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Abstract— Comprehending human motion is a fundamental
challenge for developing Human-Robot Collaborative applica-
tions. Computer vision researchers have addressed this field by
only focusing on reducing error in predictions, but not taking
into account the requirements to facilitate its implementation
in robots. In this paper, we propose a new model based on
Transformer that simultaneously deals with the real time 3D
human motion forecasting in the short and long term. Our 2-
Channel Transformer (2CH-TR) is able to efficiently exploit
the spatio-temporal information of a shortly observed sequence
(400ms) and generates a competitive accuracy against the
current state-of-the-art. 2CH-TR stands out for the efficient
performance of the Transformer, being lighter and faster than
its competitors. In addition, our model is tested in conditions
where the human motion is severely occluded, demonstrating its
robustness in reconstructing and predicting 3D human motion
in a highly noisy environment. Our experiment results show that
the proposed 2CH-TR outperforms the ST-Transformer, which
is another state-of-the-art model based on the Transformer, in
terms of reconstruction and prediction under the same condi-
tions of input prefix. Our model reduces in 8.89% the mean
squared error of ST-Transformer in short-term prediction, and
2.57% in long-term prediction in Human3.6M dataset with
400ms input prefix. Visit our website here.

I. INTRODUCTION

Humans have the capacity to forecast future states of
affairs based on own-constructed models of physical and
socio-cultural systems. This ability is developed in childhood
through observation and active participation in society. For
instance, humans are able to anticipate the movement inten-
tion of the others and act accordingly to perform a given task
efficiently. This capacity can even work in conditions where
the view of the other people is partially occluded.

For robots to coexist with humans, it is also crucial to
successfully anticipate nearby human’s future movement in
real time, even though the view is partially occluded. Then,
the robot can adapt its behaviour accordingly to assist the
human. Regarding this, 3D Human Motion Forecasting is the
research field aimed at predicting the human’s future full-
body 3D trajectory based on past observations. As shown
in Fig. 1, the goal of this research is to generate a possible
sequence of future 3D actions based on the short observation
of the human body. Then, it would be possible for robots
to plan its motion in advance, so that natural co-existence
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Fig. 1. An overview of 3D human motion forecasting in occluded
environments. The red lines are the observed 3D skeletons projected into the
image, while the blue lines consist of random occluded limbs to test model’s
3D pose-reconstruction capacity. Finally, the green skeletons represent the
predicted human pose sequence in the near future.

with humans can be realized. To do this, robots need a
computationally efficient algorithm that can operate in real-
time. However, recently there is a general tendency in the
computer vision research community that larger and heavier
models are preferred, thus hindering their applicability in
robotics. Therefore, our paper proposes a 3D human mo-
tion forecasting model that stands out for being faster and
lighter than the state-of-the-art, with a similar or even higher
performance in the very short term (i.e. 400ms).

3D human motion forecasting is a long-standing challenge
that has been addressed by exploiting the spatial-temporal
dependencies in the observed skeletons. However, before
using spatial and temporal information together, initial works
focused only on the influence of temporal history in motion
to forecast future human poses. They used recurrent neural
networks (RNNs) [1], [2] to model dependencies between the
skeletons in time and allowed the propagation of information
for the short- and long-term human motion forecasting. How-
ever, these auto-regressive models accumulated an error over
time so that the result eventually collapsed into unrealistic
human poses as argued in [3], [4].

To avoid forecasting unfeasible poses, it is necessary for
models to also understand the spatial dependencies between
different parts of the human skeleton. Consequently, several
methods [5], [6], [7] attempted to exploit the correlation
between different joints or limbs while conserving time
dependency. This spatial-temporal approach can be observed
in Fig. 2, where the dependencies in space (orange) and time
(blue) of a given joint are described through a graph. This
graph-based approach was proposed as a model architecture
to exploit the natural structure of the kinematic tree. For
instance, DCT-GCN [8] encoded the temporal information
in feed-forward networks through discrete cosine transfor-
mation (DCT) and captured the spatial component of human
movement through a learnable graph convolution network
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Fig. 2. Spatio-temporal graph of joint dependencies for human motion. The
blue arrows refer to temporal relationships between the same joint param-
eters in different frames. The orange arrows imply the spatial relationship
between joints in the same frame.

(GCN). However, this approach failed in modelling diverse
long-sequence as relied on fixed DCT coefficients. Motivated
by the great advances of the Transformer model in language
modelling [9], [10], and to improve exploiting long-term
dependencies, ST-Transformer [11] was also proposed to
capture this space-time duality of a human body using the
self-attention mechanism [12].

However, none of these methods focuses on the application
of human motion forecasting in robotics. DCT-GCN [8] dealt
with different models for short-term and long-term prediction
of 3D joint trajectory, and also lacked in forecasting global
rotation of the human while moving. Then, robots could not
predict, for instance, towards where the human was walking.
ST-Transformer [11], in addition, needed a 2-second input
sequence to produce a prediction, thus depending on longer
observations and increasing the computational resources of
the model in terms of size and time. To sum up, none of these
existing models is feasible for stand-alone implementation
for robotics working in real world.

Moreover, to fairly assess the forecasting capacity of
robots and facilitate its incorporation in real environments,
the motion forecasting should also be tested in noisy and
strongly occluded situations. Robustness to occlusions or
noise in observed human skeleton is essential in real ap-
plication where the 3D human motion forecasting is based
on the results obtained from 3D human skeleton estimation.
Unlike previous works mentioned above, our work also
studies the reconstruction and prediction capacity of models
against different types of strong occlusions in the observed
input sequence. Our proposed model, named as 2 Channel-
Transformer (2CH-TR), allows to cope with high levels
of occlusions through its independence in 2 channels, and
promotes the 3D motion forecasting, taking into account its
applicability in the field of robotics.

To extensively show the effectiveness of the proposed
model, we conduct a quantitative comparison experiment
with the state-of-the-art models based on the Human3.6M
Dataset [13]. Results show that our 2CH-TR obtains com-
petitive results with state-of-the-art model and outperforms
Transformer-based approaches in all time horizons. Under
the same prefix input length (400ms), our work reduces ST-
Transformer’s mean squared error in 8.89% for short-term
forecasting, and 2.57% for long-term forecasting. In order
to test the model performance in real scenario, qualitative

results over a real video on our own data set is also reported.

Our contributions can be summarized as follows: (i) we
propose a light and fast model for efficient 3D human
motion forecasting, suitable for robotic applications; (ii)
we construct a model that deals with short- and long-term
predictions (from O to 1000ms) in a single time (no autor-
regressive method) while working with simple input prefix
pattern (400ms) ; (iii) to consider the noisy environment in
the real world, we also study the influence of occlusions
and show that the proposed 2CH-TR can adequately estimate
the complete human skeleton successfully even with severe
occlusions.

II. RELATED WORK

A. Recurrent-based approach

Recurrent neural networks (RNNs) [1], [2], [14] and
long short-term memory (LSTM) [15] were the dominant
architectures for modeling temporal dependencies between
the human skeletons. Jain et. al. explicitly emphasized the
importance of understanding the human body structure to
exploit relationships between limbs more effectively through
Structured-RNN (S-RNN) [2]. This work attempted to better
explore inter- and intra-relationships between each part of the
skeleton, focusing on spine-arms and spine-legs correlation.

Since these recurrent models encoded the history of mo-
tion in a hidden state of fixed size, an error could be
propagated through time and long-term dependencies could
not be exploited efficiently. To solve these problems, various
works applied data augmentation tricks through Gaussian
noise to the inputs [14], [16] or used adversarial losses
[3], [4] to tackle this vanishing of information, but their
long-term predictions still collapsed into non-plausible poses.
Compared to this, our work takes advantage of self-attention
mechanisms, that avoid compressing all historical informa-
tion into a fixed-length hidden state, and have an ability to
attend every historical pose at every time step. Therefore,
our predictions are made by weighting which states are
more informative at every step in the sequence, excelling in
exploiting long-term dependencies and tackling the vanishing
gradient challenge of recurrent networks.

B. Spatio-Temporal Modeling

State-of-the-art approaches tackled 3D human motion
forecasting by leveraging spatio-temporal dependencies.
Then, graph structures were proposed as spatial represen-
tations of human’s body to exploit the natural structure of
the kinematic tree [17]. However, they failed when capturing
human motions that required synchronization between limbs,
such as the periodic movement between arms and legs when
walking. Consequently, these non-apparent dependencies in
kinematic-tree structures needed to be learned based on the
data. To tackle that, graph convolutional networks (GCN)
emerged to adaptively capture these connections necessary
for motion forecasting [7], [8]. State-of-the-art DCT-GCN
[8] model leveraged GCN to encode the joint relationships,
and adopted discrete cosine transforms (DCT) to capture the
smoothness of motion in time. However, their work only at-
tempted to predict joint motion, failing in forecasting global
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Fig. 3. Architecture of 2-Channel Transformer (2CH-TR). The observed skeleton motion sequence X is projected independently for each channel into an

embedding space (E's and E7) and then positional encoding is injected. Each embedding is fed into L stacked attention layers that extracts dependencies
between the sequence using multi-head attention. Finally, each embedding (E's and E7) is decoded and projected back to skeleton sequences. Future
poses (Xpreq) are then the result of summing the output of each channel (X s and X7) with the residual connection X from input to output.

rotation of the humans, and therefore not being appropriate
for its application in the robotics field. Moreover, [8] trained
different models for each time horizon (short and long-
term predictions), thus increasing the required computational
resources for predicting in both scenarios.

Inspired by recent advances of self-attention mechanisms
in natural language processing (NLP) [9], [10], Emre et. al.
introduced the Transformer-based architecture into human
motion forecasting and emphasized the concepts of time
and space by designing a spatio-temporal Transformer (ST-
Transformer) [11]. Their aim was to take advantage of the
low inductive bias of the transformer-based architectures
shown in language modelling and nowadays also in com-
puter vision [18]. The success of this architecture had two
main reasons. First, transformers exploited capturing both
short and long term dependencies by using the positional
encoding [12]. Second, by adding Multi-Head Attention [12],
the model was able to extract richer dependencies from
the observed sequence by attending in parallel to different
representation sub-spaces.

Our proposed model is inspired by the efficiency of
ST-Transformer but differs in essence. For example, while
ST-Transformer deals with joint-wise vectors formed by a
rotation matrix representation as inputs, and over-emphasized
relationships between these joints, we rather propose a
model that autonomously learns these relationships from all
flatted skeleton parameters, without previous clustering into
joints. Our temporal channel explores these relationships in
each time frame, while the spatial channel identifies intra-
framed relationships of the skeleton. Total decoupling of our
two channels allows to boost the robustness of the model
while simplifying the structure. Moreover, our work is also
different in terms of input pattern. ST-Transformer requires
2-seconds human motion observations (50 frames at 25 FPS)
as an input to produce 1-second prediction in Human3.6M
dataset, while ours reduce it by to 20% the needed input
length (400ms, 10 frames at 25 FPS) for the same time-
length prediction.

C. Skeleton Recovery

Application of stand-alone state-of-the-art 3D human mo-
tion forecasting in a real environment might be unfeasible if
there are numerous occlusions or noise in observed skeleton

data. Existing works do not mention about the capacity of
their models to work under occluded environments.

However, this topic is indeed researched in the field of
pose estimation, by recovering the occlusion when estimat-
ing the body pose. For instance, Guo et. al. employed a
fully convolutional network (FCN) to enable the regression
between occluded and complete distance matrix [19] for
pose estimation. Then, Cao et. al. with OpenPose [20] used
Part Affinity Fields (PAFs) to perform skeleton estimation
in the presence of human occlusion, but this was limited
to 2D poses. Cheng Yu et. al. worked with occlusion-
aware convolutional neural networks, named Cylinder Man
Model [21], to mitigate the effect of occlusions. All of these
models dealt with occlusion and noise recovery in the field
of skeleton estimation, but none in the 3D human motion
forecasting.

Finally, Ruiz et. al. designed a model based on Generative
Adversarial Networks (GAN), named as MotionGAN [22],
and formulate 3D motion forecasting as an in-painting prob-
lem by totally masking the future frames to predict. Then,
MotionGAN attempted both human motion reconstruction
and forecasting independently, but never predict the future
motion based on a occluded observation. Our work evaluates
the capacity of 2CH-TR to forecast the future, also when the
observed input is partially occluded,

To the best of our knowledge, our work proposes a new
line of research based on the evaluation and improvement
of 3D human motion forecasting in highly occluded en-
vironments. We claim the importance of our investigation
to facilitate the future implementation in robotic-oriented
scenarios.

III. METHOD

Human motion forecasting needs to exploit spatio-
temporal dependencies to generate plausible future poses.
The encoder-decoder structure inherited from Transformers
is proposed in our 2CH-TR, inspired by [11]. Fig. 3 shows
the overview of the proposed architecture, that clearly repre-
sents the independence between our spatial channel (in pink
lines) and temporal channel (in light blue lines).

A. Problem Formulation

Let z; = |71, ,2:p] € RP denote our skeleton
parameter at time frame ¢, that defines a set of human joints
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Fig. 5. Temporal channel mechanism to exploit relationships of P
skeleton parameters between /N frames. Attention is used to capture time
dependencies in the projected embedding space. For simplification in the
visualization, only a historical of 7" = 2 poses (z1 and x2) are used.

in axis-angle representations. Here, x4 1,- -+ , ¢ 3 consist on
the global rotation information of the human body, so that
our model can also learn how to handle orientation. Given
an observed motion sequence X;.n, named as prefix, we
replicate last pose z for T’ times to generate a prediction of
future 7" frames, obtaining a final sequence T'= N + T, as
it is described in Fig. 4. This padding pattern diminishes the
complexity of the model as it only needs to learn the variation
of each skeleton parameter based on the lastly observed pose.

Then, the final motion sequence is represented as a matrix
X = [z1,---,o7] € RTXP, where T represents the
number of time frames in the sequence and P indicates the
number of skeleton parameters. Unlike [11], which classifies
and over-emphasizes relationships among different joints,
our 2CH-TR exploits all temporal and spatial dependencies
independently as a whole, projecting the prefix sequence into
an independent embedding for each of the 2 channels (Fg
and E7) and only coupling them for the final result. Our
motivation is to decompose the contribution of each channel
until the last stage to give robustness and improve short-
and long-term predictions. Compared to [11], our approach
provides higher performance with lower number of attention
layers L and using only 20% of input prefix /N, which also
reduces the dimension of the model. Moreover, our model
takes advantage of the encoder-decoder structure to generate
the whole sequence in a single prediction, avoiding frame-
by-frame prediction as in [11], thus reducing inference time.

B. Temporal Channel

As shown in Figure 5, the skeleton parameters used to
describe the human pose are projected from the PP dimension

to the D dimension (D >> P) via the temporal encoder to
learn the context of the timeline for each dimension. Then,
the embedding Ep € RT*P is passed into the temporal
transformer after being ordered by sinusoidal positional en-
coding. Multi-head attention (MHA) used in this Transformer
block jointly leverages the relationship of the same joint
in all its time-history. Each attention head headgl ), where
h e (1,---, H), linearly projects the query (Q), key (K) and
value (V') obtained from embedding E by employing three
different learnable weight matrices as shown in equation
(1), where Q(Th),K(Th),VT(h) € RT™F F = D/H, refer
to the query, key and value matrix of headgph ) in temporal
transformer block, respectively. W}Q’h),W}K’h), W;V’h) €

RP*F indicate the learnable weight matrices for headg‘,{z ),

KM = BpwiEY heq,- H), (1)
v = Erwlh

For each head of the Transformer block, the applied
attention mechanism is shown in equation (2). The relation-
ship between any two time points can be discovered in the
attention matrix A € RT*T. Besides, a temporal mask
M € RT*T is applied to guarantee that future information
cannot be leaked to the past.

(Th)K;h)T (M1(h) | (2)
4= M)V =AYV

\/5 ) T 'T

The prediction is projected by concatenating of all heads,
as shown in equation (3), where W}O) € RHFXD denotes
the MHA learnable matrix. By L temporal-attention block
stacking, the prediction performance can be strengthened.

Er = [head? - head Wi 3)

head'" = softmax(

Fig. 5 explains how our temporal channel works with a
simplified example, where the input sequence is assumed
of only 2 time frames (X € R?*%). In temporal channel,
we mainly focus on the relationship between each frame,
i.e, the relationship between z; and xz5. After the temporal
encoder, the temporal embedding EFr € R?*P multiplies
with three different weight matrices to obtain query, key,
and value matrices. Each row of these matrix represents
one frame. When x; is presented as a query, the self-
attention compares all frames in the sequence as keys to
x1 and generates a correlation or attention score. A larger
score represents a higher degree of correlation. Then, this
score is normalized and multiplied with the value vector to
get the final output, which encodes the importance of the
dependency. To this end, temporal channel can learn the joint
relationships between each time-frame.

C. Spatial Channel

While the temporal channel efficiently captures the evo-
lution of parameters in time, a spatial channel is able to
understand the underlying dependencies among the skeleton
parameters at each time horizon, to represent the plausible
poses of a human. For the spatial channel, as described in
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Fig. 6. Spatial Channel projects 1" dimension to D embeddings to focus
on the relationships between the parameters at each time horizon. Then,
attention is applied to capture dependencies of skeleton parts at each pose.
For simplification, only 7" = 2 historical poses (x1 and z2) are used.

Fig. 6, the skeleton parameter size P is preserved and the
sequence length T' is projected into D dimension, where
X — Eg : RP*T — RPXP_ Similar to the temporal
Transformer, the spatial Transformer also has multi-head at-
tention and 3 different learnable weight matrices are utilized
to linearly project query, key and value in each head. Since
its purpose is to explore spatial relationships, the mask M is
no needed in this case. When applying attention, the spatial
attention matrix Ag € RP*F interprets the relationship of
every parameter of the entire skeleton, thus learns the spatial
structure of the skeleton under different movements. Through
the stack of L spatial-attention blocks, the model can predict
the pose under each frame more accurately. Finally, the
output embedded representation Eg is fed into the spatial
decoder and permuted, obtaining the result X 5. The whole
process is similar to the Temporal Channel (T') expressed by
equation (1), (2), (3), but using the S notation for the Spatial
Channel. The resulting equations show the use of the spatial
weight matrices WéQ’h), WéK"h), év’h), W(O), with same
dimensions as in temporal channel, and Q(Shi K gl), Vs(h) €
RP*F F = D/H encoded now in the space.

Finally, results from two channels’ result XT and Xs
are summed at the end to obtain the motion prediction X.
Afterwards, the input and output of the model are connected
by a residual connection to diminish the possibility of
gradient explosion when the model depth is too large.

IV. EXPERIMENTS
A. Datasets

Human3.6M. H3.6M [13] includes 3.6 million 3D human
poses from high-resolution videos of 7 subjects performing
15 different actions such as walking, eating and smoking.
Body skeleton of each subject is represented by P = 99
skeleton parameters which include the global rotation and
translation of the motion. Global rotation is crucial for robots
to understand the intention of humans when performing an
action. For a fair comparison with previous works [2], [8],
[11], videos are down-sampled to 25 frames per second and
the test is performed on the same sequence of the subject 5.

Testing Scenario. More realistic human motion scenarios
are used for demonstrating the effectiveness of our model
in the qualitative results. Observation of prefix poses are
obtained through FrankMocap [23], thus realizing real-world
application.

Frames

TOTAL JOINT OCCLUSIONS

0 20 40 60 80 929
Skeleton Parameters

Fig. 7. Visualization of randomized occlusions for observed prefix motion.
In this example, 80% of data is missing (black colour denotes occluded
data).

B. Evaluation Metrics and Baselines

Metrics. Following the standard evaluation protocols, we
report the mean squared error (MSE) metric, as shown
in equation (4), between all the predicted p’ and ground-
truth p’ joint angles in Euler angle representation, where
i € (1,---,N), and N is the number of joints used to
describe the human poses. N

error(Xiarg, Xprea) = ZW -l )
i=1

Baselines. We compare 2CH-TR with state-of-the-art
methods S-RNN [2], DCT-GCN [8] and ST-Transformer
[11] in Human3.6M dataset. We implement their work with
original code provided by the authors and evaluate the
models under the same condition for fair comparison. Details
of how existing models are trained are as follows. DCT-GCN
was trained independently for a short- and long-term joint
prediction, while we propose a stand-alone model that deals
simultaneously with both time horizons to reduce computa-
tional resources and to fasten the inference. Moreover, 2CH-
TR also predicts global rotation of the human, apart from
joint trajectories, to capture the orientation of real motion.
ST-Transformer needs the input prefix sequence of 2 seconds
for 1 second prediction. Compared to this, we manage the
same-length prediction only with 400ms prefix sequence,
so that the complexity of our approach can be reduced by
relying on less information (and also reduces the dimension
of the architecture, being more efficient).

C. Skeleton Occlusion and Recovery

The motivation behind this paper consists of building a
model applicable in real-world robotics. To our knowledge,
the feasibility of this task consists of evaluating four impor-
tant concerns: (i) capacity of the model to perform short-
and long-term motion forecasting in ideal scenarios; (ii)
performance of the model when tested in noisy scenarios
(i.e. occlusions in prefix sequences); (iii) efficiency of the
algorithm regarding the inference time; (iv) lightness of the
model for usage in a real robot without compromising its
hardware capacities.

To reproduce scenarios of noisy prefix observations, we
propose two different types of occlusions that will lead
our following evaluation. First, as shown in upper-side of
Fig. 7 we defined Time Consistent Occlusions to reproduce
randomly partial missing joints (visualized as black) in the
prefix sequence, similar to possible errors when estimating



human skeleton. Each occlusion has a time duration based
on an exponential distribution. The second scenario is the
total occlusion of several random joints in the whole prefix
observed motion, as illustrated in the lower-side of Fig. 7
where random skeleton parameters are missing (visualized
as black), simulating real-life occlusions, where a part of the
body, for instance, cannot be observed as being covered by
the environment. Fig. 7 exemplifies randomized occlusions in
our N = 10 frames prefix motion (400ms) for all the P = 99
skeleton parameters provided by Human3.6M dataset.

We evaluate our model when the percentages of occluded
joints vary among 80%, 60%, 40% and 20%. To reconstruct
occlusion in observed motion (of the past -400ms to present,
0 ms), several mechanisms are tested: (i) short-term recovery
which predicts occluded information from previous non-
occluded motion (based on assumed already reconstructed
sequence in the past, from -800ms to -400ms); (ii) auto-
regressive recovery that continuously predicts immediate
(+80ms) skeleton pose and refines it with the known non-
occluded data in the observation; (iii) linear interpolation
applied in time that deals with partial skeleton occlusions
to explode bidirectional flow information inherited by the
interpolation technique.

D. Results

Quantitative Evaluation

We report our results for short-term (<500ms) and long-
term (>500ms) predictions in Human3.6M dataset. We main-
tain the observation prefix patterns same as each baseline
originally used. Also, the MSE error is measured over all
parameters predicted by each model. Note that our model
also includes the error of global rotation prediction.

In Table I, we compare our model with existing works in
terms of several actions consisting the Human3.6M dataset.
For example, actions such as ‘Walking’, ‘Phoning’, ‘Wait-
ing’, ‘Walking Dog’, ‘Posing’, and ‘Purchases’ are consid-
ered. The results show that our model obtains better or very
competitive results in short-term prediction, outperforming
ST-Transformer in most cases. The MSE report in Table
IT shows the competitive performance of our model when
predicting human motion in non-occluded environments.

As detailed in Sec. IV-C, our model is also evaluated
in occluded scenarios. Table III shows results with Time
Consistent occlusions, and it indicates the capacity of our
model to overcome errors in human pose estimations in real
scenarios (i.e. joints not detected). Our model is tested with
3 different reconstruction methods for occlusion recovery.
Results show the robustness of 2CH-TR for human motion
forecasting in occluded scenarios. Linear interpolation in
time also results as a robust method in our recovery sce-
nario as the variation of joint movement in short occluded
periods is not significant. However, linear interpolation uses
bidirectional information (skeletons before and after the
occlusion) to recover the joint position, in contrast to the
undirectionality of our 2CH-TR. This behaviour is desired
for real-world applications, where the model cannot rely on
future data as we do not have it. Auto-regressive approaches
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Fig. 8. Human Motion Prediction in different occluded environments, from
non-occluded data to whole prefix sequence occluded.

for occlusion reconstruction using our 2CH-TR collapse
in non-plausible poses in prediction. As our model only
forecasts the difference between the future poses and the
last pose observed (replicated in the input prefix), the correct
reconstruction of this last pose is essential, as any error in it
is propagated to the next prediction.

Despite the competitive results of linear interpolation when
joints are shortly occluded, this approach requires non-
occluded data and cannot reconstruct poses when a skeleton
parameter is occluded during the whole observed sequence.
Therefore, to assess this second type of occlusion, in Fig. 8
only the effect in human motion forecasting of reconstructing
the missing joints in the whole observed sequence with 2CH-
TR is shown. 2CH-TR is able to predict plausible human
poses and reliable results even though we test the model in
heavily occluded situations, with 80% or more of joint data
occluded in the prefix sequence.

Finally, we assess the contribution of our model in com-
parison with baseline models regarding the applicability in
real-scenario. Computation speed and lightness are reported
in Table IV. For a fair evaluation, we compared the size of the
baseline networks and their speeds with their original codes
but also with reduced prefix pattern to 10 frames as same as
ours. The results show our 2CH-TR is the fastest model by
increasing the speed over DCT-GCN by 30% with a GPU
Tesla-K80 and around 128 times faster than ST-Transformer,
as our model predicts the whole future sequence in a single
time, avoiding autoregression. DCT-GCN is lighter when
predicting only short or long-term sequences, but it needs
one model for each case, resulting in double-size network in
total. As 2CH-TR explicitly performs short- and long-term
prediction in one-shot, our model ends up being the lightest
in our comparison (59% lighter that DCT-GCN).

Real world demonstration. We tested the performance
of our 2CH-TR when forecasting human motion in the wild.
For this approach, we trained an additional model with
also a global translation parameter (obtained as the center
of the 3D skeleton estimated from FrankMocap, located
approximately in the torso), so that 2CH-TR can understand
the global trajectory of the human motion. Fig. 9 shows the
effectiveness of not only predicting 3D human poses but also
global rotation and translation parameters, in contrast with
baseline methods. It is shown that the motion of the human
is reasonably predicted: 2CH-TR is able to understand the
reduction of velocity when the human turns around, and
adapt the trajectory and future poses when walks backwards
to the new next goal.



TABLE I
MSE ERROR COMPARISON OF HUMAN MOTION FORECASTING IN HUMAN 3.6M DATASET.

WALKING PHONING WAITING
milliseconds (ms) 80 160 320 560 1000 80 160 320 400 560 1000 80 160 320 400 560 1000
S-RNN 0.808 0942 1.159 1484 1.778 | 1.225 1.503 1.925 2.061 2.02 2.38 1.156  1.396  1.781 1.941 2.191 2957
ST-Transformer 0212 0359 0.8 072 0.782 | 0.53 1.042 1.41 1.544 1543 1.809 | 0.219 0512 0978 1.221 1.658 2.485
DCT-GCN 0.201 0344 0.516 0.647 0.673 | 0.541 1.026 1342 1472 1454 1.649 | 0252 0.517 0957 1169 1.546 2.293
2CH-TR (ours) 0204 0357 057 0745 0908 | 0.526 0982 1.238 1.373 1406 1.725 | 0.237 0.508 0.936 1.17 1.607 2312

WALKING DOG POSING PURHCASES
milliseconds (ms) 80 160 320 560 1000 80 160 320 400 560 1000 80 160 320 400 560 1000
S-RNN 1.029 1.221 1.546 2.067 2471 1.346  1.395 1.96 2.2 2456 3.102 | 1.219 1452 1.87 1.989 2.36 3.325
ST-Transformer 0.43 0.783 1.148 1.613 1.896 | 0.609 0.684 1.052 1.282 1.776  2.826 0.43 0.765 1.304 1.373 1.548 2.411
DCT-GCN 0.489 0.804 1.11 1.525 1.841 | 0.212 0.47 1.071 1.306  1.617 242 0497 0718 1.062 1.121 1415 2215
2CH-TR (ours) 0476  0.821 1.139 1.524 1.916 | 0.226 0.51 1.014 1.244 1.595 2.514 | 0.441 0.698 1.161 1.201 1.493 2.196
TABLE I V. CONCLUSION

AVERAGE MSE ERROR FOR SUBJECT S5 IN MOTION PREDICTION

milliseconds (ms) 80 160 320 400 560 1000
S-RNN (orig.) 0933 1.166 1397 1.526 1.711 2.139
S-RNN (N=10) 0988 1.161 1435 1.576 1.84 2221
DCT-GCN 0.295 0.542 0.857 0974 1154 1.590

ST-Transformer (orig.) 0.303 0.550 0901 1.021 1.229 1.722
ST-Transformer (N=10) 0.341 0.619 0966 1.100 1314 1.754

2CH-TR (ours) 0293 0555 0.893 1.016 1.245 1.744

TABLE III
MSE ERROR PREDICTION WITH TIME-CONSISTENT 80% OCCLUSION

milliseconds (ms) 80 160 320 400 560 1000
Model Prediction 1.126 1234  1.386 1.463 1.613 1.960
Linear Interpolation 0951 1.177 1443 1526 1.650 2.015

Auto-Regressive Prediction 4.039 3738  3.637 3579 3495 3424

TABLE IV
EVALUATION OF MODEL EFFICIENCY FOR 1 SECOND PREDICTION

Input Global Autoresression Inference Network

Size Rotation 8 time [ms] Parameters
DCT-GCN 10 X X 2 *3.20 2 *23M
ST-Transformer 50 X 4 344.66 3,2M
S-RNN 50 X v 117.80 22,.8M
ST-Transformer 10 X v 283.81 3,2M
S-RNN 10 X v 45.34 22,8M
2CH-TR (ours) 10 v X 2.21 2,6M

Fig. 9. Motion forecasting in the wild when human walks towards the left
side, turns around and walks backwards. Red skeleton shows the observed
prefix sequence from our model, while gradient green skeletons project
human motion prediction in next 1 second.

In this work, we propose 2CH-TR architecture to effi-
ciently exploit dependencies between 3D human poses in
space and time to forecast near future skeleton sequences.
By decoupling the spatial and temporal channels, it is able
to tackle high variant action motions in a single prediction.
2CH-TR forecasts 1-second sequence of future poses while
only using 400ms of past observations. Our approach ob-
tains competitive state-of-the-art results while reducing the
required computational resources and increasing the speed of
the model. Experiment results also evaluate the robustness of
our architecture even with highly-occluded skeleton poses
in the observed prefix sequence. Based on this, we claim
that our 2CH-TR stands out as a real-world solution for 3D
Human Motion Forecasting in robotics applications.
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