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Abstract— This paper proposes a perception-shared and
swarm trajectory global optimal (STGO) algorithm fused UAVs
formation motion planning framework aided by an active
sensing system. First, the point cloud received by each UAV
is fit by the gaussian mixture model (GMM) and transmitted
in the swarm. Resampling from the received GMM contributes
to a global map, which is used as the foundation for consensus.
Second, to improve flight safety, an active sensing system is
designed to plan the observation angle of each UAV consid-
ering the unknown field, overlap of the field of view (FOV),
velocity direction and smoothness of yaw rotation, and this
planning problem is solved by the distributed particle swarm
optimization (DPSO) algorithm. Last, for the formation motion
planning, to ensure obstacle avoidance, the formation structure
is allowed for affine transformation and is treated as the soft
constraint on the control points of the B-spline. Besides, the
STGO is introduced to avoid local minima. The combination
of GMM communication and STGO guarantees a safe and strict
consensus between UAVs. Tests on different formations in the
simulation show that our algorithm can contribute to a strict
consensus and has a success rate of at least 80% for obstacle
avoidance in a dense environment. Besides, the active sensing
system can increase the success rate of obstacle avoidance from
50% to 100% in some scenarios.

I. INTRODUCTION

Compared to one single unmanned aerial vehicle (UAV),
a swarm of UAVs can effectively increase payload capacity
and have a broader sense of the environment. With such
merits, swarms could be more efficiently fulfill tasks such as
detection, search, mapping, and cooperative transportation
[1]. In the aforementioned tasks, the swarm is commonly
required to maintain a specified formation to traverse a
dense field of obstacles safely. This requirement brings
two challenges. First, for a distributed swarm, one main
prerequisite is that all UAVs need to reach a safe consensus
on trajectory planning and decision-making [2] while usually,
different UAVs have a different understanding of the envi-
ronment. Current work [3] uses the convex hull to express
safe space for transmission, which builds a foundation for
perception consensus. Nevertheless, perception consensus
can not strictly ensure planning consensus due to the local
minima existing in the optimization problem. Second, for
the sake of the dense environment and the overall large
volume of UAV formation, it is significant to have a complete
perception of the environment to ensure safety [4]. Therefore,
the FOV of each UAV in the swarm needs to be elaborately
planned. Although there has been a lot of work [5], [6]
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Fig. 1. (a) Diamond, straight line, rectangle and triangle formation traverse
through the forest scenario from left to right. (b) An overview of our
perception and planning system, including formation motion planning and
active sense planning.

considering the field of view of one single UAV, planning
FOVs for a UAV swarm in motion planning is still an open
problem.

To bridge the gap of research, we propose a distributed
and synchronous motion planning framework for multiple
UAVs formation equipped with an active sensing system in
the dense obstacle environment, as shown in Fig. 1b. The
GMM is used to represent the distribution of obstacles in the
environment compactly and transmitted in the swarm. This
transmission contributes to a global map for each agent and
lays a foundation for the consensus of subsequent planning.
The STGO algorithm in the formation motion planning
module, together with the GMM communication, guarantees
strict consensus for all UAVs.

In addition, the FOVs of all UAVs are optimized con-
sidering the exploration and safety, as well as reducing the
overlap of FOVs. This optimization is solved by the DPSO
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algorithm.
Besides, in order to improve flight safety, our work allows

the affine transformation of the formation structure and
treats it as the soft constraint on the control points of the
B-spline. The formation trajectory planning is based on
the gradient-based method [7]. We adopt the synchronous
planning manner and treat the trajectories and observation
directions of all UAVs as optimization variables to ensure a
feasible solution for all UAVs. Simulation is conducted to
verify our algorithm for formation maintenance and obstacle
avoidance.

We list the main contributions of our work as follows:
1) A perception-shared and STGO algorithm fused UAVs

formation motion planning framework, ensuring a safe and
strict consensus on trajectory planning.

2) A distributed active sensing system for the UAV swarm,
and to the best of our knowledge, this is the first system
considering FOVs in the UAV swarm motion planning task.

II. RELATED WORKS

A. Distributed Formation Obstacle Avoidance

Numbers of methods for UAV formation obstacle avoid-
ance have been proposed. Among them, the lead-follower
pattern is widely used due to its convenience of implemen-
tation [8]. This method highly depends on the leader agent,
which makes the formation less robust. Paul et al. in [9]
construct an artificial potential field to maintain the formation
shape and avoid the obstacle. However, the potential field
usually has many local minima, resulting in the robot being
trapped.

Recently, motion planning for distributed formation obsta-
cle avoidance has been extensively researched. In [10], Quan
et al. use a graph-based metric to quantify the similarity
between two formations. For each agent, the trajectory is
optimized based on other agents’ pre-planned trajectories.
In some scenarios, the pre-planned trajectories may lead to
the following UAVs failing in path finding. In other words,
the optimized trajectories may not be optimal for the whole
swarm. Alonso et al. [3] present a method for formation
flight planning based on distributed consensus. The core of
this method is to get the same safe convex hull for different
robots by intersection, which is taken as the feasible area for
planning. This same safe convex hull builds the prerequisite
for consensus. Nevertheless, at the same time, this may also
make obstacles and trajectories close because it treats the
safe space equally [11]. Besides, the same convex hull can
not strictly guarantee optimization consensus.

B. Active Sensing System

A large sensing range could improve flight safety and lo-
calization accuracy. Compared to the omnidirectional camera
sensor [12], [13], active sensing system active vision has
advantages in weight and computation consumption. In [4],
Zhou et al. propose a yaw planning algorithm and define
the quality of observation to improve flight safety. In [5], to
help the object tracking, the heading of the UAV is planned
to keep the dynamic obstacles in the FOV. Chen et al. [6]

use a multiple objectives function considering exploration,
velocity, and dynamic obstacles to plan for an independent
rotation camera with 1 degree of freedom. Besides, the active
sensing system has also been applied to the UAV swarm.
Researchers from [14] design the optimal trajectory and
angular configuration for a UAV swarm to track a target of
interest. Zhang et al. [15] use a graph-based active sensing
method to improve relative localization for UAVs in the
swarm.

III. GMM-BASED MAPPING AND TRANSMISSION

In this work, GMMs are used to compactly represent point
cloud and transmitted in the swarm. By resampling from the
models, we can reconstruct the obstacles, and build the occu-
pancy grid map and the euclidean signed distance functions
(ESDF) map. Compared to standard gaussian distribution,
GMM can fit more complex point distributions [16] due to
the linear combination of multiple gaussian models, which
are called components. The probability density function of a
GMM with K components is formed as

p(x) =

K∑
k=1

πkN (x | µk,Σk) (1)

where N (x | µk,Σk) is the standard gaussian distribution
with mean µk and covariance matrix Σk. πk represents
the proportion of each component in the GMMs with∑K

k=1 πk = 1. Our work uses the Expectation-Maximum
(EM) algorithm [17] to calculate the optimal πk, µk and
Σk of the GMM. EM algorithm solves the maximum-
likelihood estimatation in a iterative manner. For the E-step,
the probablity of xn belonging to component zk is calculated
and the probablity is called as the latent variable.

γ (znk) =
πkN (xn | µk,Σk)∑K
j=1 πjN (xn | µj ,Σj)

(2)

Then for the M-step, the optimal parameters are optimized
through maximum-likelihood based on the latent variable

µnew
k =

1

Nk

N∑
n=1

γ (znk)xn

Σnew
k =

1

Nk

N∑
n=1

γ (znk) (xn − µnew
k ) (xn − µnew

k )
T

πnew
k =

Nk

N

(3)

where Nk =
∑N

n=1 γ (znk). By iteratively calculating Eq. 2
and Eq. 3, all parameters can converge to the optimal value.

One key point of the GMM is that the number of com-
ponents K needs to be specified in advance. When faced
with an unknown environment, it is difficult for a robot to
select a suitable K. Commonly, with more components, the
GMM can represent the environment more accurately, while
this also costs the EM algorithm much more time. Many
techniques have been raised to choose an appropriate K
according to the complexity of the environment [16]. In our
work, K is proportional to the number of points in the point



cloud. This criterion can adapt to most environments and
does not require additional computations.

Reconstructing the distribution of obstacles in space is
implemented by resampling from the GMM. Meanwhile, an
occupancy grid map is built through raycasting from the
robot to the sampled points. The state update of each grid
in the map follows the sensor measurement model in [18].
Moreover, a Euclidean Signed Distance Field (ESDF) map
is maintained by Euclidean distance transform (EDT), and
both maps are stored in the circular buffer data structure
[19]. Illustrations for the GMM-based maps are shown in
Fig. 2.

Thanks to the highly compact expression of point cloud
with GMM, the message for communication only contains
the parameters of GMM and the location of the agent. This
expression greatly reduces the demand for communication
bandwidth from 200 kbps to 5 kbps in simulation.

Fig. 2. The pipeline for two UAVs building a global map. (a) Two UAVs
are equipped with depth cameras in the Gazebo simulation environment. The
camera’s FOV is limited. (b) The red grids are the point cloud seen by the
UAV on the left, and the yellow grids belong to the UAV on the right. The
black ellipses are plotted according to the GMM fitting result. Each ellipse
represents a component. (c) The global map is constructed by the left UAV
after GMM communication and resampling. Through communication, it can
reconstruct the obstacles on the right side. (d) A cross-section of the ESDF
map built from the global map maintained by the left UAV.

IV. ACTIVE-SENSING SYSTEM PLANNING

When conducting a traversal mission, the UAV swarm is
required to have a full understanding of the environment
and hence, we adopt the active sensing system for UAVs
by planning the yaw angle. For a swarm of N UAVs,
denote the angles of all UAV’s yaw attitude in the swarm
as Θ = [θ0, θ1...θN−1]

T , where θi represents the yaw
angle of UAV i. The positions of UAVs for yaw angles
optimization are selected from the pre-planned trajectory
described in Sec.V with equal time interval, denoted as
P (t0),P (t1)...P (tm−1). Yaw angles between this selected
time point are calculated by linear interpolation. Considering
the balance between safety and exploration, the cost function
for yaw angles optimization at tk is defined as

min
Θk

J = λ1fol + λ2fv − λ3fpv + λ4fs

θi ∈ [−π, π), i ∈ [0, N − 1]
(4)

The fol function in the first term is defined as fol =∑
i 6=j Overlap(θi, θj), where Overlap(θi, θj) function cal-

culates the overlap area of two FOVs between UAV i
and UAV j as shown in Fig. 3. In practice, to reduce
computational complexity, we project the UAV’s FOV onto
the same height plane and use the Boost Geometry1 li-
brary to get the size of the overlapping regions of the
two triangles. Besides, to ensure the safety of the swarm,
agents need to pay attention to obstacles in its direction of
velocity. Thus, we set fv =

∑
i(θi − θvi )2, where θvi is the

velocity direction of UAV i determined by the trajectory.
The third term fpv =

∑
i PerceptionV alue(θi) in this

cost function evaluates the perception value corresponding
to a certain yaw angle. To be specific, in order to have
a complete understanding of the whole environment and
improve the success rate of path finding, agents tend to
observe the field of higher uncertainty. Borrowing from the
theory of information entropy, the perception value is defined
as PerceptionV alue(θi) = −

∑
gridl∈FOV pllogpl where

pl indicates the occupancy probability of grid l within the
FOV. This function highlights those grids with occupancy
probability around 0.5. The last term in the cost function
considers the smoothness of the UAV’s yaw rotation and
is defined as fs = ‖Θk −Θk−1‖22. Morever, λ1, λ2, λ3
and λ4 determine the weight of each term. The optimization

Fig. 3. The overlap area of two cameras’ FOVs on the same height plane.

problem described above is a typical non-convex problem. In
order to take advantage of the computing power of the UAV
swarm and avoid local minima, we utilize a DPSO algorithm
as shown in Alg. 1. Compared with standard PSO, DPSO
adds the interaction between UAVs and thus increases the
number of particles used for computation. Besides, DPSO
can guarantee strict consensus between UAVs. Specifically,
in the beginning, UAV i initializes a group of particles, and
then each particle updates its state concerning the optimal
particle in the particle group P i

gbest and its own history
optimal value P i,k

pbest. All UAVs in the swarm broadcast
the current optimal particle of their own particle group at
a certain frequency. After receiving the information P j

gbest,
the UAV will compare it with its own group’s optimal
particle and select the better one. This algorithm achieves

1https://github.com/boostorg/geometry



optimization consensus in practical and compared with some
distributed optimization algorithms that are highly dependent
on communication like DGT [20], the DPSO algorithm can
obtain better optimization results in the case of unstable
bandwidth.

Algorithm 1: DPSO algorithm
Input: max iteration times M

1 For agent i, initialize a group of particles Si with
random velocities and positions;

2 for episode=1 to M do
3 for particle Pk ∈ Si do
4 if J(Pk) < J(P i,k

pbest) then
5 P i,k

pbest ← Pk;
6 if J(Pk) < J(P i

gbest) then
7 P i

gbest ← Pk;

8 for particle Pk ∈ Si do
9 updateVelocityAndPosition(Pk);

10 if receive P j
gbest from other agent j then

11 if J(P j
gbest) < J(P i

gbest) then
12 P i

gbest ← P j
gbest;

13 broadcast P i
gbest at a certain frequency;

V. FORMATION MOTION PLANNING

The swarm in our work is required to maintain a formation
during the traversal task. To avoid obstacle, the formation al-
lows for rotation, scaling and translation. We use a simplified
affine transformation to describe formation at time t

P (t) = sRPref + Ptrans(t) (5)

where s represents the scale factor, R is the rotation matrix
and Ptrans(t) describes the translation of the formation
centre. Pref is the reference formation structure such as
diamond and straight line.

Motion planning for the formation can be divided into
two steps. For the first step, the A* algorithm is used to
find a path from the formation center to the goal, denoted
as Pathc. Due to the limited sensing range of UAV, when
the node in the A* algorithm reaches the map boundary, the
algorithm is terminated, and the boundary point is regarded
as the endpoint of the path. In our work, in order to ensure
the connectivity of the swarm during obstacle avoidance, all
UAVs are required to bypass the obstacles from the same
side. Such requirement is reasonable for some situations,
such as vision-based relative localization or cooperative
transportation. Therefore, the path for each UAV is based
on Pathc as shown in Fig. 4. For each turning point along
Pathc, a new formation is generated around it with a small
scale factor for safety, and then each agent’s path is found by
connecting these new formations. In practice, these paths can
be roughly used as the front-end paths for formation motion
planning.

Fig. 4. The initial path of each agent. Pathc starts from the formation
centre and each agent’s initial path is generated based on Pathc.

The second step of motion planning is based on gradient-
gased optimization. According to the closed-form solution
presented by [21], we calculate a polynomial trajectory
crossing all turning points of the path found by the first step
following the principle of minimum acceleration. Then by
sampling on the trajectory, each UAV’s trajectory is param-
eterized as B-spline. Each UAV optimizes the trajectories of
all UAVs simultaneously. For a formation with N agents and
B-spline curves with n control points, p order, the problem
is formulated as

argmin
qi
j ,i∈[0,N−1],j∈[3,n−1]

J = λfJf + λbJb + λsJs + λdJd + λoJo + λrJr + λeJe
(6)

where qij represents the jth control point of agent i’s trajec-
tory. λf , λb, λs, λd, λo, λr and λe determine the weight of
each term. Because we specify the initial position, velocity,
and acceleration of the trajectory, the qi0, qi1, and qi2 are
fixed.

Fig. 5. Illustration for Theorem 1. Suppose the reference formation is the
diamond. qij is jth the control point of UAV i’s B-spline. The blue diamonds
formed by qij all satisfy the affine transformation relative to the reference
formation. According to Theorem 1, at any time t, the red diamond formed
by UAV i’s position pit satisfies the affine transformation relative to the
reference formation.

To ensure safe flight first, we treat the formation require-
ment as a soft constraint, and thus, the first term in the
cost function measures the degree of formation distortion.
The formation constraint is converted to the control points
by the following theorem for B-spline curves. Illustration of



Theorem 1 is shown in Fig. 5.
Theorem 1: Suppose the formation formed by control

points of all B-splines satisfies the affine transformation
compared to the reference formation, then at any time on the
trajectory, the formation formed by the agents satisfies the
affine transformation compared to the reference formation.

Proof: At any time on the trajectory, the formation
is determined by control points, P (t) = N(t) · Q, where
P (t) = [P0(t),P1(t)...PN−1(t)] with Pi(t) denotes the
position of agent i. N(t) is composed of the base function
value which is only related to time t. Q is a matrix of
all the control points, Q = [qT0 , q

T
1 ...q

T
p ]

T and qj =

[q0j , q
1
j ...q

N−1
j ]. qj satisfies a general affine transformation

compared to the reference formation, qj = Aj ·Pref +Bj .
Then,Q = [A0,A1...Ap]

T ·Pref+[B0,B1...Bp]
T and thus,

P (t) =N(t)·[A0,A1...Ap]
T ·Pref+N(t)·[B0,B1...Bp]

T .

Thanks to Theorem 1, we can convert the formation con-
straint on trajectory points to the control points. According to
[22], the in-plane affine transformation in Eq. 5 is determined
by three agents, while in our work, the affine transformation
is simplified to rotation, scaling and translation, and thus,
it can be controlled by two agents, denoted as agent 0
and agent 1. In other word, other agents’ desired position
is a linear combination of agent 0 and agent 1 defined as
q̂ij = F (q0j , q

1
j ), where q̂ij is the desired position of the jth

control point of agent i satisfying the formation structure.
Therefore, the formation cost function is defined as

Jf =

N−1∑
i=2

n−1∑
j=3

∥∥qij − q̂ij∥∥22 (7)

In order to prevent a large degree of scaling factor, we
introduce Jb to limit the distance between agent 0 and agent
1,

Jb =

n−1∑
j=3

(
∥∥q0j − q1j∥∥22 − d2ref )2 (8)

where dref is the distance between agent 0 and agent 1 in
the reference formation.

The Js in Eq. 6 represents the cost function of smoothness.
The elastic band cost function [7] is adopted to formulate it.

Js =

N−1∑
i=0

n−2∑
j=3

∥∥2qij − qij−1 − qij+1

∥∥2
2

(9)

Due to the dynamic feasibility, we limit the speed and
acceleration at the control points. The cost function to
penalize excessive speed and acceleration is defined as Jd =∑N−1

i=0 (
∑n−2

j=2 gv(v
i
j)+

∑n−2
j=1 ga(a

i
j)) with gv(vij) described

below and ga(ai
j) follows the same form.

gv
(
vij
)
=

{(
||vij ||22 − v2max

)2 ||vij ||2 > vmax

0 ||vij ||2 ≤ vmax

(10)

where vij is the control point of one order derivative of the
B-spline trajectory.

Jo is used to keep trajectories away from obstacles. It can
be quantified by the value in ESDF map. Due to the convex
hull property of B-spline, we set the obstacle avoidance
constraint on control points, Jo =

∑N−1
i=0

∑n−1
j=3 h(q

i
j) with

h(qij) defined as

h
(
qij
)
=

{(
E(qij)−D

)2
E(qij) < D

0 E(qij) ≥ D
(11)

where E(qij) represents the ESDF value and D is the safety
distance for obstacle avoidance. The gradient of E(qij) with
respect to qij is calculated by trilinear interpolation.
Jr is the reciprocal collision cost for formation flight.

Theoretically, it is difficult to guarantee that two UAVs
will not collide at any time when only the control points
are constrained, and thus, we select a series of points on
the trajectory at equal time intervals [t0, t1...tK ] to apply
constraints.

Jr =

N−1∑
i,j=0,i<j

K∑
k=0

r(pi(tk),p
j(tk))

r(pi,pj) =

{(
||pi − pj ||22 −D2

r

)2 ||pi − pj ||2 < Dr

0 ||pi − pj ||2 ≥ Dr

(12)
where pi(tk) is the position of agent i at time tk and Dr is
the safety distance for reciprocal avoidance. Besides, pi(tk)
is a linear combination of control points, so the gradient with
Jr to qi can be easily calculated.

The endpoint of the path found in the first step p̂iend is
treated as a soft constraint. Due to the property of the Non-
Uniform B-spline, the last control point coincides with the
endpoint of the trajectory. Therefore, the cost function for
endpoint constraint is defined as

Je =

N−1∑
i=0

∥∥qin−1 − p̂iend∥∥22 (13)

Each agent in the swam uses the L-BFGS algorithm from
NLopt2 to optimize the control points of all trajectories.
Although all UAVs have a shared map due to the GMM
communication in Sev.IV, they can not strictly reach a
consensus on trajectories because of the local minima in Eq.
6. Therefore, we introduce the STGO algorithm. After the
L-BFGS algorithm converges, every UAV will broadcast its
optimization result and the corresponding cost. The result
with the lowest cost will be chosen as the final trajectories
for all UAVs. In practice, the STGO algorithm effectively
avoids local minima and ensures a strict consensus.

VI. SIMULATION

We test our active sensing system and formation avoidance
algorithm in simulation, and the environment is based on
ego-planner-swarm3. The UAVs will perform GMM fitting
on the point cloud information provided by the simulation
environment and transmit it in the swarm. Similar to the

2https://github.com/stevengj/nlopt
3https://github.com/ZJU-FAST-Lab/ego-planner-swarm



real-world scenario, the camera’s FOV is set to 60 degrees,
and the maximum distance of the point cloud is 5m. Unlike
other works [10], [23], our reference formation tends to
bring UAVs together for tasks such as cooperative trans-
portation and relative localization. Typical formations include
diamond, straight line, rectangle, and triangle.

A. Active Sensing System

The DPSO algorithm in our system takes 40 particles on
each agent, and the maximum number of iterations is set as
20. The DPSO algorithm takes around 35ms, most of which
is used to calculate perception value.

We compare our active sensing system with the conven-
tional velocity-direction-consistency yaw planning method.
As shown in Fig. 6, for some scenarios like sharp turn,
the velocity-direction-consistency yaw planning method can
not detect obstacles in time, and this leads to the crash.
We conduct 20 tests, and the success rate for the velocity-
direction-consistency yaw planning method to cross the
corner is 50%, while with the help of our active sensing
system, the success rate is 100%. Besides, for formations
like the straight line, the velocity-direction-consistency yaw
planning method causes a large overlap of FOVs as shown
in Fig. 7a. Our algorithm can take advantage of the UAV
swarm by planning the direction of observation, maintaining
full awareness of the environment, as demonstrated in Fig.
7b. To be specific, the overlap rate of FOV in Fig. 7a is
48.0% while in Fig. 7b, it is 14.7%.

Fig. 6. Comparison between two perception planning algorithms when
facing sharp turn scenario. Red curves are the planned trajectories, and black
transparent triangles are the UAVs’ FOVs. Unknown obstacles are in blue.
(a) The velocity-direction-consistency yaw planning algorithm cannot detect
obstacles marked by the orange rectangle and lead to unsafe trajectories. The
success rate to cross the corner is 50%. (b) Our algorithm enables the UAV
to actively observe unknown areas to detect obstacles in time and improve
flight safety. The success rate to cross the corner is 100%

TABLE I
SUCCESS RATE AND edist WITH AND WITHOUT GMM OR STGO

Algorithm GMM+STGO GMM STGO

Success rate 85% 10% 0%

edist(m) 0.3984 1.6459 0.0725

Fig. 7. The sense range of two perception planning algorithms. (a) is the
velocity-direction-consistency yaw planning algorithm and the overlap rate
of FOV is 48.0%. (b) is our proposed algorithm and the overlap rate of
FOV is 14.7%.

TABLE II
SUCCESS RATE AND edist OF DIFFERENT FORMATION STRUCTURES IN

THE FOREST SCENARIO

Formation structure Diamond Line Rectangle Triangle

Success rate 85% 90% 80% 80%

edist 0.3984 0.0234 1.0032 0.3920

B. Formation Motion Planning

During the traversal task, all UAVs rely on synchronous
timestamps for synchronous planning, which in our system
comes from ROS. When the planning timer is triggered, each
UAV broadcasts its current position, and then the algorithm
described in Sec.V is conducted. We solve the following
optimization from [10] to describe the distortion degree of
the current formation relative to the reference formation,

edist = min
R,s,t

N−1∑
i=0

∥∥∥prefi − (sRpci + t)
∥∥∥2 (14)

where prefi and pci is the position of UAV i in the reference
and current formation respectively. A smaller edist represents
a smaller distortion.

We demonstrate the success rate and edist of our system
when traversing a forest scenario maintaining a diamond
formation with and without GMM communication or STGO
in Table I. As can be seen from the table, without STGO,
the distortion degree is large, and there is much reciprocal
collision, indicating a bad consensus between UAVs. Without
GMM, UAVs can not maintain a full understanding of the
environment and thus, evaluate the trajectories cost incor-
rectly, leading to a 0% success rate. Only under the joint
help of GMM and STGO ensures a safe and strict consensus
between UAVs.

In addition, we use different reference formations to
demonstrate our obstacle avoidance performance in an un-
known environment. The average speed is about 1.8m/s, and
the motion planning algorithm costs around 30ms. Fig. 1a
illustrates the diamond, straight line, rectangle, and triangle
formation in the forest scenario. As the figure shows, all
UAVs avoid the obstacles on the same side, and the con-
nectivity of the swarm is maintained during the flight. When
encountering narrow corridors, the formation will shrink and



temporarily break for safety. The success rate and edist of
different formation structures in the forest scenario for 20
tests are shown in Table II.

VII. CONCLUSIONS
This paper proposes a novel formation perception and

motion planning framework. The simulation shows that the
GMM and STGO fused method can guarantee a safe and
strict consensus in a traversal task with a success rate of
more than 80%. At the same time, GMM can substan-
tially reduce the communication bandwidth from 200kbps to
5kbps. Besides, an active sensing system is embedded in this
framework to improve the success rate from 50% to 100%
in the sharp turn scenario. In the future, we plan to test this
framework in the real-world experiment and develop it for a
cooperative transportation task.
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