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Abstract— The Perspective-n-Point problem aims to estimate
the relative pose between a calibrated monocular camera and
a known 3D model, by aligning pairs of 2D captured image
points to their corresponding 3D points in the model. We
suggest an algorithm that runs on weak IoT devices in real-
time but still provides provable theoretical guarantees for both
running time and correctness. Existing solvers provide only one
of these requirements. Our main motivation was to turn the
popular DJI’s Tello Drone (<90gr, <$100) into an autonomous
drone that navigates in an indoor environment with no external
human/laptop/sensor, by simply attaching a Raspberry PI Zero
(<9gr, <$25) to it. This tiny micro-processor takes as input a
real-time video from a tiny RGB camera, and runs our PnP
solver on-board. Extensive experimental results, open source
code, and a demonstration video are included.

I. INTRODUCTION

The term “Perspective-n-Point problem”, or PnP in short,
was first introduced by Fischer and Bolles in [18]. The
PnP problem aims to recover the position and orientation
(6 degrees of freedom) of a calibrated monocular camera,
by aligning its captured 2D image to a given 3D model
(map) that describes the real-world. Solving this problem
on each image in a real-time video from a moving camera
mounted on a robot, such as an autonomous car [16], a
humanoid [7], or a vacuum cleaner [42], provides us the
location and orientation of the robot in the world. Using pre-
recorded models of the streets, Google’s Liveview displays
addresses and pointing arrows on top of the smartphone’s
captured video stream in real-time, to enable navigation using
augmented reality based on a Visual Positioning System.

The PnP is a fundamental problem in Computer Vision [5],
[19] with many other applications in Robotics [12], [33],
[39], [16] and Augmented Reality [13], [11], [38].

A. Main challenge: Lightweight Optimal Solver

While there are dozens of papers that aims to solve the
PnP problem, there is still a serious remaining challenge in
the context of real-time robotics, especially for weak and
lightweight IoT devices as in robotics and drone applications.

Existing provable solvers for the PnP problem typi-
cally use external packages such as GloptiPoly [23], SOS-
Tools [36], [41] or SeDuMi [44], [41]. Other solutions,
either heuristics, approximations, or methods which solve
alternative cost functions are discussed in Section I-D.

The main disadvantages of the above optimal solvers in
the context of our robotic application are: (i) Memory. The
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Fig. 1: (Left:) An illustration of the PnP problem. (Right:) A
toy drone equipped with a Raspberry PI zero micro-computer
and a designated RGB camera. Our algorithms can run in
real-time using this on-board system; see Section IV-B.

very generic libraries above require both RAM and external
memory, both of which are very limited, especially when it
comes to IoT micro-computers such as the Raspberry PI zero
(RPI0) micro-computer which we use in our case, that has
1GHz single-core CPU 512MB RAM; see Section IV-B. (ii)
Running time. Those libraries are built to tackle a very wide
range of optimization problems; they are not tailored for our
problem. Thus, their running time is far from being optimal.
(iii) deployment dependencies. Compilation and integration
is often hard or even impossible, especially for non-Windows
operating systems or non-Intel/AMD CPUs, as in our RPI
case. Recent results such as [41] and GPOSolver [22] were
able to remove dependencies on commercial tools such
as MATLAB. However they still depend on optimization
libraries such as SeDuMi [44] Mosek [31].

B. Our Contributions

(i) Theoretical guarantees. We propose the first algorithm
that, in theory, returns optimal provable results for input
data that satisfies some weak assumption which was satisfied
in all our experiments. Our algorithm runs in 𝑂(logΔ ·
log log(1/𝜀)) time where 𝜀 > 0 is the accuracy and Δ is
the model precision; see Assumption 1, Theorem 2, and
Algorithm 1.

(ii) Self-contained algorithm. Our proposed novel algo-
rithm is self-contained and requires only few lines of code
to implement. It does not depend on commercial tools or
optimization libraries. It only requires standard and widely
used libraries such as Eigen [20].

(iii) Experimental results. We provide extensive experi-
mental results on our own collected real world datasets with
ground truths. We empirically demonstrate that our algorithm
consistently provides more precise results as compared to the
competing methods; see Section IV-A.
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(iv) Real-time system. As an application, we build our
very own light-weight, low-cost, autonomous, and on-board
toy-drone navigation system, which is based on a RPI0 with
our novel PnP solver; see Section IV-B and the video.

(v) Open code. We provide full open source code for our
algorithm, which can run in real-time on IoT devices [1].

C. Novelty

To solve the above challenges we designed a simple
algorithm, called Newton-PnP, or NPnP in short.

(i) Newton’s PnP. To provide a self contained algorithm
with competitive performance, we follow [41] and formalize
the PnP as an instance of a semidefinite programming (SDP)
problem in (5), and utilize the simple Newton’s method for
solving this objective, without external sophisticated solvers.

However, the classic Newton’s method alone does not
support non-equality constraints as the ones that arise in our
problem. Hence, we also combine the barrier method [8], as
explained in Section III-B. The only external library required
is Eigen for basic linear algebra that is common in robotics
and real-time applications. In particular, it supports the
LAPACK interface that is provided by CPU manufacturers
for direct hardware implementations, simply by downloading
their packages. In particular, our implementation was easily
compiled on a RPI0 and a standard laptop.

(ii) Focus on the dual problem. The first issue when
using the barrier method for tackling the SDP instance above,
which is called the primal problem, is that the number of free
variables is 241, as also explained in [41]. This would be
much too slow for our real-time drone application that runs
on an RPI0. To this end, we observe that the corresponding
dual optimization problem requires only 70 unknown vari-
ables; see Section III-A. An important observation is that
the duality gap is zero; see proof of Theorem 2. That is,
an optimal solution to the dual problem corresponds to the
optimal solution of the primal version of the problem, with
no approximation gap.

(iii) Suggesting a provably good initial solution. The
barrier method uses Newton’s method with equality con-
straints, which is an iterative algorithm that requires an initial
solution. This solution must: (i) be feasible, i.e., be in a set
that satisfies the constraints of our dual problem, and (ii) the
value of the objective function at this initial point must be
close to the optimal objective value, since the running time
depends linearly on this distance; see Theorem 2.

To this end, we first observe that many of the parameters in
our optimization problem remain fixed between different PnP
instances. We leverage this observation, along with careful
tuning of the barrier method’s parameter, to compute a good
initial solution for our problem. This solution is computed in
advance and is independent of the input; see Section III-C.

D. Related Work

The PnP problem has been intensely studied in literature,
where the proposed methods are broadly categorized into
either iterative or non-iterative methods.

The iterative methods usually aim to iteratively minimize
complex cost functions, which makes them potentially slow
and non-optimal due to local minima of the cost function.
However, such method achieve high accuracy when converg-
ing properly, and can handle arbitrary number 𝑛 of input
pairs. Examples include [14], [34], [29], [40].

In comparison, the non-iterative methods tend to be un-
stable in the presence of noise [27], and in many cases
gain speed by alternating or approximating the target cost
function. Examples include [18], [15], [37], [17], [6], whose
running times are polynomial in the number 𝑛 of input pairs.
To enhance the stability of such methods, one can leverage
additional redundant points, as in, for example, the well
known Direct Linear Transformation (DLT) algorithm [2].

Among the most notable non-iterative results is the popu-
lar work of Lepetit et al. [27], termed EPnP, which reduced
the problem into recovering a set of 4 virtual control points,
where the resulting quadratic polynomials were solved with
simple linearization techniques in 𝑂(𝑛) time. Follow-up
works have tried to enhance the stability of EPnP by re-
placing the linearization with polynomial solvers. Among
those is the work of Li et al. [28], termed RPnP, which
explicitly retrieves the roots of a seventh degree polynomial.
However, the proposed improvements have still been shown
to be unstable [47]. To resolve these drawbacks, Hesch and
Roumeliotis [24] developed the direct least squares (DLS)
method requiring 𝑂(𝑛) time. Unfortunately, they parameter-
ized rotation by using the Cayley representation, which is
degenerate in many cases. The accuracy deteriorates seri-
ously when the camera pose approaches these singularities.

Branch and Bound. In a different line of works, branch
and bound (BnB) methods have been proposed. In [21],
Hartley et al. proposed a BnB algorithm which solves an
approximated version of the problem, taking advantage of
the rotation matrix constraints. Olsson et al. [35] proposed a
similar algorithm which leverages quaternion representation
for the rotation matrix. Unfortunately, such BnB algorithms
are unpractical due to their tremendous computational cost.

Globally optimal and efficient methods. The limitations
mentioned above led to a search for algorithms that are
both provably globally optimal and efficient. For example,
[25] utilizes Grobner basis, while the great works [41],
[47] reduce the problem to some instance of semidefinite
programming (SDP). Common SDP solvers use primal-dual
interior-point methods [44] [4]. The most commonly used
solution approaches are Mehrotra’s predictor-corrector based
algorithms [30][43]. Mehrotra’s approach tackles the Karush-
Kuhn-Tucker conditions of the primal and dual optimization
problem to reach a global optimum. As for the PnP case,
these equations produce 2 · 241 + 70 = 552 variables in the
Mehrotra’s approach, which is far more than only 86 in our
modified approach; see Section III.

Our algorithm draws inspiration from those theoretically
globally optimal methods, but aims to be faster in practice.

https://drive.google.com/file/d/1L2ZvqabVHTkxpr6h4zoNFf8I_2orf9yL/view?usp=sharing


II. PRELIMINARIES

In this section we first give some notations, and then we
formally define the PnP problem discussed in the previous
sections, and reduce the problem to solving a set of polyno-
mials of constant degree.

Notations. We define the set Alignments ={︀
(𝑅, 𝑡) | 𝑅 ∈ SO(3), 𝑡 ∈ R3

}︀
to be the set of all paired

rotation matrices and translation vectors. For 𝑥 ∈ R𝑚,
𝑋 ∈ R𝑛×𝑚 and 0 ≤ 𝑖 < 𝑗 ≤ 𝑛, we denote by
𝑥𝑖:𝑗 ∈ R𝑗−𝑖+1 and 𝑋𝑖:𝑗 ∈ R(𝑗−𝑖+1)×𝑚 the slice of 𝑥 and
row slicing of 𝑋 respectively, and by 𝑚𝑎𝑡(𝑥) ∈ R

√
𝑛×

√
𝑛

the row stacking of 𝑥 into a square matrix, when possible.

A. Problem Formulation

Let 𝑃 = {𝑝1, · · · , 𝑝𝑛} ⊆ R3 be a set of 3D (model)
points and let 𝑋 = {𝑥1, · · · , 𝑥𝑛} ⊆ R2 be a corresponding
set of 2D (observed) points in a calibrated camera frame.
Since the intrinsic camera parameters are given, each pixel
𝑥𝑖 ∈ 𝑋 corresponds to a 3D line ℓ𝑖 passing through the
camera center and the pixel 𝑥𝑖 in the frame, whose direction
vector is 𝑣𝑖 ∈ R3; see Fig. 1. The pair (𝑃,𝐿) form the input
for the PnP problem, where 𝐿 consists of all the 3D lines
that correspond to points in 𝑋 .

The goal is to recover an alignment (𝑅*, 𝑡*) ∈
Alignments that minimizes the sum of squared Euclidean
distances dist2(𝑅𝑝𝑖 + 𝑡, ℓ𝑖) between every 𝑝𝑖 ∈ 𝑃 after
applying the transformation, and its corresponding line ℓ𝑖.
Formally, the PnP objective reads:

min
(𝑅,𝑡)

𝑛∑︁
𝑖=1

cost((𝑃,𝐿), (𝑅, 𝑡)) :=

𝑛∑︁
𝑖=1

dist2(𝑅𝑝𝑖 + 𝑡, ℓ𝑖), (1)

over every (𝑅, 𝑡) ∈ Alignments.
As detailed in [41], we can recover the optimal vector 𝑡* as

a linear function of the optimal rotation matrix 𝑅* by setting
the derivative of (1) with respect to 𝑡 to zero. Plugging 𝑡*

back, (1) can be rewritten as

min
𝑟

𝑟𝑇𝑀𝑟,

s.t. 𝑟 = 𝑣(𝑅) ∈ R9, 𝑅 ∈ SO(3),
(2)

for some known matrix of coefficients 𝑀 ∈ R9×9, and where
𝑣(𝑅) ∈ R9 is the row stacking of 𝑅.

Using quaternions. Due to the difficulty of handling the
constraint 𝑅 ∈ SO(3) above, a quaternion based representa-
tion for 𝑅 is used instead. Let 𝑞 = (𝑞1, 𝑞2, 𝑞3, 𝑞4) ∈ R4, and
define 𝑟(𝑞) ∈ R9 as

𝑟(𝑞) = (𝑞21 + 𝑞22 − 𝑞23 − 𝑞24 , 2𝑞2𝑞3 − 2𝑞1𝑞4, . . .).

Now (2) can be rewritten using 𝑟(𝑞), where the constraint
𝑅 ∈ SO(3) is implicitly enforced using the quaternion repre-
sentation and the constraint ‖𝑞‖2 = 1. The PnP problem can
thus be reduced into the following system of polynomials:

min
𝑞∈R4

𝑟(𝑞)𝑇𝑀𝑟(𝑞),

s.t. ‖𝑞‖2 = 1.
(3)

B. Polynomial System Solvers

There are multiple different approaches for solving poly-
nomial systems as in (3), which include: (i) classical
solutions which utilize combinatorics, (ii) Grobner basis
solvers [10], and (iii) Semidifinite programming (SDP) [46]
using the Sum Of Squares (SOS) decomposition [36]. As-
suming there are 𝑚 equations of constant rank, each contain-
ing 𝑑 unknowns, all the above methods require theoretically
𝑚𝑂(𝑑) running time. However, the classical solutions tend to
be very impractical due to the large constants hidden in the 𝑂
notation. Similarly, the Grobner basis methods are not only
impractical in most cases, but are also numerically unstable.
To this end, we adopt the SOS approach.

SOS hierarchy. The SOS approach is governed by some
relaxation level 𝑟, which controls the trade-off between
accuracy and running time; larger relaxation level corre-
sponds to more accurate but slower results. These levels are
commonly referred to as The Lasserre hierarchy [26]. The
computational time increases exponentially fast when raising
the relaxation level. The difficulty lies in balancing the
accuracy and the running time, as to provide a theoretically
fast algorithm which is also always accurate in practice.

PnP via SOS relaxation. The above SOS relaxation
approach was also used in [41], where the first Lasserre
hierarchy level was chosen in order to solve (3). Using
this first level already leads to relatively high computational
times, but produces accurate results. In our work, we utilize
the same hierarchy level, for which we empirically obtained
accurate results in all our experiments. However, as explained
in Section I and in the following sections, we provide an
alternative and much faster implementation, which can run
faster by up to x3 than the alternative algorithms which
utilize the same SOS approach as ours, e.g., [41]. This is
by exploiting the barrier method, a smart initial guess, along
a range of enhancements and techniques. This enables us to
develop an efficient algorithm which can run in real-time on
a microcomputer; see more details in Section IV.

III. OUR APPROACH – PNP VIA SDP DUAL

In this section we present our main provable algorithm
for the PnP problem. We aim to cast the PnP problem as
an instance of a semidefinite programming (SDP) problem,
and then solve this instance via the dual formulation only.
Considering the dual formulation reduces dramatically the
number of variables, as well as the practical running time.

The quaternion-based formulation in (3) is relaxed to an
SDP optimization problem, as follows.

min
𝛾

− 𝛾

s.t. 𝑟(𝑞)𝑇𝑀𝑟(𝑞)− 𝛾 − 𝜆(𝑞)(‖𝑞‖2 − 1) is sum of squares,
(4)

where 𝜆(𝑞) is a polynomial of degree 2 with unknown
coefficients.

SOS relaxation. Problem (3) is equivalent to Problem (4)
if we replace “.. is sum of squares” (SOS) by “...is a positive
polynomial”. Unfortunately, while an SOS polynomial is



always a positive polynomial, the opposite is not true. Indeed,
there exists a very specific and synthetic example of a PnP
input that SOS fails to solve, at least in its first degree [3].

Nevertheless, recent studies showed that, in the case of
computer vision applications, the SOS relaxation usually
yields the optimal solution in practice. See possible expla-
nations in [9] and many references therein. However, SOS
method either provides a proof, called certificate, that the
returned solution is 𝜀-optimal, or states that it failed.

Indeed, in our experimental results we never encountered
such a failure of the SOS relaxation, which explains why our
algorithm performs so well in Fig. 2. The required condition
on the input is a known open problem [3] so in Theorem 2
we simply assume that the relaxation holds as follows.

Assumption 1 (SOS is optimal): Let (𝑃,𝐿) be an input
pair of points and lines. Given 𝑦 ∈ R70 that maximizes (6)
up to an additive error of 𝜀 > 0, a pair (𝑅, 𝑡) ∈ Alignments
that satisfies (9) can be computed in 𝑂(1) time.

Further relaxations. For 𝑞 = (𝑞1, 𝑞2, 𝑞3, 𝑞4) ∈ R4, let
𝑚(𝑞) = (1, 𝑞1, 𝑞2, 𝑞3, 𝑞4, 𝑞

2
1 , 𝑞1𝑞2, . . .) ∈ R15 be the vector of

monomials of 𝑞 up to degree 2. To enforce that a polynomial
𝑝(𝑞) is SOS, one must find a positive semidifinite matrix
𝒫 ⪰ 0 such that 𝑝(𝑥) = 𝑚(𝑞)𝑇𝒫𝑚(𝑞). Hence, (4) reduces
to minimizing −𝛾 under the constraints that 𝑟(𝑞)𝑇𝑀𝑟(𝑞)−
𝛾 − 𝜆(𝑞)(‖𝑞‖2 − 1) = 𝑚(𝑞)𝑇𝒫𝑚(𝑞) and 𝒫 ⪰ 0.

By simply comparing coefficients between both sides of
the above constraint, similar to the notation in the book [8]
by Boyd et al., we obtain the following SDP primal problem

min
𝑥

𝑐𝑇𝑥

s.t. 𝐴𝑥 = 𝑏 and mat(𝑥16:240) ⪰ 0,
(5)

where 𝑐 = (−1, 0, · · · , 0) ∈ R241, 𝐴 ∈ R70×241 is a
constant matrix that represents the coefficients comparison,
𝑏 ∈ R70 is a vector that depends only on the matrix 𝑀 ,
and 𝑥 ∈ R241 is a vector of unknowns such that: 𝑥[0]
represents 𝛾, 𝑥1:15 contains the 15 unknown coefficients of
the polynomial 𝜆(𝑞), and 𝑥16:240 contains the 152 = 225
unknowns of the matrix 𝒫 . The above equation contains 241
variables and 70 equations (as the number of monomials of
the four quaternions with degree at most 4).

Input dependence. Observe that while the vector 𝑏 de-
pends on the PnP problem’s input, the matrix 𝐴 and vector
𝑐 are constant. To this end, the PnP instance at hand is
encapsulated in the vector 𝑏 only.

A. SDP Dual Formulation

The primal problem (5) has a dual formulation of the form

max
𝑦∈R70

𝑏𝑇 𝑦

s.t. (𝑐−𝐴𝑇 𝑦)0:15 = 0,

mat((𝑐−𝐴𝑇 𝑦)16:240) ⪰ 0.

(6)

For more details on the relation between the primal and dual
problems see Section 5.2 in [8].

Existing solvers. Software such as SeDuMi [44]
and Gloptipoly [23] aim to solve such problems via the

Centering-Predictor-Corrector method [43], where both the
primal and the dual problems, (5) and (6) respectively, are
solved simultaneously.

Why the dual formulation? The dual formulation
in (6) has only 70 variables, as compared to the primal
problem (5) which has 241. Furthermore, the solution of
the primal problem only provides an SOS decomposition
for the SDP objective along with the minimal value of the
objective function. However, we are interested in recovering
the quaternion vector 𝑞 from (3) which minimizes the
objective. This quaternion can be extracted from the vector 𝑦
of the dual problem, as detailed in [26]. To this end, we aim
to solve the dual problem only, via the barrier method [8]. As
of correctness, by Section 5.9.1 of [8], strong duality exists
in our problem. In other words, the optimal solutions for the
primal and dual problems are the same.

B. Barrier Method for Solving the Dual SDP Problem

The barrier method replaces a constraint in an optimization
problem with a self-concordant convex barrier to the objec-
tive function; see more details in [8]. A suggested barrier for
a PSD constraint is the log-determinant function. The barrier
method incorporates a weight 𝑡 that is multiplied by the
original objective function, which increases over time, thus
the summation of the two components slowly converges to
the global minimum or maximum) of the original objective:

max
𝑦

𝑓𝑡(𝑦) := 𝑡 · 𝑏𝑇 𝑦 + log(det(mat((𝑐−𝐴𝑇 𝑦)16:240)))

s.t. (𝑐−𝐴𝑇 𝑦)0:15 = 0.
(7)

Observe that 𝐴 and 𝑐 are constants, as detailed in (5) above,
and 𝑡 and 𝑏 are parameters of this function as they are not
constant; 𝑡 will change during the optimization process, and
𝑏 depends on the input.

We aim to solve the above maximization problem using
Newton steps with equality constraints, as explained in
section 10.2 of [8]. Newton steps can be performed relatively
fast. The most time consuming operation is formulating the
hessian, whose dimensions are 70 × 70. Each Newton step
with equality constraints requires solving a (70+16)×(70+
16) linear equation system, and then performing a line search
over that direction; see Algorithm 1. The line search is an
exact-line-search; see Section 9.2 of [8].

The convergence analysis given in Section 10.2 of [8]
conclude that applying Newton’s method with equality con-
straints is exactly the same as applying Newton’s method
to the reduced problem obtained by eliminating the equality
constraints; the convergence guarantees and bounds of New-
ton’s method for unconstrained problems are also relevant for
the linearly constrained instances. Thus, the constraint in (6)
does not affect our algorithm’s theoretical convergence and
guarantees in what follows.

C. Initial Guess

As mentioned in Section I, the bound over the number
of required Newton steps depends linearly on the distance



between the initial objective function value 𝑓𝑡(𝑦0) and its
optimal value 𝑓𝑡(𝑦

*), for the current weight 𝑡.
To this end, we observe that the matrix 𝐴 in (5)–(7)

depends on the PnP problem, but it is independent of a
specific PnP instance (the input sets of paired points and
lines), which is encoded in the vector 𝑏 ∈ R70. Also, if we
define ℎ(𝑦) = log(det(mat((𝑐−𝐴𝑇 𝑦)16:240))), the vector

𝑦 := argmax
𝑦∈𝐶

lim
𝑡→0

𝑓𝑡(𝑦) = argmax
𝑦∈𝐶

ℎ(𝑦) (8)

is also independent of 𝑏. Hence, 𝑦 ∈ R70 above can be
computed once (offline) for all future instances. Indeed, it
is encoded in our open code [1]; see also Algorithm 1.

D. Algorithm

In this section we provide our main algorithm for solving
the PnP problem via the SDP Dual formulation and the
barrier method, as explained in the previous section; see
Algorithm 1. Our main claim is given in Theorem 2.

Overview of Algorithm 1. Algorithm 1 takes as input
a paired set of 3D points and lines (𝑃,𝐿) as described in
Section II-A, as well as the desired accuracy 𝜀 > 0. The
algorithm aims to output an alignment (𝑅, 𝑡) that satisfies

cost((𝑃,𝐿), (𝑅, 𝑡)) ≤ min
(𝑅*,𝑡*)

cost((𝑃,𝐿), (𝑅*, 𝑡*))+𝜀, (9)

where the minimum is over every pair in Alignments. This
is by maximizing the objective function in (6).

We first compute the matrix 𝐴 and vectors 𝑏 and 𝑐 from
Eq. (5)–(7). Then, at Line 2, we recover an initial guess
𝑦 ∈ R70 for Eq. (7), as described in Section III-C. After that,
we tune some parameters which are necessary for bounding
the running time of the algorithm; see Theorem 2.

In the loop at Line 5 we apply the barrier method, where
at each iteration we: (i) utilize Newton’s method (Lines 7–
13) to minimize 𝑓𝑡(·) from (7), (ii) multiply 𝑡 by 𝜇 = 50,
and (iii) repeat. Each Newton step requires computing the
Hessian and the gradient of this function in order to recover
the optimization direction 𝑣. The optimal point along the
direction 𝑣 is recovered via exact line search at Line 11. The
condition for the number of Newton iterations is derived in
Section 9.5.2 of [8]. Lastly, we extract the desired output
from the recovered 𝑦.

The following theorem gives our main claim of correctness
and running time for Algorithm 1. While the running time
depends on the model’s finite-precision Δ, in practice the
number of iterations is almost always in [15, 30].

Theorem 2: Let 𝑃 = {𝑝1, · · · , 𝑝𝑛} and 𝐿 = {ℓ1, · · · , ℓ𝑛}
be a pair of ordered sets of 𝑛 points and corresponding 𝑛
lines, respectively, both in R3. Let 𝜀 > 0, and let (𝑅, 𝑡) be
the output of a call to NPNP(𝑃,𝐿, 𝜀). Then, the pair (𝑅, 𝑡)
can be computed in 𝑂(𝑛 + logΔ · log log(1/𝜀)) time such
that, under Assumption 1,

cost((𝑃,𝐿), (𝑅, 𝑡)) ≤ min
(𝑅*,𝑡*)

cost((𝑃,𝐿), (𝑅*, 𝑡*)) + 𝜀.

Proof: Correctness. Fortunately, strong duality holds
for our dual problem and the dual’s dual (i.e., the primal), as

Algorithm 1: NPNP(𝑃,𝐿, 𝜀)
Input : A pair of ordered sets of 𝑛 points 𝑃 and

corresponding 𝑛 lines 𝐿, respectively, both
in R3, and the desired accuracy 𝜀 > 0.

Output: An alignment (𝑅, 𝑡) ∈ Alignments; see
Theorem 2.

1 Set 𝐴 ∈ R70×241, 𝑏 ∈ R70, and 𝑐 ∈ R241 be as in (5).
// 𝐴 and 𝑐 are constant, while 𝑏
depends on the input (𝑃,𝐿).

2 Set 𝑦 ∈ R70 as the initial guess for the maximizer of
𝑓0(·) from (7), with 𝑏 = 0 ∈ R70 // see
Section III-C. This is
precomputed once.

3 Set 𝜀 := 𝜀/(‖𝑏‖ · ‖𝑦‖), 𝑏′ := 𝑏/ ‖𝑏‖
4 Set 𝑡 := 1/(140Δ2) // Δ ∈ 𝑂(1) related to

the final-precision of our model
5 while 𝑡 < 1

𝜀 do
6 do
7 Compute the gradient 𝑔 ∈ R70 and the

Hessian 𝐻 ∈ R70×70 of 𝑓𝑡(𝑦) from (7)
when plugging 𝑏 = 𝑏′.

8 𝑄 :=

[︂
𝐻 𝐴0:15

𝐴𝑇
0:15 0

]︂
, 𝑧 =

[︂
−𝑔

(𝑐−𝐴𝑇 𝑦)0:15

]︂
9 Compute 𝑥* ∈ R86 such that 𝑄𝑥* = 𝑧

// see Section 9.5 in [8].
10 Set the line search direction 𝑣 := 𝑥*

0:69 ∈ R70

11 Apply exact line search to compute a constant
𝜆 ∈ R that minimizes 𝑓𝑡(𝑦 +Δ · 𝑣)
// see Sections 9.2 in [8].

12 Update 𝑦 := 𝑦 + 𝜆 · 𝑣
13 while 𝑔𝑇𝐻−1𝑔 ≥ 2 · 𝜀 ;
14 𝑡 := 50 · 𝑡 // update the weight 𝑡
15 Let (𝑅, 𝑡) be the corresponding alignment to 𝑦

/* see Assumption 1. */
16 return (𝑅, 𝑡)

the conditions for strong duality in Section 5.9 of [8] hold.
Hence, solving (6) is equivalent to solving (5).

Let 𝑦 ∈ R𝑑 be the vector in hand at Line 15 of Algo-
rithm 1. By Assumption 1, it suffices to prove that 𝑦 ∈ R70

maximizes the dual problem (6) up to an additive error of 𝜀.
It is known that the Log-Determinant function is the

barrier of the semidefinite cone; see e.g., [8]. By this and the
barrier method [8], an 𝜀-approximation to (7) for 𝑡 = 1/𝜀
minimizes (6) up to 𝜀. Finally, the constraint in (7) can be
removed as explained in Section III-B. The resulting function
in (7) is the sum of a pair of functions, 𝑓𝑡(𝑦) = 𝑔𝑡(𝑦)+ℎ(𝑦).
The function 𝑔𝑡(𝑦) = 𝑡𝑏𝑇 𝑦 is a linear function and thus
a concave function, and it is easy to prove that ℎ(𝑦) =
log(det(mat((𝑐−𝐴𝑇 𝑦)16:240))) is also a concave function.
Hence, 𝑓𝑡 is a concave function that can be maximized via
Newton’s method for every value 𝑡.

Bounding the running time. The function 𝑔(𝑦) =
𝑡 · 𝑏𝑇 𝑦 is linear and hence self-concordant, and ℎ(𝑦) =
log(det(mat((𝑐−𝐴𝑇 𝑦)16:240))) is self-concordant as proven



in Section 9.6.2 of [8]. Therefore, our objective function
𝑓𝑡(𝑦) := 𝑔(𝑦) + ℎ(𝑦) is also self-concordant (i,e., satisfies
some condition on the ratio between its second and third
derivatives). This is crucial for what follows.

We need to bound the number of Newton’s iterations for
a specific value of 𝑡, i.e, the number of iterations for the
internal while loop in Algorithm 1. We do this separately
for the initial value of 𝑡, and for the other values of 𝑡.

Initial value of 𝑡. Let 𝐶 ⊆ R70 be the set of all
vectors that satisfy the constraints in (7), 𝑡0 := 1

140Δ2 be the
initial value of 𝑡, where Δ is the constant such that logΔ
is the number of bits used for storing variables in our finite-
precision model. We can now compute max𝑦∈𝐶 𝑓𝑡0(𝑦) =
max𝑦∈𝐶 𝑡0𝑏

𝑇 𝑦+ℎ(𝑦), using the initial solution 𝑦0 = 𝑦 above
which (i) is in 𝐶 and thus feasible, and (ii) satisfies:

𝑓𝑡0(𝑦
*)− 𝑓𝑡0(𝑦) = 𝑡0𝑏

𝑇 𝑦* + ℎ(𝑦*)− (𝑡0𝑏
𝑇 𝑦 + ℎ(𝑦))

≤ 𝑡0𝑏
𝑇 𝑦* − 𝑡0𝑏

𝑇 𝑦 (10)

≤ 2𝑡0|𝑏𝑇 𝑦*| ≤ 2𝑡0 ‖𝑏‖ ‖𝑦*‖ (11)

≤ 2𝑡0
√
70Δ2

√
70Δ2 ≤ 1. (12)

where (10) and (11) hold by the optimality of 𝑦 in (8) and
𝑦*, respectively, and (12) hold since 𝑦*, 𝑏 ∈ R70 and the
maximum absolute coordinate value is at most Δ.

Other values of 𝑡. The running time for Newton’s method
within the barrier method for non-initial values of 𝑡, over a
self-concordant objective function is bounded by 𝑂(𝑚(𝜇 −
log𝜇)/𝜀 + log log(1/𝜀)) = 𝑂(1/𝜀) since the number of
inequalities is 𝑚 ∈ 𝑂(1) and our weight multiplication
constant is 𝜇 = 50 in our case. See formal proof in Section
11.5.3 of [8]. The number of barrier method iterations is
upper bounded by 𝑂(log(1/𝑡0)) = 𝑂(logΔ).

Therefore, the total Newton iterations is bounded by
𝑂(logΔ/𝜀), where each iteration takes 𝑂(1) time.

IV. EXPERIMENTAL RESULTS

A. Pose Estimation using Real-World Data

We implemented our PnP Algorithm from Section III in
C++, and in this section we evaluate its empirical results
on real-world datasets for pose estimation and autonomous
drone navigation. Open source code can be found in [1]. The
hardware used was a standard HP ZBook laptop with an Intel
Core i7-10750H CPU @2.60GHzx12 and 32GB of RAM.
The results demonstrate that the proposed PnP Algorithm
consistently achieves more accurate and stable results as
compared to the state of the art and widely common PnP
implementations.

a) Competing methods: Throughout the experiments,
we consider the following PnP implementations:

(i) ourPnP: A direct implementation of the proposed
algorithm from Section III.

(ii) SDP: An SDP relaxation of the PnP problem, which
also utilizes SOS [41].

(iii) EPnP: Expresses the 𝑛 3𝐷 points as a weighted sum
of four virtual control points [27].

(iv) EPnP+GN: Similar to EPnP with an additional Gauss-
Newton refinement.

(v) DLS: Computes all pose solutions, as a minima of a
non-linear least-squares cost function [24].

(vi) RPnP: An official implementation of [28].
(vii) DLT: An official implementation of [2].

(viii) LHM: An official implementation of [29].
b) Evaluation metric: Given a ground truth (𝑅*, 𝑡*)

and some recovered (𝑅, 𝑡), we utilize the following trans-
lation and angle errors: ‖𝑡− 𝑡*‖2 and |𝛼− 𝛼*|, |𝛽 − 𝛽*|,
|𝛾 − 𝛾*|, where (𝛼, 𝛽, 𝛾) and (𝛼*, 𝛽*, 𝛾*) are the three Euler
angles obtained from decomposing 𝑅 and 𝑅* respectively.

c) Real-World Datasets: For our experiments, we col-
lected our own real-world datasets, as follows.

Dataset (i): Real-world data from a webcam To collect
this data, an OptiTrack motion capture system consisting
of 18 cameras was deployed in a room along with a set
of 12 distinct ArUco markers. This setup is illustrated in
the supplementary video. The 3D positions 𝑃 ⊆ R3 of the
ArUco markers in the OptiTrack’s coordinates system were
extracted using the OptiTrack system itself. A calibrated
Logitech C920 RGB camera was placed on a moving rig,
and a set of IR markers were placed on top of this camera
so it can be easily tracked. The rig was moved around in a
continuous movement to form a rectangle with side lengths
of roughly 2x1.5 meters. For every frame captured from the
Logitech camera using 15 FPS we: (i) detect the ArUco
marker positions 𝑋 ⊆ R2 which are visible in the image,
and (ii) use the OptiTrack system to estimate the ground
truth pose (𝑅𝑐, 𝑡𝑐) of the camera (via the IR markers).

Dataset (ii): Real-world data from a toy drone This
dataset was collected similarly to Dataset (i) above, but the
Logitech camera and its moving rig were replaced with a
toy micro drone, called DJI Tello, which is equipped with a
small RGB camera, as in Fig. 1. The drone was manually
controlled and flown around the room. The 3D positions
𝑃 ⊆ R3 of the ArUco markers were the same as in Dataset
(i), and the detection of the 2D pixels 𝑋 in each frame was
conducted in a similar manner as well. This dataset aims to
reflect a real world autonomous drone navigation experiment.
The goal is to recover the pose of the drone during its
flight, by estimating the camera’s pose via an external laptop.
This is crucial for autonomous drone navigation tasks; see
Section IV-B for such usage of our algorithm. The drone’s
trajectory as captured using the ground truth motion capture
system is presented in Fig. 3. The drone’s position, as
computed using our NPnP is also presented.

Noisy Datasets (i) and (ii). To test the resiliency of our
algorithm in the presence of noise, we conducted experiments
where synthetic noise was added to the datasets above. More
formally, to create noisy datasets, we added noise drawn from
a normal distribution with zero mean and an std of 𝑘 ∈
{0, 1, · · · , 10} to the set 𝑋 ⊆ R2 of 2D input points in each
dataset, prior to their conversion to a set of 3D lines 𝐿; see
Section II. Each such test was repeated 10 times and the
results were averaged.

d) The experiment: The goal in this experiment was
to estimate the camera’s alignment (𝑅, 𝑡) ∈ Alignments
for every frame of the experiment, using the data (𝑃,𝐿)

https://drive.google.com/file/d/1L2ZvqabVHTkxpr6h4zoNFf8I_2orf9yL/view?usp=sharing


collected in each of the datasets above (or their noisy
version), via each of the PnP methods. The recovered pose
was compared to the camera’s ground truth pose extracted
using the OptiTrack. The results are presented in Fig. 2.

B. Autonomous Drone Navigation
To demonstrate a potential usages of our fast and accurate

PnP solver, we placed a micro computer equipped with
a small camera, namely, a Raspberry PI Zero chip [45]
with its dedicated RGB camera, on top of the toy drone
from the previous section. The goal was to perform au-
tonomous navigation along a predefined route in an indoor
environment, given a known 3D map of the space. Such
a 3D map was constructed in a pre-processing step using
a known SLAM system [32]. To our knowledge, this is
the first such light-weight (<100gr), autonomous, and on-
board nano-drone navigation system. The system is also
low-cost (<125$). The autonomous flight is presented in the
supplementary video.

C. Overall Discussion.
Accuracy. As presented in Fig. 2, our NPnP consistently

achieves results with an error smaller by x1.5 up to x10, as
compared to the completing methods. The only exception
is the SDP, which, as expected, outputs the exact same
results as NPnP. As the graphs demonstrate, the globally
optimal algorithms achieve smaller errors compared to the
non-provable alternatives.

Time comparison. Firstly, we observe that, in practice,
the number of Newton iterations that were actually needed
was always a small constant ([15, 30]), independent of Δ.
Secondly, as our main concern is the accuracy of the output
results, our time comparison is focused only on the most
accurate competing methods. As the graphs show, those
methods are NPnP and SDP, which obtain roughly the same
accuracy. As Fig. 2 shows, our naive implementation of
NPnP is already faster by up to x3 as compared to SDP,
and more consistent. We leave further code optimizations to
our naive implementation for future work.

V. CONCLUSIONS AND FUTURE WORK

We presented an SOS-based PnP solver that, unlike pre-
vious works, has both (i) provable guarantees on its running
time and approximation error, and (ii) efficient implementa-
tion for real-time systems on weak IoT devices. Experimental
results show that our algorithm is consistently more accurate
than existing solvers, and faster then the state-of-the-art SOS
solvers. The main challange was to have a self-contained
algorithm that does not use external heavy solvers. The
companion video and open code show how to apply our
NPnP algorithm for real-time indoor navigation by using
DJI’s toy-drone and an on-board RPI0.

A main open problem is to remove Assumption 1. While
our SOS solver always returned the optimal solution in
practice as expected by [9], there is synthetic input where
it should fail [3]. Since in practice the number of required
Newton steps was roughly 15, we believe that the running
time of our algorithm can be reduced to only 𝑛+ log(1/𝜀).
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across the entire noisy datasets.
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