per task
in the training data is 100. Higher is better.

Method Plane Square Plane T Stair 2 Twin Tower Stair 3 Building Pallet Rectangle

TVF-K2-M1-G0 96.7 100.0 71.7 85.0 33.3 10.0 61.7 40.0
TVF-K2-M2-G0 96.7 100.0 75.0 80.0 38.3 1.7 60.0 43.3
TVF-K2-M3-G0 96.7 100.0 85.0 80.0 43.3 1.7 60.0 51.7
TVF-K2-M4-G0 96.7 100.0 85.0 83.3 41.7 8.3 63.3 51.7
TVF-K2-M4-G1 96.7 100.0 85.0 88.3 43.3 5.0 58.3 51.7

TVF-K3-M1-G0 95.0 100.0 80.0 88.3 51.7 10.0 63.3 53.3
TVF-K3-M2-G0 96.7 100.0 91.7 95.0 55.0 1.7 68.3 60.0
TVF-K3-M3-G0 96.7 100.0 95.0 85.0 56.7 6.7 70.0 63.3
TVF-K3-M4-G0 96.7 100.0 93.3 88.3 53.3 10.0 63.3 68.3
TVF-K3-M4-G1 96.7 100.0 93.3 90.0 51.7 11.7 63.3 66.7

TABLE XII: Ablation Study (1000 Demos). We show the average success rate (%) on the test data of unseen tasks. The number of demonstrations per
task in the training data is 1000. Higher is better.

Method Plane Square Plane T Stair 2 Twin Tower Stair 3 Building Pallet Rectangle

TVF-K2-M1-G0 100.0 98.3 90.0 93.3 46.7 11.7 65.0 75.0
TVF-K2-M2-G0 98.3 98.3 90.0 96.7 58.3 5.0 76.7 80.0
TVF-K2-M3-G0 100.0 98.3 91.7 98.3 50.0 10.0 75.0 88.3
TVF-K2-M4-G0 100.0 98.3 91.7 98.3 61.7 26.7 71.7 88.3
TVF-K2-M4-G1 100.0 98.3 91.7 96.7 56.7 33.3 80.0 95.0

TVF-K3-M1-G0 100.0 96.7 100.0 98.3 78.3 15.0 88.3 83.3
TVF-K3-M2-G0 98.3 95.0 100.0 98.3 85.0 13.3 93.3 93.3
TVF-K3-M3-G0 98.3 95.0 100.0 91.7 90.0 25.0 90.0 95.0
TVF-K3-M4-G0 100.0 95.0 98.3 95.0 91.7 36.7 88.3 86.7
TVF-K3-M4-G1 100.0 95.0 98.3 98.3 83.3 40.0 86.7 86.7


	I INTRODUCTION
	II RELATED WORK
	II-A Transporter Networks
	II-B Visual Foresight
	II-C Task Planning
	II-D Multi-Task and Meta Learning

	III PROBLEM FORMULATION
	IV METHODS
	IV-A Visual Foresight (VF) Model
	IV-B Multi-Modal Action Proposal
	IV-C Transporters with Visual Foresight

	V EXPERIMENTS
	V-A Simulation Experiments
	V-B Real Robot Experiments
	V-C Training Details
	V-D Result I: Simulation Experiments
	V-E Result II: Real Robot Experiments
	V-F Result III: Visual Foresight Model

	VI DISCUSSIONS & FUTURE WORK
	VII CONCLUSIONS
	References
	VII-A SE(2) Equivariance of Dynamics
	VII-B Detailed Simulation Experiment Results
	VII-C Experiments on Variable Objects
	VII-D More Experiment Details


