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Abstract— Pushing objects through cluttered scenes is a
challenging task, especially when the objects to be pushed have
initially unknown dynamics and touching other entities has to
be avoided to reduce the risk of damage. In this paper, we
approach this problem by applying deep reinforcement learning
to generate pushing actions for a robotic manipulator acting
on a planar surface where objects have to be pushed to goal
locations while avoiding other items in the same workspace.
With the latent space learned from a depth image of the scene
and other observations of the environment, such as contact
information between the end effector and the object as well as
distance to the goal, our framework is able to learn contact-rich
pushing actions that avoid collisions with other objects. As the
experimental results with a six degrees of freedom robotic arm
show, our system is able to successfully push objects from start
to end positions while avoiding nearby objects. Furthermore, we
evaluate our learned policy in comparison to a state-of-the-art
pushing controller for mobile robots and show that our agent
performs better in terms of success rate, collisions with other
objects, and continuous object contact in various scenarios.

I. INTRODUCTION

Pushing is often used for re-positioning and re-orientating
objects since it simplifies the object manipulation in com-
parison to pick-and-place approaches. Furthermore, pushing
allows for moving large, heavy, and irregularly shaped, as
well as small and fragile objects to target positions and can
be used for reducing uncertainty in the position of objects [1].
Hereby, the term pushing is separated in non-prehensile
pushing [2] and prehensile pushing (push-grasp) [3], [4].
For example, in limited space [5], [6] and when dealing
with fragile objects, non-prehensile pushing is the preferred
manipulation action, since grasping increases the risk of
damage. In the past, pushing has been used to separate
objects for better grasping [7], [8] or to sort objects from
a table into a bin [9] and is assumed to be more time-
efficient than grasping to overcome short distances [10]. The
range of pushing actions vary between a few centimeters
for corrective actions to larger distances, e.g, to place an
object in the last row of a shelf. Several approaches aim at
predicting the physical properties of objects and use short
pushing actions of predefined length [11], [12].

In general, pushing actions should be contact-rich with
smooth arm motions. Furthermore contact to other objects in
the workspace should be avoided to prevent any damages and
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Fig. 1: Targeted application scenario of our system within the
RePAIR-project1. The goal is to push the small fragment to the
desired goal pose (green). Shown in magenta is the best pushing
path, which maintains a safety distance to the other objects.

changes the configuration of the scene. While for a long time,
pushing behaviors were created using expert knowledge in an
analytical way, more and more work is focusing on reinforce-
ment learning (RL) to solve this task. Especially the ability
to learn from environment interactions and own experiences
makes RL a useful way to learn challenging new skills.
Start-to-goal pushing with an RL-agent has been tackled
before [13] and serves as a benchmark for RL [14], however,
pushing in cluttered environments where collisions with other
objects have to be avoided is a less researched area. While
there are already approaches for mobile bases [15], [16], they
have not been transferred to robotic manipulators so far.

In this paper, we present a framework to train an RL-agent
that is able to realize obstacle-aware pushing in a contact-rich
manner to guide objects with initially unknown dynamics
on a planar surface to desired target configurations with a
robotic manipulator. As representation of the workspace, we
use a depth image taken from a bird’s eye view. To reduce the
size of the observation space and therefore the complexity,
we use the latent space of a variational autoencoder. To
accelerate learning, we calculate the optimal 2D path in a
grid representation of the environment generated from the
depth image. From this path we sample subgoals, which
we use as observations to our agent. In addition we use
further observations, such as contact information between
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the end effector of the manipulator and the object as well
as the distance to the goal. The output of our system is an
incremental motion of the current (x, y, θ)-position of the
robot’s end effector. Fig. 1 illustrates a targeted application
scenario from the RePAIR-project1. The goal is to push the
small fresco fragment to the desired position in a gentle
manner while not damaging it or any other fragment on the
assembly table.

The key contributions of our work are the following
• A model-free RL system that learns to generate smooth

pushing paths, with contact-rich pushing actions to
reach the object’s target positions in cluttered environ-
ments, thereby avoiding contact to other, nearby objects.

• A qualitative and quantitative evaluation in simulation in
comparison to a state-of-the-art pushing controller [15],
which we adapted to our scenario.

As the experiments with a six degrees of freedom robotic arm
show, our system leads to reliable pushing, while achieving
better performance compared to [15] with respect to success
rate, collisions with other objects, and continuous object
contact in various scenarios.

II. RELATED WORK

Without an exact model of the object dynamics, it is
hard to predict the moving behavior of objects. Recent
work has shown that these dynamics can be learned, e.g.,
Paus et al. [11] proposed a system to predict outcomes of
pushing actions and used a graph net representing object
relations as in- and output and trained their network on
two million synthetic samples. To address the problem that
typically a large amount of data is needed to train a network,
Nematollahi et al. [12] proposed an unsupervised learning
strategy and used a combination of an inverse and a forward
dynamics model. A restriction of both approaches is that
they rely on discrete actions. The resulting pushing actions
are typically not contact-rich and need a high number of
interactions to guide the object towards the goal.

an RL-learning approach that aims at performing (x, y, z)
pushing actions in a continuous way was presented by
Xu et al. [17] who developed an agent that pushes objects by
incorporating their physical properties and ensuring that the
objects will not fall over, e.g., in the case of an empty bottle.
While the motion is stuttering, due to the physical properties,
the approach achieves a good success rate in a clutter-free
environment. A promising subdomain of general pushing is
planar pushing, where the push action is considered only
in 2D. Bauza et al. [18] proposed a control model that is
learned from only a few data points. The authors evaluated
their system against an analytical model on the task of
following a given object trajectory. As an extension to this
system, Hogan et al. [19] trained a classifier that evaluates
the current pushing behavior to guarantee a smooth trajectory
that is close to the given one. Doshi et al. [20] proposed
a controller that uses differential dynamic programming to
generate the motion model. In all three approaches, the end

1https://www.repairproject.eu

effector and the object are both tracked with a motion capture
tracking system and no further knowledge about the envi-
ronment is included. For pushing, the authors assume that
each object has four possible contact points. The goal was
to reach a desired goal location in a predefined orientation
with as few as possible contact switches. The assumption of
only four contact points constrains the pushing actions and
might not lead to the optimal solution.

In terms of goal-oriented pushing, Bejjani et al. [4]
proposed an approach to push an object in cluttered en-
vironments towards a goal configuration where clutter in
the scene is intentionally pushed away to clear the path. In
contrast to that, we try to avoid the nearby objects as much as
possible to avoid any damages. Furthermore, Migimatsu et
al. [21] designed a task and motion planning system that
do not use global but only relative coordinates to determine
the position of the end effector to the target, which leads
to higher robustness against changes. We also use only
relative coordinates in our observation space. Additionally,
to improve the learning behavior of our agent, we apply
techniques proposed by Lee et al. [22] and Lin et al. [13]
who included force and touch sensor measurements into
the observation space to encourage safe pushing actions
and increase the convergence of the agent. In particular,
our framework also considers information about the contact
between the end effector and the object in the observation
space.

Further work towards goal-oriented pushing was proposed
by Lloyd et al. [2] who used data from a depth camera
as well as a tactile sensor. While the authors considered
no other objects in the scene, they achieved good results
with their control-based approach which is also transferable
to curved non-flat surfaces. Krivic et al. [15] developed a
motion controller for a mobile robot that enables reliable
pushing of objects of different shapes on the floor through
cluttered environments. In this paper, we use [15] as baseline
approach and implemented a modified version for object
pushing on a planar workspace with a robotic arm.

III. PROBLEM DESCRIPTION

In this work we consider the following problem. In a
tabletop environment, a robotic arm is supposed to move an
object from its current position to a 2D goal configuration.
To achieve this, we consider the end effector (EE) of the arm
moving in planar space (x, y, θ). The robotic arm can be of
any degree of freedom (DOF). In addition to the pushing
object, there are other objects which need be considered as
obstacles and which might obstruct the direct path to the end
configuration. The obstacles have to be avoided by the EE
and the object at all time. The goal of the RL-agent is to
determine the best incremental movement (∆x,∆y,∆θ) of
its EE position at each time step, to move the object with the
EE as fast, but also as safe as possible to the goal position
while avoiding obstacles on the way. An RGB-D camera
is mounted centered above the scene in bird’s eye view to
obtain observations of the objects in the workspace.



Fig. 2: Overview of our deep reinforcement learning pushing framework. Our system receives a depth image of the environment taken
from an RGB-D camera. We calculate an object centered egocentric local window and feed it into the variational auto encoder to get the
latent space. Furthermore, a global path from the current object position to the goal position, including subgoals, is calculated. The latent
space, the subgoals, and further observations from the environments are used as the concatenated observation for the policy network of
the deep RL. The policy network calculates the best 3D incremental motion of the gripper from the observation and the reward it gets
from the last environment interaction.

IV. OUR APPROACH

We apply deep reinforcement learning to solve the task
described above. This is motivated by the fact that we expect
to obtain smoother trajectories as we would get with a pure
control-based approach. Especially for traversing narrow
passages the lack of parameter tuning can be beneficial. We
use a variational auto encoder (VAE) to decouple the feature
extraction of the given depth image from the policy learning
process [23]. Fig. 2 shows an overview of our proposed
system. In the following, we describe the VAE as well as
our RL framework in detail.

A. Variational Autoencoder

First, we describe the preprocessing of the input data as
well as the network architecture. The networks are imple-
mented and optimized using tensorflow [24].

1) Preprocessing: To sense the current world state, i.e,
the position of the object and each obstacle, we use a depth
image that is gathered from bird’s eye view. To focus on
relevant information and ignore distant obstacles that do not
influence the next best motion, we use a object centered local
window, that is oriented towards the object’s orientation, see
Fig. 2. We use a 64x64 pixel window from the original
256x256 image. Since the object’s and the arm’s position are
given as individual components in the observation space, we
set the corresponding pixels to the background value. We use
a convolutional VAE to encode the current normalized local
window of the scene into the latent space. We gathered 700k
training images in simulation via a random RL-policy and
train the network for 10 episodes with a batch size of 256.
The dataset contains 10% of blank images to also recognize
if no obstacle is around the object.

2) Network Architecture: As network architecture we use
four convolution layers for the encoder and six deconvolution
layers for the decoder. All convolution layers are followed by
a batch normalization layer and use the rectified linear unit

function as the layer’s activation function. For the encoder
we use max pooling after the first and average pooling
after the third layer. The outputs are distributions to directly
compute the loss function of our VAE without using any
further metric. For the encoder, we use an independent
normal distribution and for the decoder an independent
Bernoulli distribution. We only use the encoder as part of
the observation space, whereas the decoder is ignored. In
our experiments, we found that a latent space of 32 works
best in terms of training time and feature representation.

B. Reinforcement Learning

RL can be considered as a control problem that can be
modeled as a partially observable Markov decision pro-
cess (POMDP). This means, that the agent cannot determine
its exact state st at time step t, but has to rely on the current
observation ot to get st ≈ ot(st−1, at) for the last state st−1

and the current action at. In the end, the goal is to find
a stochastic policy π(at|ot) that maximizes the expected
reward R for each episode, where T is the number of time
steps and γ a discount factor.

maxE

(
T∑

t=0

γtR(st, at)

)
(1)

For the implementation, we followed some ideas proposed
by Regier et al. [25], which proposed a RL-framework to
navigate in cluttered environments with a mobile robot. In
the following we define the action and observation space,
the reward function, the used RL-algorithm, the experience
replay buffer strategy, as well as the learning strategy.

1) Action Space: We steer the robot with point control.
Therefore, the action space consists of the three values,
(∆x,∆y,∆θ), which are the increment to the current x and
y position, as well as the yaw angle θ of the gripper. We



observation size
Local window latent space 32

EE position at t 5
6D joint angle poses 6

Sub-goal at t-1 2
Sub-goal at t-5 2

Contact with obstacle 1
Object to goal distance 1

Overall: 49

TABLE I: Overview of the observation space.

set the maximum value of (∆x,∆y,∆θ) to the maximum
distance change possible in one predefined time window.

2) Observation Space: The observation space of our RL-
agent consists of 49 values, as shown in Table I. The EE
position is defined as (x, y, yaw, pitch, roll) and given in
relative coordinates towards the objects frame. To give the
agent an indication of the best path, we include two subgoals,
also in relative coordinates, into the observation that we
calculate from the current shortest path. The shortest global
path is calculated on a binary map, gathered from the depth
image, where all obstacles are inflated according to the half
of the object’s diameter. Note that the agent never receives
the complete shortest global path in its observation and that
the shortest path as well as the subgoals are re-calculated
at each time step. Therefore, our agent is not constructed as
a path following agent but learns the best pushing behavior
during training. For the calculation we chose a point after
20% of the global path length of time step t as first subgoal
and the subgoal of time step t-1 as second one. We use
subgoals from two different time steps to give the agent
an indication of the progress it made in any direction. The
Boolean value ”contact with obstacle” indicates if the EE
touches the object at each time step. During our experiments,
we tested different sets of observations and found that the
one in Table I leads to the best behavior.

3) Reward: Our reward function consists of following
three components:

rdist =

{
50, if goal reached

−rg dist − ro dist , otherwise
(2)

rcollison =

{
−10, if object out of bounds

−5 if collision occurred
(3)

rtouch =

{
ro dist , contact to object

0 otherwise
(4)

The first equation encourages the agent toward a faster
learning behavior. Therefore, it rewards the agent with a
high positive value for accomplishing the task and penalizes
higher distances between object and goal as well as object
and EE. We use the global path length for rg dist and
the Euclidean distance for ro dist . To ensure equal rewards
through different start goal configurations, we normalize both
distances by their initial distance and scale it between 0 and
1. When neither the arm nor the object have moved during a
time step and both are at their starting position, the outcome

would be rdist = −2. rcollison penalizes each collision of the
object with clutter in the scene or if the object gets pushed
out of the boundaries of the predefined workspace. The last
part of the reward rtouch considers the suggestion of Lin
et al. [13] and indicates if the agent has contact with the
object. Since we calculate the distance between the EE and
the center of the object, a small distance value remains, even
if the EE has contact to the object. Therefore, we negate the
ro dist penalty of rdist each time the EE has contact to the
object, to encourage a contact-rich behavior.

Together all three parts form the reward function rtotal of
our agent:

rtotal = rdist + rcollision + rtouch (5)

4) RL-Algorithm: In this work we use the off-policy
algorithm Truncated Quantile Critics (TQC) [28]. During our
experiment, TQC led to the best and the most reproducible
results. The idea behind TQC is to control the overestimation
bias in the critic’s value estimation by using distributional
critics [28]. With multiple critics, the points of each of
the distributions are used to create a mixture model to
increase performance and stability. By truncating the last n
points from the mixture of distributions, the overestimation
is alleviated. In our work, we use the stable-baselines3
implementation of TQC [29].

5) Attentive Experience Replay: The experience replay
strategy enables agents to learn from previous experiences
they made while interacting with the environment. That
means the agent stores action-state transition pairs in a
buffer B of size N to reuse previous transitions to update the
current policy. In case of the TQC algorithm with a sampling
batch size bs the agent uniformly samples bs entries from B
and reuses them. While the policy is evolving, some states are
more frequently visited than others. For this reason, it is not
useful to sample uniformly, because transitions that are rarely
visited have a smaller benefit to the update process of the
policy than frequently visited ones. Therefore, Sun et al. [30]
proposed a new strategy to sample an entry from B. With
Attentive Experience Replay (AER) they suggest to sample
entries according to the similarities between the entry’s state
and the current state of the agent. This means that according
to the AER strategy, we uniformly sample k · bs entries
from B. We then calculate the similarity of each entry to
the current state of the agent and use the bs entries with the
highest similarity score to update the policy. We use cosine
similarity as the similarity measurement, a size of 1e6 for
B, as well as bs = 512 and k = 4.

6) Learning Strategy: As the agent’s learning strategy, we
chose curriculum learning, which divides the task into sub-
tasks and learns the subtasks one after another in increasing
difficulty. We began the training with a maximum start-goal
Euclidean distance of 0.06 m and increase it during training
to up to 0.6 m. As training environments, we used the scenes
shown in Fig. 3. The agent was trained for 7e6 iterations.
Without curriculum learning the agent was not able to learn
the task.



(a) (b) (c) (d) (e) (f)

Fig. 3: Figures (a) to (e) depict the different environments used for training and the quantitative evaluation. Figure (f) shows the objects to
be pushed. All objects have the same weight but differ in their geometrical shape. As pushing object during training we used the red cube.
In a curriculum learning manner, we rotated the obstacle in (a) and (b) and vary its size during the training. Furthermore, the distance
between the obstacles in (c) to (e) decreased from 20 cm to 10 cm, making the task more difficult.

Small Cube Success Rate Object Contact Rate∗ SPL Path Length

Ours 1.000 0.943 ± 0.13 0.928 0.429± 0.11

Krivic et al. [15] 0.998 0.870± 0.15 0.918 0.430± 0.10

TABLE II: Quantitative evaluation of straight-line pushing in free
space wrt. success rate, object contact, normalized inverse path
length (SPL), and path length in meters. The values are the average
over 500 runs. The results are in comparison to the approach by
Krivic et al. [15] where the metrics marked with a ∗ are significant
according to the paired t-test with a chosen p-value of 0.05. As
shown, our approach performs better in terms of object contact and
SPL and equally in terms of success rate.

V. EXPERIMENTS

The goal of our experiments is to demonstrate the per-
formance of our system qualitatively and quantitatively in
free space as well as in obstacle-laden environments in
terms of success rate, object contact, number of collisions,
and shortest path deviation, i.e., normalized inverse path
length (SPL) [31]. Furthermore, we provide a comparative
evaluation against a state-of-the-art pushing control approach
by Krivic et al. [15]. We performed the evaluation in py-
bullet [32] with a 6 DOF UR52 with a Robotiq 2f85 two-
finger gripper3. We trained and evaluated our approach on
a computer with an i7-6800K six-core CPU at 3.40 GHz
and an Nvidia 2070 GPU with 8 GB of memory used for
the VAE. For actor and critic, we used a small network
with three dense hidden layers of size [512, 256, 128].
For generalization, we used a Gaussian action noise with
a standard deviation of 0.4. As global 2D path planner, to
sample the sub-goals for the observation space, we used Lazy
Theta* [33]. The implementation of our learning framework
with all hyperparameters as well as the reimplementation of
the baseline approach is available at GitHub4.

A. Baseline Approach

To compare our approach to the state of the art for
pushing in cluttered environments, we reimplemented the
controller proposed by Krivic et al. [15]. We implemented the
approach as suggested in the paper and used the proposed
parameters. Since the original approach was designed for
a mobile base and with the assumption that the robot is

2https://www.universal-robots.com/products/ur5-robot/
3https://robotiq.com/products/2f85-140-adaptive-robot-gripper
4https://github.com/NilsDengler/cluttered-pushing

always facing the pushing direction, we adapted our imple-
mentation to a robotic arm that starts at a position sampled
around the object. Due to the sampling, the arm initially
dragged the object with it when trying to reposition itself,
causing unwanted collisions with obstacles or the object
itself. We adjusted this behavior by inverting the pushing
direction, once the relocation activation of [15] surpasses
a certain threshold Ψrelocate. This adjustment enabled the
arm to reposition itself more efficiently. The threshold for
activating the inversion of the pushing direction was set to
Ψrelocate >= 0.6.

B. Quantitative Evaluation

The quantitative evaluation consists of three parts, i.e.,
pushing in free space, in scenes with obstacles, and in previ-
ously unseen, highly cluttered scenes. All metrics except the
success rate and the SPL are evaluated only on episodes that
both methods could solve successfully. The object contact
rate is evaluated for each episode, once the EE first touched
the object. Both, object contact rate and collision rate are
the average of each episode, averaged over all episodes. For
all experiments, we randomly sampled the distance between
start and goal within 0.2 to 0.6 m. As pushing object during
training we used the red object shown in Fig. 3.

1) Straight-Line Pushing in Free Space: We first eval-
uate straight-line pushing in scenes without other objects
to demonstrate the general pushing ability of the two ap-
proaches. Therefore, we generated 500 start-goal configura-
tions and compared the results to the shortest path found
by Lazy Theta* [33]. As shown in Tab. II, our approach
performs slightly better in each metric Especially, the higher
object contact rate shows the impact of our reward function
guiding the agent towards the desired contact-rich pushing
behavior.

2) Pushing in Scenes With Obstacles: Furthermore, we
generated five environments which differ in their complexity,
as shown in Fig 3 (a) to (e). We used three different types of
objects, which were also used in [15], together with the com-
pletely unknown complex fragment object shown in Fig. 1,
to demonstrate the generalization capabilities. We sampled
the orientation and size of the obstacles in (a) and (b) as
well as the distance between the obstacles in (c) to (e). In the
following we refer to the objects as ”small cube” (red), ”large
cube” (green), and ”small cylinder” (blue). For each object,



Small Cube Success Rate Object Contact Rate ∗ Collision Rate SPL Path Length ∗
Ours 0.980 0.995 ± 0.02 0.008 ± 0.04 0.910 0.523 ± 0.18

Krivic et al. [15] 0.955 0.850 ± 0.10 0.011 ± 0.05 0.952 0.513± 0.16

Large Cube Success Rate Object Contact Rate ∗ Collision Rate ∗ SPL Path Length ∗
Ours 0.977 0.995 ± 0.02 0.007 ± 0.04 0.910 0.520± 0.18

Krivic et al. [15] 0.957 0.851 ± 0.10 0.012 ± 0.05 0.954 0.510 ± 0.16

Small Cylinder Success Rate Object Contact Rate ∗ Collision Rate ∗ SPL Path Length ∗
Ours 0.967 0.981 ± 0.05 0.021 ± 0.06 0.839 0.553 ± 0.19

Krivic et al. [15] 0.945 0.889 ± 0.11 0.014 ± 0.04 0.940 0.512 ± 0.17

Fragment Success Rate Object Contact Rate ∗ Collision Rate ∗ SPL Path Length ∗
Ours 0.867 0.980 ± 0.05 0.05 ± 0.11 0.71 0.630± 0.29

Ours re-trained 0.959 0.984 ± 0.05 0.01 ± 0.05 0.83 0.58± 0.23

Krivic et al. [15] 0.953 0.868± 0.11 0.024 ± 0.07 0.951 0.501 ± 0.16

TABLE III: Quantitative evaluation wrt. success rate, object contact,
collisions, normalized inverse path length (SPL), and path length
in meters. The values are the average over 1,000 runs. The results
are in comparison to the approach by Krivic et al. [15] where the
metrics marked with a ∗ are significant according to the paired t-test
with a chosen p-value of 0.05. As shown, our approach achieves
overall better results in terms of success rate, object contact rate,
and collision rate. Please refer to the text for more details.

(a) Ours (b) Baseline [15]

Fig. 4: Qualitative results from the quantitative evaluation of our
approach (a) in comparison to the baseline [15] (b). Red indicates
the start, green the goal position and magenta is the initial shortest
path calculated by Lazy Theta* [33]. The path taken by the end
effector is shown in black and the path of the object in blue. The
grey area in (b) shows the increased traversal costs around obstacles,
used for the baseline approach, while the obstacles in our approach
(a) are inflated only by a small amount according to the half of
the object’s diameter. As can be seen, our agent learned to navigate
around objects in a safe distance without strictly following the initial
shortest path. Example 4 shows a result where our agent pushes a
more efficient path, since it does not rely on any cost map.

we randomly generated 1,000 start-goal configurations within
the five environments. As shown in Tab. III, our approach
again achieves a significantly higher object contact rate in
comparison to the baseline, which shows the benefit of our
approach in terms of gentle pushing through contact-rich
behavior. Especially for scenarios as in the RePAIR-project1

gentile, non-abrupt motions are crucial for not damaging any
highly fragile objects in the scene. Note that we used differ-
ent objects for pushing, which the agent never experienced
during training. Still, the success rate is consistently high,
except for the fragment where our agent still achieves a high
success rate, without knowing any dynamics beforehand. In

(a) (b)

Fig. 5: Unseen, complex environments to further evaluate the
performance of our system.

Small Cube Success Rate Object Contact Rate ∗ Collision Rate ∗ SPL Path Length

Ours 0.88 0.977 ± 0.06 0.065 ± 0.13 0.779 0.492± 0.13

Krivic et al. [15] 0.72 0.566 ± 0.11 0.01 ± 0.05 0.720 0.550 ± 0.18

TABLE IV: Quantitative evaluation in unseen environments with a
high density of clutter (Fig. 5) wrt. the success rate, object contact
rate, collision rate, the normalized inverse path length (SPL) and
the path length in meters in comparison to Krivic et al. [15]. The
values are the average over 50 runs. The results of the metrics
marked with a ∗ are significant according to the paired t-test with
a chosen p-value of 0.05. As can be seen, our approach performs
better in each metric except the collision rate.

terms of the SPL, the baseline achieves better results while
there is no significantly increased path length. This behavior
can be explained with the higher obstacle inflation necessary
for the baseline approach and is illustrated in Fig. 4 that
depicts example trajectories of the experiments. As can be
seen, our agent has learned to safely navigate around objects,
without strictly following the initial shortest path. This is
a key advantage in comparison to the baseline approach,
which follows the shortest path as tight as possible due to
the properties of the controller method and is crucial if the
parameters are not fine-tuned. This explains the lower SPL of
our approach. Note that with an increased inflation, similar
to the baseline, our SPL results will also increase. Example 4
of Fig. 4 shows a scenario where our agent pushes a more
efficient path, since it does not rely on any cost map and
therefore on no parameter tuning. As the fragment was never
seen during training, we retrained the agent and achieved
better overall results as without. This underlines, that our
system can be used for serving a general purpose but also
retrained to specify on given scenarios.

For all experiments our policy network took on average
0.791 ms for an action prediction of the network and the
simulation took 21.91 ms for realizing the action. While
our framework has a constant runtime, the runtime of the
baseline varies depending on the number of obstacles in
the environment and the corresponding greater computational
effort.

C. Pushing in Unseen, Complex Environments

Finally, we designed more complex tasks with the goal to
evaluate the capabilities of our trained agent in unseen envi-
ronments with a higher density of clutter. We randomly sam-



pled 50 start-goal configurations of the two scenarios (Fig. 5),
which contain many narrow passages. The results in Tab. IV
show the good performance in complex and completely
unseen environments. Our agent achieved better results than
Krivic et al. [15] in each metric except the collision rate.
Especially the contact rate is significantly increased. As
already mentioned, our agent has not been trained on such
scenarios, accordingly, the success rate is a bit lower in
comparison to the other evaluations with the small cube.
Regier et al. [25] showed that the success rate will highly
increase while the collision rate will decrease, when the agent
continues training in the unknown environment for a short
time period.

VI. CONCLUSION

In this paper, we presented a novel deep reinforcement
learning approach for object pushing in cluttered tabletop
environments. We demonstrated the efficacy of our approach
in multiple simulated experiments where the results show the
increased performance in comparison to an existing control-
based method with respect to various metrics. Our agent is
able to perform pushing in free space and complex cluttered
environments. We showed that the pushing behavior highly
benefits from our learning approach in terms of constant ob-
ject contact and smooth trajectories avoiding obstacles while
maintaining equal path length in comparison to the baseline
method [15]. The evaluation of the runtime highlights that
our system is capable of online pushing. The code of our
system can be found on Github4 and a video on our web
page5.
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