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Abstract— Robotic manipulators navigating cluttered shelves
or cabinets may find it challenging to avoid contact with
obstacles. Indeed, rearranging obstacles may be necessary to
access a target. Rather than planning explicit motions that place
obstacles into a desired pose, we suggest allowing incidental
contacts to rearrange obstacles while monitoring contacts for
safety. Bypassing object identification, we present a method for
categorizing object motions from tactile data collected from
incidental contacts with a capacitive tactile skin on an Allegro
Hand. We formalize tactile cues associated with categories of
object motion, demonstrating that they can determine with
> 90% accuracy whether an object is movable and whether a
contact is causing the object to slide stably (safe contact) or tip
(unsafe).

I. INTRODUCTION

When operating in human environments, robotic manipu-
lators will encounter scenarios where obstacle avoidance is
impractical. For instance, consider the task of retrieving an
item from the back of a kitchen cabinet. It is likely that a
collision-free path either does not exist or is intractable to
visually identify due to occlusions. However, many of the
obstacles in the scene will be movable and can therefore
be pushed aside to create a path to the target. In situations
such as these, humans are comfortable reaching towards
the target and allowing, but not explicitly planning for,
incidental contacts which rearrange the scene as necessary
for task completion. They are able to sense and adapt to these
contacts in order to maintain safety.

This work is aimed towards enabling a robotic manipulator
to use incidental contacts during reaching for safe, passive
object rearrangement. We do not focus on identifying the
objects in contact and our goal is not to plan motions that
push objects into a desired pose. Rather, we allow unplanned
contacts to occur and aim to sense them and evaluate their
safety. To minimize the need to reason about specific object
properties, we propose that the safety of a contact can be
inferred from the object motion it induces. The robot should
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Fig. 1. When reaching through clutter, especially if the identity and
mobility of objects are unknown, tactile sensors on surfaces such as the
back of the hand can be used to prevent unsafe contact events, such as
toppling an object.

be able to distinguish between contacts that stably reposition
objects without knocking them out of their stable poses (e.g.
sliding an object across the surface of a shelf) and those that
may be destructive (e.g. toppling an object or continuing
to push against an object that is fixed in the world). As
cluttered scenes present a challenge for vision systems due to
occlusions and light contact events may produce little visual
change, we rely on distributed tactile sensing. Whereas most
tactile sensors developed for robotics applications focus on
the fingertips and nominal grasping surfaces of manipulators,
incidental contacts may occur anywhere on the hand and
indeed may occur most often on the back of the hand when
reaching toward a target. Therefore, we present a tactile skin
design that covers not only the inner grasping surfaces, but
also the back and sides of the 16 degree of freedom Allegro
Hand. We then explore techniques for locally classifying
object motion at the contacts.

The contributions of this paper are:
• an approach for reaching in clutter that uses tactile data

to identify broad classes of object behavior and tactile
cues that do not require identifying objects or object
classes to predict behavior;

• a high-coverage, flexible sensor network for the Allegro
Hand and its use to collect data during incidental
contacts;

• demonstration of tactile cues for distinguishing immov-
able and movable objects, and further differentiating
sliding (safe) and tipping (unsafe) motion.

A. Related Work

Tactile Sensors and Sensory Skins: There has been ex-
tensive work on developing tactile sensors for robotic end-
effectors, mainly aimed at providing information for grasping
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Fig. 2. (A) The layers that comprise a networked sensor, shown for the back of the hand. (B) Sensorized Allegro Hand with electrodes exposed for
clarity. (C) Signal change as force is applied to the back of hand sensor. Solid and dashed lines show the mean signal of 10 taxels during loading and
unloading, respectively, and shaded regions show the standard deviation.

and manipulation. Yamaguchi et al. [1] provide a review of
recent developments in tactile sensing technology for robotic
manipulation. For the most part, these sensors cover nominal
grasping surfaces, most commonly the fingertips [2]–[8],
but occasionally also the proximal inner surfaces and palm
(e.g. [9, 10]). A few sensors have been developed specifically
for, or integrated with, the commercial Allegro Hand, a 16
degree of freedom (DOF) robotic gripper [10]–[12], but these
do not cover the backside of the hand. Some tactile skins that
can potentially cover large areas of robotic arms (e.g. [13]–
[15]) have also been developed but are not specialized for a
multi-fingered hand such as the Allegro Hand.

While optical tactile sensors offer remarkable resolution
and sensitivity for manipulation [5]–[8], capacitive sensors
are easier to distribute across the different surfaces of a
robotic hand and offer adequate resolution. The sensor pre-
sented here is adapted from a design by Ruth et al. [16], and
is placed on the front, back, and sides of an Allegro Hand
(Fig. 2).

Reaching Through Obstacles: Previous studies have ad-
dressed challenges of manipulation in clutter by introducing a
rearrangement subtask, where objects are repositioned using
prehensile manipulations [17, 18], non-prehensile pushes
[19]–[22], or a combination of both [23]. Zhong et al.
[24] track contacts along multiple objects during rummaging
with soft tactile sensors. Moll et al. [25] propose to avoid
reasoning about specific interactions and note that, in many
cases, controlling the final pose of every object in the scene
is unnecessary. They present an open-loop method which
allows pushing movable objects while avoiding collisions
with fixed obstacles, assuming that the mobility of each
object is known a priori. In this work, we use tactile sensing
to detect object mobility, which is initially unknown and
may change over time. Jain et al. [26] developed an MPC
controller which enables a robotic manipulator with whole-
arm tactile sensing to reach through obstacles while keeping
contact forces below a threshold. We propose that using
object motion as an indication of safety, rather than force,
will allow sliding aside objects using forces which could
topple objects in other scenarios.

Object Mobility Classification: The benefit of tactile sens-
ing in detecting object motion within a grasp, most notably
the onset of slip, has been well discussed in literature [1].
Recent work from Ma et al. [27] uses vision-based distributed

tactile sensing to estimate constraints to motion of a grasped
object in contact with the environment. Using a novel sensor
which provides both visual and touch information, Razaei
et al. [28] predict the final resting pose of an object that
contacts the sensor after being released from an unstable
configuration. There has been comparatively little work using
tactile data from incidental contact on a robotic manipulator
to classify object motion. Bhattacharjee et al. [29, 30]
use whole-arm tactile sensing to classify objects as Rigid-
Fixed, Rigid-Movable, Soft-Fixed, and Soft-Movable through
various data-driven approaches. Here, we expand on this
work to differentiate between safe object motion (i.e. sliding)
and potentially dangerous object motion (i.e. tipping) and
propose a classification method which relies on designed
tactile cues rather than a data-driven approach.

II. DISTRIBUTED TACTILE SENSOR DESIGN

We now consider the design requirements for sensory skins
intended to provide information about incidental contacts,
focusing on classifying object motions, and present a new
distributed tactile sensor network for the Allegro Hand.
The skin used in this work is a modified version of the
fringe field mutual capacitance sensor presented in [16]. The
elements comprising each sensor in the network are outlined
in Fig. 2A. A flexible PCB contains 3x3 mm taxels with an
interdigitated design arranged in a matrix. The electrodes are
connected to the capacitance-to-digital converter of a Cypress
PsoC 4200 microcontroller, which translates capacitance to
signal counts. Pressure is transformed to a change in mutual
capacitance through the addition of a textured dielectric
which, when compressed, increases the effective dielectric
constant as air is displaced. The textured dielectric is molded
from urethane (SmoothOn Vytaflex-30) and features cylindri-
cal pillars (0.8 mm diameter, 0.8 mm height). The dielectric is
fixed to the electrode using a 1.6 mm thick adhesive-backed
silicone encapsulation layer.

Contact localization is essential for determining how the
robot should move in response to a contact. Especially
when covering large areas, there is a trade-off between
spatial resolution and sampling rate. In this work, we present
experiments conducted with a back of hand sensor, which
contains four taxels per cm2 and has a sampling rate of
10 Hz. Figure 2C shows the sensor’s response to loading
and unloading up to 50 N as force is applied with a 12 mm



diameter probe. For a point contact (1.9 mm diameter probe),
the sensor can detect forces as light as 0.06 N.

A. Design Considerations for Interaction in Cluttered Spaces

1) Coverage: Although contacts during grasping and ma-
nipulation may be constrained to specific areas of the hand,
contacts during reaching often occur on the backside of the
hand, especially if reaching with fingers slightly flexed. To
avoid undetected contacts, the skin should ideally cover the
entire hand. The coverage achieved by our sensor network
is displayed in Fig. 2B.

2) Curvature: While flat tactile sensors are easier to man-
ufacture, curvature is beneficial for capturing and tracking
incidental contact events. As shown in Fig. 3, flat sensors
provide large contact areas when aligned with a surface,
but are prone to quickly losing contact when there is any
misalignment, such as the onset of tip. Adding curvature to
the sensor in the direction of gravity leads to contacts which
travel down the surface of the sensor as an object tips.

We develop a 2D kinematic model for contact point motion
as a curved sensor tips an object. This will later be used to
determine appropriate tactile cues for tip events. For a sensor
with radius of curvature R contacting a vertically uniform
object of width w, one can determine the tip angle, θ, of the
object by solving the vector loop equation set up in Fig. 3.
We define two right-handed orthonormal bases: n̂xyz and
b̂xyz , fixed to the world and object, respectively. Unit vector
n̂x points along the ground and n̂y points vertically upward
and, initially, b̂x = n̂x and b̂y = n̂y . The sensor contacts
the object at height h and moves along n̂x a distance of
x, causing the object to tip by θ. We write a vector loop
beginning and ending at P , the center of curvature of the
sensor when it initially contacts the object, to obtain

xn̂x +Rb̂x − yb̂y + wb̂x − (R+ w)n̂x = ~0. (1)

Taking the dot product of eq. 1 with n̂x and n̂y produces two
scalar equations which can be solved for θ. The distance we
expect the contact to move in the gravity direction can then
be calculated as Rθ. Smaller radii may require a larger tip
angle before contact patch motion indicating tip is detectable
but larger radii will lose contact with a tipping object faster.
The sensor used in experiments features a gentle curvature
with a radius of 372 mm.

Fig. 3. Curved surfaces are beneficial for sensing tipping. A schematic
illustrates the vector loop in eq. 1.

III. TECHNICAL APPROACH

A. Environment Assumptions

We consider a robot performing a planar reaching task in
the presence of obstacles. Robot trajectories lie in a horizon-
tal plane and consist of piecewise linear motions. Operating
speeds are low enough that a quasi-static assumption applies
(i.e. there is no dynamic evolution of the scene that is not
associated with robot motion). We assume contacts occur
on a sensorized surface of the hand. Objects may vary in
geometry, but we assume they are convex, rigid, and feature
a stable support surface which is initially in contact with the
surface of the world. We note that non-convex objects can
often be treated as locally convex if considering only their
sliding or tipping motion. The mobility of objects is initially
unknown. They may be free to slide, constrained such that
they are likely to tip, or immovable in certain directions. We
consider any object which takes more than 20 N to move to
be immovable.

B. Terminology

We use the following terms to formulate expectations
about how tactile signals evolve in response to various object
behaviors: Tactile Feature: a quantity extracted from tactile
data at an instant. Examples include shape, size, location, and
intensity of contact patches. Tactile Cue: a measure of how
tactile features evolve over time – for instance, an increase
in contact patch size. Tactile Event: the tactile response
corresponding to an object behavior (tipping, sliding, or fixed
contact events). A tactile event may correspond to one or
more tactile cues.

C. Object Motion Categories

In general, object motion from incidental contact is com-
plex and depends on the object’s geometric and mass prop-
erties. For determining the safety of a contact interaction,
it may suffice to broadly understand the object’s motion
category rather than estimating its trajectory. We consider
the following categories:

• Immovable in the direction of applied force either
because it is fixed in the environment, constrained, or
considered too heavy to push.

• Sliding across the working surface while remaining in
its stable pose.

• Tipping out of its stable pose. Excessive tip may lead
to toppling, potentially causing damage or spills.

We hypothesize that these broad motion categories can be in-
ferred from tactile cues that are not highly object-dependent.
Therefore, using tactile signals to categorize object behavior
could allow robots to reason about the safety of their actions
without needing to identify the object itself. There also exist
objects without stable poses (e.g. spheres), which we do not
explicitly consider here. In addition to sliding, these objects
may also roll, which would produce similar tactile signals to
sliding and is also considered locally safe.

Prior to choosing potential cues which indicate motion
category, we note that radial symmetry of an object impacts



Fig. 4. We can distinguish two planar DoFs for radially symmetric objects
(e.g. cylinders) and three for radially asymmetric objects (e.g. boxes). Out
of plane motion (tip) provides another distinguishable DoF.

the tactile signals we expect. In their stable poses, objects
that are radially symmetric about the vector normal to the
floor have two detectable degrees of freedom: motion in
the directions normal and tangential to the sensor surface.
Radially asymmetric objects have three detectable degrees
of freedom in their stable poses, as rotation in the plane will
affect the sensor signal, as illustrated in Fig. 4.

D. Tactile Feature Extraction

Our candidate tactile features are: (1) [x,y] location of the
contact patch center of pressure, (2) contact patch area, and
(3) intensity of the activated taxels within the contact patch.
They are identified using the following processing steps.
First, we represent the normalized data at each timestep as a
greyscale image. Signal intensity is extracted at this step. We
then use bicubic interpolation to obtain sub-taxel resolution.
Next, thresholding is used to isolate the contact patch. The
same threshold value was used across experiments. Image
moments are used to calculate the center of pressure of the
contact patch, (Cx, Cy), using Cx = M10

M00
and Cy = M01

M00

where Mij is the (i, j)th image moment. Finally, a contour
which surrounds the patch is found. To accommodate cases
where contact with a single object results in multiple disjoint
patches (due to sensor noise or light, uneven contact), we
take the convex hull of all contours to combine them into a
single patch before calculating area as illustrated in Fig. 5A.

E. Tactile Cue Extraction

Candidate tactile cues such as an increase in signal in-
tensity or a contact patch motion may be straightforward to
identify conceptually, but reliably deriving them from raw
tactile data is more involved. While theoretically, one could
consider a tactile cue to be a discrete change in a tactile
feature between two points in time, we observe that it is
more reliable to identify trends over sequences of tactile

data. Indeed, due to real world factors such as sensor noise,
uneven contact surfaces, and variations in friction between
the objects and the table, discrete changes in the contact
patch often instantaneously resemble tactile events that are
not actually present. We perform a piecewise linear least
squares fit on the evolution of extracted tactile features either
over time or over the progression of a robot motion [31].
Two line segments are used to capture a change in object
motion partway through the interaction (e.g. objects may
initially slide then begin to tip). For each tactile feature,
we consider the slopes and means over each line segment
to be candidate tactile cues. Before performing the linear
regression, the features are passed through the RANSAC
algorithm to remove outliers caused by noise.

IV. EXPERIMENTS

We now describe the process for collecting incidental
contact data and discuss the selection process for tactile
cues. We then present classification results for contacts with
immovable, tipping, and sliding objects.

A. Incidental Contact Data Collection

1) Experimental Setup: Incidental contact data were col-
lected using the sensor presented in Sec. II on the back of the
Allegro Hand, which was mounted on a UR16e robotic arm
and stationed above a flat table. The hand was placed in a
configuration suitable for reaching, with the fingers extended
and the palm orthogonal to the table surface, as in Fig. 1.
Future work will apply the approach demonstrated here on
the back of the hand to the entire hand sensor network.

2) Object Sets: We collected data for contact with two
sets of objects, shown in Fig. 6. The first set contains
prototypical objects which are approximately rigid and ge-
ometrically simple (2 boxes and 3 cylinders). We expect
motion categories for these objects to be separable using the
tactile cues discussed in Sec. III-E. The second set consists of
eight additional commonplace kitchen objects. These objects

Fig. 5. (A) Snapshot tactile images taken from contact with a fixed
cylinder and sliding box are shown at two stages of post-processing. Features
extracted from the processed images are labeled. (B) Sequences of tactile
images in which tactile events can be identified.



Fig. 6. Two sets of objects used for experiments. Object dimensions and
weights are listed in Table I.

Object Dimensions [mm] Weight [g]
(1) Glass Vase 90 x 190 390
(2) Cardboard Cylinder 61 x 270 170
(3) Salt Shaker 68 x 208 910
(4) Wooden Box 100 x 165 x 230 420
(5) Cardboard Box 43 x 133 x 180 260
(6) Pancake Mix 60 x 155 x 208 960
(7) Mayonnaise 70 x 90 x 180 610
(8) Coconut Water 74 x 80 x 230 1060
(9) Lemonade 80 x 110 x 270 2000
(10) Sunflower Oil 76 x 76 x 240 950
(11) Balsamic Vinaigrette 45 x 103 x 204 300
(12) Syrup 70 x 106 x 255 900
(13) Coffee Grounds 90 x 140 x 180 620

TABLE I
OBJECT PROPERTIES

display a wider range of geometries than the prototypical ob-
ject set which led to more varied object motions in response
to contact. While our assumption was that objects are rigid,
many of these are slightly deformable. One object featured
concavities (lemonade) and three featured support surfaces
that, while visually appearing flat, rested unevenly on the
table leading to wobbly motion during sliding (pancake mix,
coconut water, coffee beans). The purpose of the second
object set is to investigate the robustness of our classification
method to different object geometries and to identify and
discuss failure cases.

3) Data Collection: Data were collected for objects indi-
vidually. For each trial, an object was placed on the table in
one of three conditions: (1) free-standing without constraints,
(2) placed along the edge of a flat obstacle (a placemat)
which promoted tipping, or (3) constrained against a wall.
The arm was then commanded to move along pre-specified
Cartesian paths which extended beyond the object, leading
to a collision with the back of hand sensor. For each object,
20 trials were taken for each mobility condition – half for
which the tangential component of motion was zero and half
for which it was equal to the normal component. Ground
truth class labels were assigned by hand. The robot was
commanded to stop if the force in the direction normal to the
sensor surface exceeded 30 N. This was monitored with the
integrated F/T sensor at the UR16e wrist, but F/T data were

not used for object motion classification. Between trials, the
initial pose of the objects was manually shifted such that the
object and sensor came into contact at different locations.
To limit inertial effects, we command the robot to move at
a speed of 10 mm/s for all trials.

B. Tactile Cue Selection

Preliminary incidental contact data were used to identify
which cues would be used for classification and to establish
appropriate threshold values. To test the ability of eq. 1 to
predict tipping based on contact patch motion, we collected
empirical results for motion of an object with known width
being tipped by contact at three heights. Center of pressure
locations calculated using the feature extraction method
described in Sec. III-D are plotted against analytical results
in Fig. 7. To accommodate for a range of object widths,
curvatures, and collision heights, we estimate that an object
is tipping if the rate at which the contact patch moves in
the direction of gravity as the robot moves into the object is
between 1 and 5 (slopes shown in Fig. 7).

To identify contact with an immovable object, we hy-
pothesized that signal intensity and contact patch growth
could both serve as cues. However, it was observed from
preliminary data that contact patch growth was highly vari-
able between objects and trials, largely due to orientation
changes of radially asymmetric objects. On the other hand,
signal intensity, calculated from normalized tactile images as
the mean value of taxels at the center of the contact patch,
was found to be a good separator of contact with immovable
and movable objects. As the signal for a mutual capacitance
pressure sensor decreases with increasing pressure, we iden-
tify fixed contact if the average signal intensity (over one
segment of the piecewise linear fit for signal intensity versus
time data) is less than 65. Figure 8 illustrates the use of these
cues for object motion classification, depicting the thresholds
defined and examples of real data for each category.

C. Classification Results & Discussion

Figure 9 shows classification results for incidental contact
with immovable, tipping, and sliding objects. For objects
in the prototypical set, simple and object-independent cues

Fig. 7. Empirical tip data plotted over expected contact patch motion
during tip at three heights, calculated as Rθ where θ is found by solving
eq. 1.



Fig. 8. A flowchart summarizing the steps for determining object motion category from tactile and proprioception data. Plots show real experimental data
along with the conditions that signals must meet for tactile events to be predicted.

achieve 98% accuracy in separating motion classes. Though
the misclassifications are few, we note an interesting failure
case for box-like objects. In a few cases where a box was
placed such that it was likely to tip about a corner rather than
a flat edge, contact caused it to tip in a direction orthogonal
to the normal force, which was undetectable by the sensor.

Results for the more geometrically diverse real-world
objects showed a combined accuracy of 92%, where most
confusion comes from mistaking tipping for sliding motion.
14 of the 18 misclassifications of tipping as sliding arose
from two objects: coffee beans and lemonade. Deformable
and granular coffee beans interacted with the sensor differ-
ently than rigid objects during tip events. During tip, the
sensor would deform the object, causing a contact patch
that often appeared nearly stationary rather than moving in
the direction of gravity. When contact causing tip of the
lemonade container occurred on areas featuring concavities,
contacts did not travel smoothly down the length of the
object, as we would expect with a convex object. Rather,
the portion of the container that protruded the most would
remain in contact with the sensor, causing the contact patch

Fig. 9. Confusion matrices containing the result of classifying incidental
contact with immovable, tipping, and sliding objects. Numerical results
indicate number of trials.

to travel upwards along the sensor rather than downwards.
For difficult cases such as these, where rigidity and convexity
assumptions do not hold, it may be necessary to identify the
object prior to estimating motion. A complementary video is
provided to demonstrate the use of this classification method.

D. Analyzing Tangential Motion

While the focus of this work is classifying object motion
induced by applying normal force, we note that useful
information can be extracted from tangential components of
the data as well. By comparing the horizontal contact patch
motion to the robot’s tangential motion, one can estimate
whether an object is stationary or moving as a result of the
robot brushing against it. If horizontal contact patch motion
is equal and opposite to the robot’s motion, this indicates a
stationary object. Otherwise, the brushing contact is causing
the object to roll or slide. Figure 8 shows this distinction
for data collected as the robot moves tangentially while in
contact with a cylindrical object placed against a wall (fixed
in the normal direction) both when the object is stationary
and when it exhibits a combination of rolling and sliding.

V. CONCLUSIONS AND FUTURE WORK

We present a method that uses incidental contact data from
a tactile sensor on the back of a robotic hand to classify
object motion. We show that our formulation of tactile
cues is able to capture useful information about whether
objects are movable or immovable and, if movable, whether
contact results in safe sliding motion or potentially dangerous
tipping. By using tactile data to understand the motions
induced by incidental contact events, robotic manipulators
reaching in clutter can rearrange objects without explicitly
planning rearrangement motions or identifying the object in
contact.

Future work involves applying this classification method
to the full sensor network and developing reactive control
methods which modify a robot’s trajectory when a dangerous



object motion is detected. A set of exploratory probing
techniques could be designed to determine whether an object
classified as immovable is completely fixed, or constrained
only to move in certain directions. Additionally, methods
for analyzing normal and tangential motion components –
perhaps with shear as well as normal tactile data – could be
combined to estimate objects’ trajectories in more detail for
higher level planning.
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