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Abstract— Traditional model-based reinforcement learning
(RL) methods generate forward rollout traces using the learnt
dynamics model to reduce interactions with the real envi-
ronment. The recent model-based RL method considers the
way to learn a backward model that specifies the conditional
probability of the previous state given the previous action and
the current state to additionally generate backward rollout
trajectories. However, in this type of model-based method,
the samples derived from backward rollouts and those from
forward rollouts are simply aggregated together to optimize the
policy via the model-free RL algorithm, which may decrease
both the sample efficiency and the convergence rate. This is
because such an approach ignores the fact that backward
rollout traces are often generated starting from some high-
value states and are certainly more instructive for the agent
to improve the behavior. In this paper, we propose the back-
ward imitation and forward reinforcement learning (BIFRL)
framework where the agent treats backward rollout traces as
expert demonstrations for the imitation of excellent behaviors,
and then collects forward rollout transitions for policy rein-
forcement. Consequently, BIFRL empowers the agent to both
reach to and explore from high-value states in a more efficient
manner, and further reduces the real interactions, making it
potentially more suitable for real-robot learning. Moreover, a
value-regularized generative adversarial network is introduced
to augment the valuable states which are infrequently received
by the agent. Theoretically, we provide the condition where
BIFRL is superior to the baseline methods. Experimentally, we
demonstrate that BIFRL acquires the better sample efficiency
and produces the competitive asymptotic performance on vari-
ous MuJoCo locomotion tasks compared against state-of-the-art
model-based methods.

I. INTRODUCTION

In recent years, with the tremendous advances of deep
learning, the model-free reinforcement learning (RL) that
utilizes the neural network to represent the policy or the
value function has made remarkable progress [1], [3], [2],
and can potentially automate various applications, such as
autonomous driving and robotics manipulation. However, the
model-free RL algorithm requires extensive interactions with
the environment to obtain large amounts of data for policy
optimization, which thus restricts it to mostly controllable
simulated environments. In contrast, model-based methods
have been found to be able to learn a near-optimal policy
without enormous number of interactions with the environ-
ment [4]. This is because once a reliable model that is capa-
ble of precisely constructing the running mechanism of the
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environment is learnt, it can be used as a virtual environment
to further drive the learning process, consequently improving
the sample efficiency. But the downside of the model-based
RL method is that it is often inferior to the model-free
counterpart in terms of asymptotic performance.

Traditionally, in model-based RL methods, the agent in-
teracts with the learnt transition function with uncertainty
from the current state by executing a policy to generate
the imaginary traces for policy optimization (called rollout).
More recently, Goyal et al. [13] proposed an impressive
backward model that estimates the conditional probability of
the previous state given the previous action and the current
state to recall backward rollout traces, and showed that
in many domains, especially those with sparse high-value
states, this approach can acquire the improvement in terms of
sample efficiency. Lai et al. [5] then proposed a so-called bi-
directional model-based policy optimization (BMPO) algo-
rithm that uses both the traditional forward model (transition
function) and the backward model to generate bi-directional
rollout samples that reach into both the past and the future.
However, such a model-based method simply aggregates the
bi-directional model-generated data together to reinforce the
policy via the model-free RL algorithm, which may cause
the low sample efficiency and the slow convergence rate.
This is because it is ignored that the traces derived from
backward rollouts typically start from some high-value states
and consequently can supervise the learning of agent like
the expert demonstrations. To put it another way, the agent
can efficiently learn to reach the high-value states through
directly imitating the traces from backward rollouts, and
then explore from those reached states for the future novel
experiences to reinforce the policy. We thus believe that
the bi-directional model rollout samples should be treated
differently for the efficient policy learning.

To this end, we propose the backward imitation and
forward reinforcement learning (BIFRL) framework where
backward rollout traces generated from the presumed valu-
able states are used as expert demonstrations for the agent
imitation of excellent behaviors, and then the interactions
with the forward model are conducted to produce forward
rollout traces for policy reinforcement. Specifically, BIFRL
requires to generate high-value states as the starting points
for the bi-directional model rollouts. From these states,
backward rollouts are performed to generate the traces back
to some initial states. These traces are then used like those
from expert demonstrations to train the agent using imitation
learning. Afterward, BIFRL conducts forward rollouts from
these states and the resulting samples are utilized to further
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reinforce the policy using the RL algorithm. As a result,
BIFRL empowers the agent to both reach to and explore from
the valuable states to accelerate its policy learning and reduce
the extensive interactions. Thus it has the potential to limit
the damage to the robot and its environment if being applied
in the real word, making it more applicable for real-robot
learning. Additionally, the valuable states are indeed rare, and
should be leveraged effectively and efficiently. Thus, a value-
regularized generative adversarial network (GAN) is devel-
oped to discover more those particular useful states as state
augmentation without the need of state labelling. Further-
more, we theoretically provide the condition where BIFRL
shows the superiority against the baselines. Experimentally,
we demonstrate that compared with previous state-of-the-
art model-based models, BIFRL achieves higher sample
efficiency and produces competitive asymptotic performance
on various MuJoCo locomotion benchmark tasks [18].

II. RELATED WORK

Compared with model-free RL, model-based RL is often
more sample efficient given that it can generate simulated
samples using the learned dynamics model. However, this
often comes in the expense of the asymptotic performance as
the learnt model may not be accurate. Previous works have
tried to mitigate the compounding errors coming from the
multi-step model rollouts by tuning the ratio of real to model-
generated samples [7], [6], [8]. Nguyen et al. [9] and Xiao et
al. [10] considered different ways to estimate the cumulative
model error by which the adaptive model-based planning
horizon can be determined. MBPO [11] generates truncated
model rollouts branched from real states to cripple the influ-
ence of model error and provides the condition for the return
improvement in the true dynamics. BMPO [5] combines the
backward model and the forward model for bi-directional
branched rollouts, which performs better asymptotically in
both theory and practice. Our approach also utilizes the
branched model rollout strategy to limit the compounding
error as much as possible.

Several models try to integrate the backward model with
RL algorithms. Goyal et al. [13] and Edwards et al. [12] used
an imitation learning approach to additionally train the policy
on the samples from the backward model. However, these
methods are more like model-free RL and do not utilize the
forward model to reduce the sample complexity. BMPO [5]
uses both the backward and forward models for bi-directional
model rollouts. Again, this approach treats the samples from
backward rollouts and those from forward rollouts the same,
resulting in impairing the efficiency.

Imitation learning is able to make RL model jump start to
avoid the so-called cold-start [14], [15]. The idea is that the
experts will first demonstrate how to achieve a task, and from
which an initial policy will be obtained using imitation learn-
ing. This assumes that there are experts who can perform the
recordable and understandable demonstrations for the agent.
Our use of imitation learning on the backward rollout data
is inspired by this approach. In our approach, the backward

model undertakes the role of experts, and backward rollouts
directly generate the annotated data.

The high-value state can be defined by the estimated
expected return or the received immediate reward under
the current policy. But in most cases, it is infrequently
encountered, and is definitely significant to launch model
rollouts. BMPO [5] employs previously experienced states
which are prioritized according to the state values. Goyal et
al. [13] relied on the learned Goal GAN [20] to produce
the starting states for backward rollouts, which however
requires the annotations of high-value states as training data.
By comparison, in our framework, a value-regularized GAN
is introduced for state augmentation without the need of
annotation, which forces the generator to directly output the
critic-recognised valuable states.

III. PRELIMINARIES

We formalize the RL problem using Markov Decision Pro-
cess (MDP) that is described by the tuple (S,A,T, r, γ, ρ0).
At each time step t, the agent in the state st ∈ S executes
the action at ∈ A, receives the reward rt = r(st, at),
and moves to the next state st+1 according to the unknown
transition function T : S×A→ S. ρ0 denotes the initial state
distribution. The goal of reinforcement learning is to find an
optimal policy π∗(at|st) that maximizes the expected sum
of discounted rewards (expected return) as:

π∗ = arg max
π

η[π] = arg max
π

Eπ[

∞∑
t=0

γtr(st, at)], (1)

where γ ∈ [0, 1] is the discounted factor.
The transition function is assumed to be unknown in the

model-free RL. In contrast, the Dyna-style algorithm [21]
that is one branch of the model-based paradigms learns a
dynamics model (forward model) pθ(st+1|st, at) parameter-
ized by θ as the true dynamics from agent interactions with
the environment by conducting the policy πφ(at|st) param-
eterized by φ. In addition, in BIFRL, a backward model
p̃θ′(st−1|st, at−1) and a backward policy π̃φ′(at−1|st) are
constructed for backward rollouts, which are parameterized
by θ′ and φ′ respectively.

IV. METHOD

In this section, we detail BIFRL algorithm that leverages
the simulated samples from backward model rollouts in a
different way with those generated from interactions with the
forward model by performing the policy. Consequently, the
agent is able to imitate excellent behaviors from backward
rollout traces to reach the high-value states and reinforce its
policy through explorations starting from those high-value
states. Besides, BIFRL is built on the Model-based Policy
Optimization (MBPO) [11] algorithm that is one of state-
of-the-art Dyna-style model-based methods and investigates
forward truncated model rollouts.
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Fig. 1: The overall architecture of BIFRL framework. The real transitions in the replay buffer Denv from agent interactions with the
environment are collected for the model learning and the high-value state generation. In addition, the high-value state buffers are augmented
by the samples from the learnt value-regularized GAN. Starting from the sampled valuable states, the bi-directional model rollouts are
executed to collect the diverse simulated data for backward imitation of behavior and forward reinforcement of policy.

A. BIFRL Framework

Figure 1 illustrates the overview of BIFRL algorithm that
consists of five indispensable and interdependent stages. The
algorithm actually iterates between those stages to progres-
sively improve the policy. In the real transition collection
stage, the agent collects the data for the replay buffer Denv
through interactions with the environment. In the model
learning stage, the models including forward model, back-
ward model, backward policy and value-regularized GAN
are trained using the data in Denv . In the high-value state
generation stage, the states in Denv and those sampled from
the value-regularized GAN are aggregated together, and then
are prioritized and sampled for the backward imitation high-
value state buffer Dbhs and the forward reinforcement high-
value state buffer Dfhs. In the bi-directional model rollouts
stage, backward rollouts are performed starting from the
states ŝbt randomly chosen from Dbhs to collect the samples
for the backward rollout data buffer Db. Meanwhile, forward
rollouts start from the states ŝft chosen fromDfhs to gather the
rollout transitions which are stored in the forward rollout data
buffer Df . In the policy learning stage, the state-action pairs
in Db are regarded as expert demonstrations for the agent to
imitate excellent behaviors, and the transitions from Df are
utilized to reinforce the policy via RL algorithm. Thus, the
algorithm runs those five processes in cycles leading to the
coupling between them. The BIFRL algorithm is presented
in Algorithm 1.

Bi-directional Dynamics Models. The architecture
choices of bi-directional dynamics models are crucial for
the policy optimization on the model-generated data, since
the compounding model error can severely degenerate the
multi-step rollouts. Therefore, in BIFRL the ensemble of
bootstrapped probabilistic dynamics model [17] is adopted
for both the forward and backward models to capture two
kinds of uncertainty. The one called aleatoric uncertainty
arising from the inherent stochasticity of a system can be
captured by each probabilistic model, and the other called
epistemic uncertainty caused by the lack of sufficient training
data can be remedied by the ensemble of models.

To be specific, each of the forward model ensembles

{piθ}Bi=1 is represented by a neural network, and we use
θ to denote the parameters of forward model ensembles.
Each individual model takes the state st and the action at
as inputs, and outputs the parameters (i.e. means µ and
diagonal covariances Σ) of the Gaussian distribution of the
state variation ∆st = st+1 − st, denoted as:

piθ(∆st|st, at) = N (µiθ(st, at),Σ
i
θ(st, at)). (2)

Likewise, the same reparameterization technique is put to use
for the trustworthy backward model, where each individual
neural network with θ′ of the model ensembles yields the
parameters of a Gaussian distribution written as:

p̃iθ′(∆st−1|st, at−1) = N (µiθ′(st, at−1),Σiθ′(st, at−1)).
(3)

Note that these models can estimate the reward distribution
as well, which is omitted for brevity.

Backward Policy. Relying on the learnt backward model,
the previous state can be estimated given the current state and
the previous action, which arouses a confusion about how to
choose the previous actions for backward model rollouts.
Thus, analogous to the setting of forward rollouts where the
actions are naturally taken by the policy πφ(at|st), we need
the backward policy to predict the action at−1 given the
state st. Since the multiple backward traces are required
to be simultaneously generated from one starting state,
the powerful probabilistic neural network with parameter
φ′ is employed to output the parameters of the Gaussian
distribution of the action at−1:

π̃φ′(at−1|st) = N (µφ′(st),Σφ′(st)) (4)

Value-regularized GAN. In order to increase the quantity
of high-value states, we propose a generative model called
value-regularized GAN, which aims to generate the states
that can be criticized as the high-value ones under the current
policy by the critic and cannot move out of the real-state
distribution. Unlike prior works [20], [13] that rely on the
state labelling to train the Goal GAN, the value-regularized
GAN is strengthened by the value regularization by which
the generator G(·) treats maximum state value computed by



the critic as another optimization objective besides the one
defined by the discriminator D(·), resulting in removing the
need for annotation. Additionally, due to the initially unstable
learning of Q-value network Qπ(·), we consider the way to
enable the generator to produce the high-reward states under
the latest policy, which owes to the learnt dynamics model
pθ(·) that can make reliable one-step prediction of the reward
r. The value regularization can be described as:

Lv = αQπ(G(z), πφ(G(z))) + (1− α)r (5)

r ∼ N (µθ(G(z), πφ(G(z))),Σθ(G(z), πφ(G(z)))) (6)

where α ∈ (0, 1] is the weighting factor gradually increasing
with the increasing number of training steps. The architecture
of the value-regularized GAN is shown in Figure 2.

State Sampling Strategies. Since the state diversity ben-
efits the exploration, we adopt to collect the states stored
in Denv and those generated from value-regularized GAN
together, instead of directly using the GAN-generated data,
so as to sample the high-value states for model rollouts.
We design different applicable state sampling strategies for
the diverse model rollouts, because of the different training
schemes on those rollout data. In detail, for the backward
rollouts, the state value is chosen as the criterion to mea-
sure the importance of each state. Generally, the value of
each state can be accurately computed by summing up the
rewards from the current state st to the termination state
sT along the trace (

∑T
t′=t r(st′ , πθ(st′))), which however is

not computationally efficient. Thus, the learnt value function
V π(·) is used to estimate the value, which is accessible and
effective. Thus, BIFRL greedily picks the top K percent of
the prioritized states and stores them in Dbhs.

Due to the greedy prioritization that focuses on a small
subset of the states, the temporal difference (TD) errors on
those low-priority states shrink slowly when using function
approximation, which makes the system prone to over-fitting.
Therefore, for the forward rollouts, the stochastic sampling
method is introduced to ensure the probability of being
sampled is monotonic in a state’s priority and guarantee
a non-zero probability for the low-value state. To further
alleviate the lack of diversity, we treat the absolute TD error
δ(·) of the transition that is from the state to be prioritized to
the next state under the current policy as another criterion.
Concretely, we use the Boltzmann distribution to model the
probability of sampling state sj defined as:

p(sj) =
eβV

π(sj)+(1−β)δ(sj)∑n
k=1 e

βV π(sk)+(1−β)δ(sk) , (7)

δ(sj) = |V π(sj)− (rj + γV π(∆sj + sj)|, (8)

∆sj , rj ∼ N (µθ(s
j , πφ(sj)),Σθ(s

j , πφ(sj))) (9)

where j is the index of state in the state collection with size
n, and β ∈ (0, 1) is to balance those two criterions. The
states sampled in this way are stored in Dfhs.
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Fig. 2: The architecture of value-regularized GAN.

B. Training

In this part, we dedicate to introducing how to train the
models in the model learning stage, and how to perform the
policy learning to increasingly improve the agent’s behavior.

Bi-directional Dynamics Models. In BIFRL, we choose
the ensemble of bootstrapped probabilistic networks as the
bi-directional dynamics models. In the training phase, each
individual network of the ensembles is trained with different
initializations and samples from the real transitions via
maximizing likelihood. The corresponding loss function of
the forward model can be written as:

Lf (θ) =−
N∑
t=1

log pθ(∆st|st, at)

=

N∑
t=1

[µθ(st, at)−∆st]
>Σ−1θ (st, at)

[µθ(st, at)−∆st] + log det Σθ(st, at)

(10)

where N is the total number of samples in Denv . The loss
function of the backward model can be further derived as:

Lb(θ′) =−
N∑
t=1

log p̃θ′(∆st−1|st, at−1)

=

N∑
t=1

[µθ′(st, at−1)−∆st−1]>Σ−1θ′ (st, at−1)

[µθ′(st, at−1)−∆st−1] + log det Σθ′(st, at−1)
(11)

Backward Policy. The backward policy aims to make the
backward rollouts resemble the real traces sampled by the
current policy, which entails that it should be trained on the
real data (st, at−1) by maximum likelihood estimation. Thus,
the corresponding loss function is defined as:

Lbp(φ′) =−
N∑
t=1

log π̃φ′(at−1|st)

=

N∑
t=1

[µφ′(st)− at−1]>Σ−1φ′ (st)

[µφ′(st)− at−1] + log det Σφ′(st)

(12)

Value-regularized GAN. In our proposed GAN, the
generator G(·) parameterized by θG is trained to output



the states which not only follow the real-state distribution
in Denv , but also are the critic-recognised valuable ones.
The discriminator D(·) parameterized by θD is trained to
distinguish the states in Denv from those being out of the
presumed real-state distribution. The value regularized GAN
is implemented on the basis of LSGAN [22]. The loss
functions of generator and discriminator can be written as:

LG(θG) = Ez∼pz(z)[(D(G(z))− 1)2]− λLv (13)

LD(θD) = Es∼ps(s)[(D(s)− 1)2] + Ez∼pz(z)[D(G(z))2]
(14)

where pz(z) is the standard normal distribution, s is the real
state following the real-state distribution ps(s), and λ is the
hyperparameter.

Policy Learning. The backward imitation of excellent be-
haviors and the forward reinforcement of policy are severally
carried out on the data from Db and Df . In detail, to imitate
excellent behaviors from the traces leading to the high-value
states, the policy is learnt on the simulated data in Db via
minimizing the loss function:

LI(φ) = −
M∑
t=1

log πφ(âbt |ŝbt), (15)

where the tuple (ŝbt , â
b
t) is sampled from Db with size M .

After that, the agent should explore from the valuable
states to further reinforce the policy. Thus, we optimize
the policy on the samples in Df through Soft Actor-Critic
(SAC) [2] by minimizing the expected KL-divergence:

LR(φ) = Eŝt∼Df [DKL(πφ||exp(Qπ − V π))], (16)

where Q-value network Qπ(·) and state value network V π(·)
are trained via minimizing the variants of TD error. Please
refer to [2] for the details of SAC algorithm.

V. THEORETICAL ANALYSIS

In this section, we theoretically provide the condition
where BIFRL algorithm can produce the better asymptotic
performance than previous methods, which is also instructive
for hyperparameter settings in experiments. On the one hand,
prior works [11], [5] have studied the discrepancy between
the expected return in the actual environment and that in
the branched rollouts, which is applicable for the analysis
on the forward rollout return in BIFRL. On the other hand,
unlike those works, BIFRL views backward rollout traces
τ b = [ŝbT , â

b
T−1, ..., â

b
t , ŝ

b
t ] as expert demonstrations τe =

[ŝbt , â
b
t , ..., â

b
T−1, ŝ

b
T ] to train the policy, and assumes those

expert samples are sampled from the interactions with a
presumed model pe(st+1|st, at) by executing a presumed
expert policy πe(at|st). We thus investigate the discrepancy
between the return from the current policy π interactions with
the real dynamics p, denoted as η[π], and the return from the
expert policy πe interactions with the presumed model pe,
denoted as η[πe] . Let kb be the length of backward rollouts,
kf be length of forward rollouts.

Theorem 1. We assume that the expected total varia-
tion distance between π and πe at each timestep t is

bounded as επ = maxtE(s,a)∼πt,p[DTV (πet (a|s)||πt(a|s))],
and the expected total variation distance between p
and pe at each time step t is bounded as εm =
maxtE(s,a,s′)∼πt,pe [DTV (pe(s′|s, a)||p(s′|s, a))]. Let rmax

denote the maximum reward. Then the upper bound of the
discrepancy between η[π] and η[πe] is:

|η[π]−η[πe]| ≤ 2rmax(1− γkb+1)

1− γ (επ+kb(επ+εm)) (17)

Proof. Please refer to Appendix for the proof.

We observe that BMPO [5] ignores the variation distance
between the forward policy and the backward policy (corre-
sponding to επ in BIFRL), and consequently set kb = kf
to obtain the tighter return discrepancy bound, compared
to MBPO [11]. However, based on Theorem 1, επ cannot
be eliminated in the return discrepancy. Thus, compared to
forward rollouts that only have the model error, backward
rollouts have both the model error and the policy divergence.
In consequence, we propose the condition kb < kf where
BIFRL can perform better asymptotically. The experiments
also support our viewpoints.

VI. EXPERIMENTS

The aims of our experimental evaluation are to answer
two primary questions: 1) How does BIFRL algorithm per-
form on various benchmarks compared with state-of-the-
art model-free and model-based methods? 2) what are the
contributions of the critical components in BIFRL?

A. Performance Comparisons

In this section, we evaluate BIFRL and other methods
on five MuJoCo continuous control tasks [18] where the
agent requires to learn the moving forward gaits. The agents
we used are Hopper, Walker2D and Ant. And we add two
variants of Hopper and Walker2D without early termination
states, denoted as Hopper-NT and Walker2D-NT [19]. Ad-
ditionally, we choose Pendulum task [23] to evaluate the
performance of BIFRL on traditional control task. Please
refer to [18], [19], [23] for the environment settings.

We compare BIFRL algorithm with previous state-of-
the-art algorithms in those six domains. To be specific,
for model-based methods, we compare against MBPO [11]
that is the backbone model of our method, and BMPO [5]
that treats the samples from backward rollouts in the same
way as those from forward rollouts. We also compare to
PETS [17] that incorporates the learnt model ensembles
into model predicative control (MPC) [16] for planning.
For model-free methods, we compare to SAC [2], which
is used for policy reinforcement in BIFRL. We do not
compare with the backtracking model method [13] as it is
not a purely model-based method and its improvements on
both the performance and efficiency are limited compared
with SAC. In addition, some previous model-based methods
only involving the forward model rollouts (e.g. MAAC [24],
MoPAC [25]) can be integrated with BIFRL. It is unfair to
directly compare BIFRL against those model-based methods,
and the compatibility of BIFRL with those baselines can
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Fig. 3: Learning curves of BIFRL and four baselines in different continuous control benchmarks. Solid lines indicate the mean and shaded
areas depict the standard error of five trials with different random seeds in training. In each trial, all the algorithms are evaluated every
1000 environment steps (200 steps for Pendulum), and on each evaluation, the average return is computed over ten episodes. The dashed
reference lines are the indications of asymptotic performance of SAC.

be researched in future works. In experiments, we use the
default hyperparameter settings in both the baselines and
the backbone model of BIFRL for fair comparison. And the
unique hyperparameters of BIFRL are included in Appendix.

The learning curves of all the methods are shown in
Figure 3. We observe that in the four domains, including
Ant, Hopper, Walker2D and Walker2D-NT, BIFRL acquires
better sample efficiency resulting in the faster convergence
rate, and meanwhile to some extent improves the asymptotic
performance. In Hopper-NT, BIFRL does not make consider-
able improvements. This is probably because the high-value
states cannot be frequently encountered in this domain. And
in Pendulum, PETS is superior to all the other model-based
methods. One possible reason is that MPC-based methods
are more applicable for the traditional control tasks.

More qualitative results are shown in our supplementary
materials, which provides the qualitative comparisons among
BIFRL, BMPO, MBPO and SAC.

B. Design Evaluation

In this section, we investigate the contribution of each
component and study the important hyperparameters of
BIFRL on Hopper task.

Ablation Study. As illustrated in Figure 4(a), we conduct
the ablation study to evaluate the contributions of two main
components in BIFRL: 1) backward imitation that views
backward rollout samples as expert demonstrations, denoted
as BI; 2) value-regularized GAN that augments the high-
value states, denoted as VGAN. To evaluate the importance
of BI, we compare the performance among three models: 1)

MBPO that optimizes the policy on forward rollout samples
via RL algorithm (Baseline); 2) BMPO that adds the back-
ward rollout samples to the baseline model (Baseline+BR);
3) the model that employs backward imitation (Baseline+BI).
We observe that the baseline model with backward imi-
tation convergences faster, which demonstrates that using
backward rollout samples as expert demonstrations is more
efficient than simply feeding those samples to RL algorithm.
To characterize the importance of VGAN, we additionally
choose two models: 1) using vanilla LSGAN [20] to generate
states (Baseline+BI+GAN); 2) using value-regularized GAN
for high-value states (Baseline+BI+VGAN). We find that
VGAN can contribute more to the performance in terms of
convergence rate, which verifies the effectiveness of VGAN.

Hyperparameter Study. We further investigate the impor-
tant hyperparameters in our algorithm. Firstly, we conduct
experiments with different K which indicates the quantity
of sampled high-value states for backward rollouts. We set
K = 1, 10, 50 respectively to study its influence. The results
are shown in Figure 4(b). We find that the large number of
sampled states can impair the performance. This probably
because the larger K makes the high-value states sparse in
Dbhs. We observe that too few high-value states also degrades
the performance. Thus, it is crucial to choose an appropriate
quantity of high-value states for backward rollouts.

The strategy of increasing rollout length linearly has
shown the effectiveness in MBPO and BMPO. However, we
require to study how to choose the backward rollout length
kb in our algorithm when keeping the same forward rollout
length kf as BMPO. In section V, we derive the condition
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Fig. 4: Design evaluation of BIFRL on Hopper task. (a) Ablation study of two components: backward imitation (BI) and value-regularized
GAN (VGAN). (b) The influence of K (the quantity of sampled high-value states for backward rollouts). (c) The influence of backward
rollout length kb when fixing forward rollout length kf . (d) The bi-directional model errors and policy divergence on validation set.

kb < kf where BIFRL can perform better, we thus vary kb
from 0 to kf . As shown in Figure 4(c), setting kb = 2

3kf
provides the better results, while neither too short or too
long backward rollout length improves the performance. In
practice, we use kb = 2

3kf in most domains except Walker2D
and Walker2D-NT where kb is set to the same as kf due to
kf = 1 in the original MBPO paper. Please refer to Appendix
for the unique hyperparameters of BIFRL.

To prove that the policy divergence επ cannot be elim-
inated in Theorem 1, we choose the mean squared error
(MSE) to measure both the bi-directional model errors and
the policy divergence on validation set. Figure 4(d) shows the
changes of these errors in the training phase. We notice that
the policy divergence is two orders of magnitude larger than
the bi-directional model errors at the end of training, which
supports our view, i.e. επ cannot be eliminated, and further
experimentally verifies the validity of condition kb < kf .

VII. CONCLUSION

In this paper, we propose a new model-based RL frame-
work called backward imitation and forward reinforcement
learning (BIFRL) framework where the agent views back-
ward rollout traces as expert demonstrations to imitate the
excellent behaviors from those traces, and uses forward
rollout transitions to optimize the policy via RL algorithm.
Theoretically, we provide the condition where BIFRL can
produce the better asymptotic performance, and the experi-
ment results actually support our view and derived condition
in the analysis. Furthermore, BIFRL can empirically im-
proves the sample efficiency and produces the competitive
asymptotic performance on various locomotion tasks. For
future work, we will investigate the compatibility of BIFRL
with other model-based methods, and study its effectiveness
in more real scenarios.

APPENDIX

A. Proof

Proof. Firstly, the state-action space is assumed to be finite
due to the restrictions on states or actions of the robot.
According to the definition of the return in terms of the
occupancy measure and the total variation distance, the return

discrepancy bound can be derived as:

|η[π]− η[πe]| = |
∑
s,a

kb∑
t=0

γtr(s, a)(pt(s, a)− pet (s, a))|

≤ 2rmax

∑
s,a

kb∑
t=0

γt
1

2
|pt(s, a)− pet (s, a)|

≤ 2rmax

kb∑
t=0

γtDTV (pt(s, a)||pet (s, a)),

(18)
Next, according to Lemma B.1 in MBPO [11], we convert

joint distribution to marginal distribution, thus we have:

DTV (pt(s, a)||pet (s, a)) ≤ DTV (pt(s)||pet (s))+
max
t
Es∼pt(s)[DTV (πt(a|s)||πet (a|s))]

(19)

Then, let ξt = DTV (pt(s)||pet (s)), and inspired by Lemma
B.1 in BMPO [5], we have:

ξt ≤E(s′,a)∼pt+1(s′,a)[DTV (p(s|s′, a)||pe(s|s′, a))]

+DTV (pt+1(s′, a)||pet+1(s′, a))
(20)

Here, we make the assumption without loss of generality:

εm ≥ max
t
E(s′,a)∼pt(s′,a)[DTV (p(s|s′, a)||pe(s|s′, a))]

(21)
After that, we can iteratively do the above decomposition to
obtain:

ξt ≤ (εm + επ) + ξt+1 ≤ (εm + επ)(kb − t) + ξkb
≤ kb(εm + επ)

(22)

where ξkb = 0, because the real states sampled from Db
hs

are used as the starting states for the backward rollouts.
Finally, the upper bound of discrepancy between η[π] and

η[πe] can be described as:

|η[π]−η[πe]| ≤ 2rmax(1− γkb+1)

1− γ (επ+kb(επ+εm)) (23)



TABLE I: Hyperparameter settings in BIFRL.

Environment kb kf eα

Pendulum 1 → 3 | 1 → 5 1 → 5 | 1 → 5 10

Hopper 1 → 10 | 20 → 150 1 → 15 | 20 → 150 20

Hopper-NT 1 → 10 | 20 → 150 1 → 15 | 20 → 150 20

Walker2D 1 1 40

Walker2D-NT 1 1 40

Ant 1 → 16 | 20 → 100 1 → 25 | 20 → 100 40

Algorithm 1 BIFRL Algorithm
Initialization: policy πφ, backward policy π̃φ′ , forward
model pθ, backward model p̃θ′ , and VGAN (generator,
discriminator)

1: for N epochs do
2: Collect data from environment; add to Denv
3: Train pθ, p̃θ′ , π̃φ′ and VGAN using Denv via applying

gradient descent on Equation 10, 11, 12, 13 and 14
4: Aggregate states from Denv and VGAN
5: Sample top K percent of high-value states from ag-

gregated states; add to Dbhs
6: Sample high-value states from aggregated states ac-

cording to Equation 7; add to Dfhs
7: for M1 backward rollouts do
8: Perform kb steps backward rollouts; add to Db
9: end for

10: for G1 gradient updates do
11: Update policy on Db by optimizing Equation 15
12: end for
13: for M2 forward rollouts do
14: Perform kf steps forward rollouts; add to Df
15: end for
16: for G2 gradient updates do
17: Update policy on Df by optimizing Equation 16
18: end for
19: end for

B. Hyperparameters

Table I provides the unique hyperparameters in BIFRL.
x → y | a → b indicates clipped linear function, i.e. for
epoch e, f(e) = clip((x + e−a

b−a (x − y)), x, y). α increases
from 0.2 to 0.95 with the epoch changing from 1 to eα.
β is set as 0.7 in all the domains. λ is 0.0001 in most
domains except Pendulum where it is 0.001. The ratio
between states from Denv and those from VGAN is 1. Other
hyperparameters not listed here are the same as those in
MBPO [5]. Additionally, the network architectures and the
experimental settings in value-regularized GAN are the same
as those in Goal GAN [20] that is also built on LSGAN [22].
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