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Abstract— Existing work in physical robot caregiving is
limited in its ability to provide long-term assistance. This is
majorly due to (i) lack of well-defined problems, (ii) diversity of
tasks, and (iii) limited access to stakeholders from the caregiving
community. We propose Structuring Physically Assistive Rob-
otics for Caregiving with Stakeholders-in-the-loop (SPARCS)
to address these challenges. SPARCS is a framework for
physical robot caregiving comprising (i) Building Blocks, models
that define physical robot caregiving scenarios, (ii) Structured
Workflows, hierarchical workflows that enable us to answer the
Whats and Hows of physical robot caregiving, and (iii) SPARCS-
box, a web-based platform to facilitate dialogue between all
stakeholders. We collect clinical data for six care recipients
with varying disabilities and demonstrate the use of SPARCS in
designing well-defined caregiving scenarios and identifying their
care requirements. All the data and workflows are available on
SPARCS-box. We demonstrate the utility of SPARCS in building
a robot-assisted feeding system for one of the care recipients.
We also perform experiments to show the adaptability of this
system to different caregiving scenarios. Finally, we identify
open challenges in physical robot caregiving by consulting care
recipients and caregivers. Supplementary material can be found
at emprise.cs.cornell.edu/sparcs.

I. CAREGIVING IS MULTIFACETED AND CONTEXTUAL

Morgan (he/him) is a 58-year-old who sustained a brain-
stem stroke at 40 that made him quadriplegic and mute.
He receives assistance from his partner and primary care-
giver Riley (she/her), and his professional caregiver Spencer
(they/them)1. Morgan’s caregiving is complex and person-
alized. It is extremely challenging for any arbitrary person
without proper training to assist him. His assistance is con-
textual on his functional abilities and behavior, his caregiver,
and his environment:
1. Care Recipient Context: When being assisted with feeding,
Morgan turns to his caregiver to show his intent to have a
bite. The mobility limitations in his tongue necessitate solid
food to be placed around his lower left molar for chewing.
2. Caregiver Context: Morgan is tall. Dressing him involves
lifting his limbs. While Spencer is tall and muscular and
does not face difficulties with this task, Riley performs it
differently because she is short and lean.
3. Environment Context: Morgan lives in a house with a small
bathroom. Bathing Morgan is especially challenging due to
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Fig. 1: SPARCS enables roboticists to translate human caregiving
requirements to guidelines for physical robot caregiving.

his occasional spasms. These spasms lead to involuntary
movements, which can hurt him if his limbs hit the bathroom
walls. This requires his caregivers to be extremely vigilant.

Many of Morgan’s activities of daily living (ADLs) easily
take more than an hour and pose a challenge to all other
family routines. Caregiving for Morgan is very taxing for
Riley and leaves her with barely any time for her own needs.
Morgan is aware of the situation and wishes to do some of
these activities by himself, not only to feel more independent
but also to reduce Riley’s burden.

II. INTRODUCTION

Morgan is among many others worldwide who require
assistance with ADLs. Nearly 27% of people living in the
United States have a disability, and close to 24 million
people aged 18 years or older need assistance with ADLs [1].
Similar to Riley and Spencer, there are several family and
professional caregivers who are overburdened and experience
mental stress and declining quality of life [2]–[4]. Robots
have the potential to provide assistance with ADLs [5]
and empower people with disabilities by enhancing their
independence [6], while also reducing caregiver burden.

Existing work in physical robot caregiving is limited in
its ability to consistently provide in-situ assistance to care
recipients for the entire duration of an ADL. This is due to
a myriad of factors such as diversity of tasks, the need for
personalized assistance, and limited access to other stake-
holders (care recipients, their caregivers, and occupational
therapists) who have the required domain knowledge. There
exists variability in problem definitions, which points to
an inherent lack of common grounding in problem setup.
Without a common underlying framework to systematically
reason about physical robot caregiving, it is very challenging
to transfer insights from one specific scenario to another.

We propose Structuring Physically Assistive Robotics for
Caregiving with Stakeholders-in-the-loop, or SPARCS to ad-
dress these challenges. This framework comprises Building
Blocks (Sec. III), Structured Workflows (Sec. IV), and
SPARCS-box (Sec. V). Inspired by the different contexts
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in human caregiving, we define four Building Blocks, the
user, i.e., the care recipient, their human caregiver, their
environment, and the robot. We build upon these blocks
to form Structured Workflows, hierarchical workflows that
enable us to answer the whats and hows of physical robot
caregiving. Building these workflows requires communica-
tion between roboticists and other stakeholders who have
expertise in caregiving. SPARCS-box is a web-based platform
that facilitates this dialogue.

SPARCS is a framework for building physical caregiving
robots. We perform experiments that highlight the impor-
tance of Building Blocks, particularly user models, to build
effective and personalized systems. We show SPARCS in
practice by using it to (i) identify care requirements, and
(ii) utilize these requirements to build a physical caregiving
robot. We consider six care recipients with varying dis-
abilities and collect data on the Building Blocks for ADLs
that they require assistance with. We perform a user study
with expert occupational therapists to build the whats of
Structured Workflows for all the identified caregiving sce-
narios. This can help us translate the caregiving needs of the
six care recipients into well-defined research problems for
roboticists. All the data and workflows are publicly available
on SPARCS-box [7] and can be used by roboticists to reason
about the hows for robot caregiving. We illustrate the process
of generating physical robot caregiving solutions for one
of the scenarios - the activity of robot-assisted feeding for
one of the six care recipients. Additionally, we demonstrate
how this feeding system adapts to changes in the different
building blocks. Finally, we conduct a study with care recip-
ients and caregivers, asking them questions on general ADL
assistance. We use SPARCS to examine their caregiving
needs and share open challenges for the robotics community.

We summarize our contributions as follows:
• We propose SPARCS, a framework for physical robot

caregiving. SPARCS comprises (i) Building Blocks, mo-
els that define physical robot caregiving scenarios, (ii)
Structured Workflows, hierarchical workflows that en-
able us to answer the whats and hows of physical robot
caregiving, and (iii) SPARCS-box, a web-based platform
that facilitates communication between all stakeholders.

• We highlight the importance of Building Blocks, partic-
ularly user models, to build effective and personalized
physical caregiving robots.

• We collect real-world data and create Building Blocks
for six care recipients with varying disabilities. We
conduct a user study with occupational therapists and
use Structured Workflows to identify care requirements
for these care recipients.

• We demonstrate the use of SPARCS for building a
robot-assisted feeding system for one of the six care
recipients. Additionally, we exhibit the adaptive nature
of this system through reuse and transfer of its Struc-
tured Workflows across different Building Blocks.

• We identify open challenges in physical robot caregiv-
ing for roboticists through another user study with care
recipients and caregivers.

III. BUILDING BLOCKS OF SPARCS

Designing a caregiving robot involves reasoning about four
Building Blocks – the User, their Human Caregiver, their
Environment, and the Robot. We define these blocks us-
ing functionality and behavioral user models, corresponding
caregiver models, an environment model, and a robot model.

A. User Functionality Model

The User Functionality Model MUF represents a care
recipient’s physical and cognitive functioning abilities.

Physical functioning should capture body shape and struc-
ture, muscle function, joint limits, and involuntary move-
ments. Cognitive functioning should model mental capabili-
ties such as attention, memory, and decision-making abilities.
The Human Caregiver Functionality Model MCF follows a
similar definition, but for the caregiver.

Body shape and structure in MUF can be represented thr-
ough articulated human-shape models such as SMPL-X
[8]. Muscle function can be incorporated using high-fidelity
musculoskeletal models [9]–[11]. Joint limits are pose-
dependent and affected by the mobility limitations of the
user. They can be approximated by existing learning-
based approaches [12,13] trained on user movement data.
Involuntary movements have been previously simulated using
parameterized offset functions [14]. All of the above models
for physical functioning can be adapted to user measurements
such as body dimensions, range of motion (ROM) [15],
and muscle strength [16]. Cognitive functioning of the user
can be characterized using measures such as MMSE [17]
or SLUMS [18]. The International Classification of Func-
tioning, Disability and Health [19] framework defines body
structures and functions, and is employed by professionals
from various fields including health, rehabilitation, and com-
munity care. It can be used to model MUF more extensively.

B. User Behavioral Model

The User Behavioral Model MUB represents a care recipi-
ent’s intent and preferences, which is necessary for providing
personalized care [20]. The Human Caregiver Behavioral
Model MCB follows a similar definition, but for the caregiver.

Intent can be identified through explicit communication or
implicit inference. Explicit communication can be establish-
ed through an interface, such as speech or a GUI [21]. Im-
plicit inference can be made using Bayesian models [22,23]
or modeling in latent space [24]. Preferences can be global
or task-environment specific [25]. For example, a user may
always prefer the robot to be slow-moving regardless of the
scenario, whereas their preference for the level of autonomy
may be task dependent. Preferences can be user-specified
[26] or modeled using data-driven methods [27].

C. Environment Model

The Environment Model ME represents physical and social
information about the user’s environment. Physical infor-
mation constitutes the surrounding scene and the objects
(including assistive devices) present in it. Social information
records the environment’s social context. For example, it



Fig. 2: Using SPARCS involves the following steps: 1. Instantiate the Building Blocks for human caregiving, 2. Communicate with
stakeholders using SPARCS-box to create the Task Workflow for Human Caregiving, 3. Instantiate the Building Blocks for robot caregiving,
4. Propose the Task Workflow for Robot Caregiving and incorporate feedback from stakeholders using SPARCS-box, and 5. Implement the
Action Workflow for Robot Caregiving. Image shows ROBEAR from RIKEN.
could be an intrapersonal setting involving only the care-
recipient and their caregiver, or an interpersonal setting with
family members, or a community setting [28].

Physical information is necessary for most robotic appli-
cations. Environment scenes can be represented using topo-
logical maps and semantic point clouds, whereas objects can
be encoded using Unified Robot Description Format (URDF)
files [29]. Physical information can also be represented using
more detailed data structures such as 3D scene graphs [30].
Social information can be captured through theory of mind
approaches [31] or data-driven methods [32].

D. Robot Model

The Robot Model MR represents the hardware specifica-
tions, kinematics and dynamics, visual and collision model,
and onboard sensing capabilities of the robot. It also provides
access to the raw sensor data. It is important to explicitly
model the robot as it affects ADL assistance [28].

URDFs are commonly used to represent many of the
aforementioned attributes. MR can consist of these along
with other configuration files that contain information on
sensors and their metadata.

For the experiments in this paper, we initialize each
Building Block M : K→V as a dictionary where K and
V are mutable sets of keys and values, respectively. K
contains keywords corresponding to the attributes of the
Building Block. V contains instantiations of these attributes.
For example, in case of MUF, K may contain keywords
like “Active ROM Neck Flexion” or “Passive ROM Neck
Extension” with corresponding values stored in V.

IV. STRUCTURED WORKFLOWS: WHATS AND HOWS OF
ROBOT CAREGIVING

Given the Building Blocks, how do we enable the robot to
provide assistance for the entire duration of an ADL? This
requires understanding the whats that the robot must address
in the caregiving scenario. We call these whats, i.e, the set
of tasks, the Task Workflow for Robot Caregiving.

While creating the Task Workflow for Robot Caregiving,
roboticists must consult other stakeholders who have ex-
pertise in caregiving. However, many of these stakeholders
have no experience with robotics. They cannot propose robot
caregiving workflows directly. Therefore, we advocate first
getting their insights on the corresponding human-human

caregiving scenario. We call this the Task Workflow for
Human Caregiving. Roboticists can then use this information
to propose an initial Task Workflow for Robot Caregiving, and
incorporate feedback from other stakeholders on it.

Once the Task Workflow for Robot Caregiving is finalized,
the focus can shift to answering how a robot can perform
the constituent tasks. We call this implementation workflow
the Action Workflow for Robot Caregiving. The two Task
Workflows and this Action Workflow are jointly referred to
as Structured Workflows.

What would be a good representation for Structured
Workflows? The representation must allow enough detailing
to capture task-related considerations. For example, when
feeding Morgan, his caregiver applies downward forces on
Morgan’s tongue to avoid gag reflex. At the same time,
the representation should be hierarchical such that these
details can be gradually uncovered as we move through
various layers of abstraction. Hierarchy will also promote the
reusability of similar subroutines across different caregiving
scenarios. For example, the subroutine of lifting a user’s leg
while dressing with pants can be reused for lifting their
leg during a sponge bath. The representation must also
support the specification of concurrent tasks like wiping off
water from the user’s eyes while applying shampoo on their
head. Finally, the representation must be easy to understand
and update for facilitating valuable discussions among all
stakeholders.

Hierarchical State Machines (HSMs) [33] satisfy all of the
above requirements. They offer an intuitive visual formalism
for complex systems with various levels of abstraction. We
propose to use HSMs as the representation for both Task and
Action Workflows. Depending on the layer of abstraction,
states of this machine define the routines or how they are
carried out at the corresponding level of detail. Each state
has pre-conditions and post-conditions that govern transitions
in and out of it.

We define the abstractions for the two Task Workflows in
a top-down manner:

Activity → Composite Task → Task
An Activity is an instantiation of a given ADL. It maps to
a set of Composite Tasks depending on the User Function-
ality Model and the initial state of the Environment Model.
Composite Tasks further split into Tasks conditioned on all
the Building Blocks.



Fig. 3: Snippet of a Structured Workflow for robot-assisted feeding
showing all the layers of abstraction.

In case of Task Workflow for Robot Caregiving, we map the
constituent Tasks to their corresponding hows, i.e., the Action
Workflow for Robot Caregiving. We define the abstractions
for Action Workflows as:

Composite Skill → Motor/Perceptual Skill
Each Task maps to a set of Composite Skills. Composite
Skill further comprises Motor and Perceptual Skills. Motor
Skills represent the robot’s ability to reason about its physical
movements. Perceptual Skills represent the robot’s ability to
interpret sensor data. Each layer of abstraction in Structured
Workflows is well-scoped with respect to its parent as detailed
on our website [34]. Figure 3 shows a snippet of a Structured
Workflow for robot-assisted feeding.

V. SPARCS-BOX: BRIDGING THE GAP BETWEEN
ROBOTICISTS AND CAREGIVING COMMUNITY

Building Structured Workflows requires roboticists to con-
sult other stakeholders who have the required domain knowl-
edge in caregiving. However, this is currently challenging
due to limited access to stakeholders. To alleviate this
problem, we propose SPARCS-box [7], a web-based platform
that facilitates discussion between all stakeholders.

SPARCS-box allows stakeholders to sign up and propose
caregiving scenarios of their choice. A caregiving scenario
can be specified by detailing the Activity and its Building
Blocks. Stakeholders can collaborate on the platform to
design its Task Workflow for Human Caregiving. Roboticists
can then use this information to propose the corresponding
Task Workflow for Robot Caregiving. They can get feedback
on it from other stakeholders on the platform. Once this
workflow is finalized, roboticists can work on well-defined
robot caregiving problems. They can pick Tasks from this
workflow and build Skills that contribute to the Action
Workflow for Robot Caregiving. We provide more details on
all the functionalities of SPARCS-box on our website [34].

VI. IMPORTANCE OF USER MODELING IN SPARCS

Physical robot caregiving requires instantiating detailed
User Functionality Model MUF and User Behavioral Model
MUB. These models help in building more effective and
personalized systems. To illustrate this, we consider bite
transfer and bite sequencing for a robot-assisted feeding
activity with a wheelchair-mounted robot arm. Bite transfer
involves transferring a food item from a utensil into the
mouth of a care recipient. Bite sequencing involves deciding
the next food item to feed a care recipient. We demonstrate

how algorithms that leverage user-informed a) MUF for bite
transfer and b) MUB for bite sequencing perform better than
baselines.

A. Leveraging MUF for Bite Transfer

To show the effect of MUF for bite transfer, we select the
user Natalia (Table I) for our experiments.

Experiment setup: Our bite transfer policy transfers a food
item from its initial fixed position facing Natalia to near her
mouth. Her head pose is denoted by huser. We use active
ROM data for her neck to instantiate the manifold HMUF of
attainable head poses. We denote the set of all head poses
attainable by an individual with full neck mobility by Hall.
We consider the test set spanning all possible huser ∈ HMUF .

Methods: We compare three bite transfer control policies:
(i) Fixed [35] which executes a trajectory to an assumed fixed
head pose hfixed ∈ HMUF , (ii) Baseline which uses Hall, and
(iii) MUF-informed which uses HMUF .
MUF-informed begins with sampling a set Hcand com-

prising candidate head poses from MUF where the bite
transfer can happen. Hcand also includes huser and hfixed.
These poses are ordered according to relative angle from
huser. The algorithm sequentially iterates over each sample
in Hcand. For each head pose sample hcand ∈ Hcand, the
corresponding end effector goal pose xgoal is found. Natalia
aligns her mouth opposite to the fork while taking the food
item. Thus, xgoal is assumed to be at a fixed transform to
hcand. We then use task-space-region planner [36] to find a
collision-free trajectory from the initial configuration of the
robot to xgoal. If the trajectory is successfully found, it is
returned. If no trajectory is found even after iterating over
all the samples, the algorithm terminates.

Baseline follows a similar approach. However, as it does
not have access to HMUF or hfixed, it instead constructs
Hcand using huser and head poses sampled from Hall.

Metrics: Performance of the above methods is averaged
over ten seeds for the test set of sampled huser and evaluated
on two metrics. (1) Success rate, which is the percentage
of test samples where the bite transfer control policy can
generate a feasible trajectory. A trajectory is said to be
feasible if it is collision-free and reaches a pose that results
in successful bite transfer. (2) Relative angle by which a user
has to move their neck to take the bite off the fork.

Results: Among the compared policies, MUF-informed can
always successfully find a feasible control policy and re-
quires the smallest neck movement (Fig. 4). Our experiments
illustrate that access to user-informed MUF leads to more
efficient physical robot caregiving.
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Fig. 4: Fixed and MUF-informed policies have a high bite transfer
success rate, while the latter also results in minimal neck movement.



B. Leveraging MUB for Bite Sequencing

We show the effect of modeling MUB for bite sequencing
on user satisfaction. Among a set of candidate models for
capturing MUB, we perform a user study to identify the
model that has the highest overall user satisfaction.

Experiment setup: We consider a meal consisting of three
bites each of four unique food items – banana, kiwi, grape,
and carrot. Assuming the user eats one item at a time and
consumes all the food items, the bite sequence for a meal is
an ordered sequence of these food items. We perform a user
study with 14 participants. For each participant, we initially
collect two data points. First, an affinity score ∈ [1, 5] for
each food item that implies how much they like it. Second,
their high-level eating preference among (a) I would save
my favorite food for the last, (b) I would eat my favorite
food first, and (c) I prefer to mix and match. We then ask
the participants to record their bite sequences for six meals.
Using this data, the goal is to learn a preference model as
part of MUB and use it for predicting the bite sequence during
the seventh meal.

Methods: Our approach comprises (i) generating simulated
bite sequences for a user using their affinity score and high-
level eating preference, (ii) training a hidden Markov Model
(HMM) with discrete emissions using the simulated data, and
(iii) updating the model using the six bite sequences obtained
from the user. We use HMM-simulated (HS) to refer to the
model obtained after (ii) and HMM-online (HO) for the final
updated model after (iii). We compare with a baseline that
randomly selects food items.

Metrics: Performance of the above methods is evaluated
on two metrics. (1) Prediction accuracy during the seventh
meal. This is calculated by presenting the predictions from
all the methods as choices to the participant and comparing
the predictions with the item selected by the participant. (2)
For each method, we generate a bite sequence assuming the
participant always chooses the item predicted by that method,
and ask them to provide a satisfaction rating ∈ [1, 5] for the
generated sequence.

Results: We perform Kruskal-Wallis H-tests and Tukey
HSD post-hoc tests and observe that HO significantly out-
performs other methods in both accuracy and satisfaction
rating (Fig. 5). This user study demonstrates that modeling
the user preferences for bite sequencing and adapting it to
user data leads to improved satisfaction. Refer to our website
[34] for more details on the user study.
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Fig. 5: HMM-online HO outperforms other methods in both accu-
racy and satisfaction rating. ∗, ∗∗, ∗∗∗ denote statistically signifi-
cant differences with p0.05, p0.005, p0.0005 respectively.

VII. SPARCS IN PRACTICE: IDENTIFYING CARE
REQUIREMENTS AND BUILDING A CAREGIVING ROBOT

SPARCS is a framework for building physical caregiving
robots. Using SPARCS involves the following steps (Fig. 2):
A. Identifying care requirements:

1. Instantiate Building Blocks for human caregiving.
2. Communicate with stakeholders using SPARCS-box to

create Task Workflow for Human Caregiving.
B. Building a physical caregiving robot:

3. Instantiate Building Blocks for robot caregiving.
4. Propose Task Workflow for Robot Caregiving and inco-

rporate feedback from stakeholders using SPARCS-box.
5. Implement Action Workflow for Robot Caregiving.

We demonstrate each of these steps in this section. For
steps 1 and 2, we consider six care recipients with varying
functional abilities (Table I). We instantiate various caregiv-
ing scenarios for each of these care recipients and identify
their care requirements (Sec. VII-A). For steps 3, 4, and 5,
we consider one of the above identified scenarios – robot-
assisted feeding of bite-sized food items to Natalia while she
is watching television (Sec. VII-B).

A. Identifying Care Requirements for Six Care Recipients

We consider six care recipients with different functional
abilities to capture variability in care requirements (Table I).
Step 1. Instantiate Building Blocks for Human Caregiving:

For each of the six care recipients, we instantiate corre-
sponding User Functionality Model MUF, User Behavioral
Model MUB, Caregiver Models (MCF and MCB), and Envi-
ronment Model ME. We collect clinical data for information
on MUF (Fig. 6) – body dimensions, weight, active and
passive ROM [15] and manual muscle testing [16] – along
with textual descriptions, and videos of non-disabled medical
professionals simulating the functional abilities of these care
recipients. For each care recipient, we look at ADLs – feed-
ing, dressing, bathing, and transferring. Among these ADLs,
we identify scenarios they require assistance with based on
their functional abilities. We identify a total of 19 caregiving
scenarios and provide the corresponding Building Blocks.
TABLE I: Information for the six care-recipients. We use initials of
Feeding, Dressing, Bathing, and Transferring to denote their need
for assistance with these ADLs.

Identifier Cause of Disability Needs Assistance
Morgan (he/him) Brainstem Stroke F, D, B, T
Jose (they/them) Spinal Cord Injury (C1-C3) F, D, B, T
Natalia (she/her) Spinal Cord Injury (C4-C5) F, D, B, T
Daniel (he/him) Spinal Cord Injury (C6-C7) D, T
Kim (she/her) Cerebral Palsy D, B, T

Karan (he/him) Left-side Hemiplegia D, T

Fig. 6: Data Collection for Morgan’s MUF, left to right: Active
Range of Motion, Passive Range of Motion, Manual Muscle Testing



Step 2. Create Task Workflow for Human Caregiving:
One should use SPARCS-box to create Task Workflow for

Human Caregiving. For this paper, we conduct a user study
interviewing 9 occupational therapists (2 male; 7 female),
between the ages of 27 and 51. Through this study, we record
Task Workflows for the 19 caregiving scenarios.

The Building Blocks and above workflows for all the iden-
tified caregiving scenarios are publicly available on SPARCS-
box. This information can be leveraged by roboticists to build
robots that can address the identified care requirements.

B. Building a Physical Caregiving Robot

In this section, we focus on the scenario of feeding Natalia
while she is watching television.
Step 3. Instantiate Building Blocks for Robot Caregiving:

We instantiate the Building Blocks for the above scenario
from the data collected in Step 1 and include our Robot
Model in it.
- Environment Model ME: Natalia is sitting at the dining
table on a wheelchair with a robot arm mounted beside its
right armrest. The dining table is in her living room in-front
of the television. There is a plate in front of her, consisting
of solid bite-sized food items. This scene is captured using
a pointcloud obtained from an RGBD camera. Objects in
this scene are represented using URDFs [29]. The shape and
pose of Natalia’s head is represented using FLAME [37].
- User Functionality Model MUF: Natalia has complete
paralysis in all limbs. She has partial mobility in her neck.
We use the data collected in Step 1 to represent her MUF.
- User Behavioral Model MUB: Natalia prefers the robot to
autonomously take decisions without any input from her, and
shows her intent of taking a bite by opening her mouth. She
tends to focus on the television while eating and thus favors
making minimal neck movements to transfer the food from
the fork to her mouth. Among the set of food items, she
has a preferred order for eating the food items. She expects
the robot to learn this ordering. We use HMM-online (Sec.
VI-B) to model this preference.
- Robot Model MR: We use the Kinova Gen3 6 degrees-
of-freedom (DoF) robot arm with a Robotiq 2F-85 gripper,
holding a custom fork fitted with an ATI Force/Torque sensor.
Step 4. Create Task Workflow for Robot Caregiving:

We build the Task Workflow for Robot Caregiving using
the Task Workflow for Human Caregiving identified in Step 2.
This Activity can be broken down into two Composite Tasks:
(i) Bite Acquisition: acquiring a food item from the plate,
and (ii) Bite Transfer: transferring this food item into the
mouth of the care recipient. Natalia’s MUB specifies that she
prefers the caregiver to feed her without any input. Thus, Bite
Acquisition comprises the Task of the robot autonomously
moving above the plate and then skewering the required food
item. According to Natalia’s MUF, she has partial mobility
in her neck. She can eat the food item off the fork if the
robot brings it to a region within her functional abilities.
Bite Transfer begins with the robot moving to a fixed pose
in front of Natalia such that her head is visible to its camera.

N
ex

t 
B

it
ePickup 

Banana
Is Mouth 

Open?

Fig. 7: Robot assisted-feeding for an individual simulating Natalia
while she watches TV. Top left: Robot performs Bite Acquisition
using SPANet [38]. Top right: It enters Bite Transfer and waits for
the user to open mouth. Bottom left: It moves close to Natalia’s
mouth. Bottom right: Natalia leans forward and takes the bite.

According to her MUB, the robot waits for her to open her
mouth. Once it is open, the robot brings the food item near
her mouth, ensuring minimal neck movement for transfer.
Natalia then leans towards the food item and takes it off the
fork.
Step 5. Implement Action Workflow for Robot Caregiving:

We demonstrate the Action Workflow for Robot Caregiving
with an individual simulating Natalia. For Bite Acquisition,
we deploy SPANet [38] for selecting how to skewer a food
item from a set of candidate skewering actions. For Bite
Transfer, we deploy the MUF-informed policy (described
in Sec. VI-A). The demonstration of our robot feeding an
individual simulating Natalia can be seen in Fig. 7 and found
on our website [34].

VIII. ADAPTING ROBOT-ASSISTED FEEDING TO
DIFFERENT CAREGIVING SCENARIOS

In this section, we perform experiments to exhibit the
adaptability of our system. We show how robot caregiving
scenarios instantiated using SPARCS allow us to reuse and
transfer insights across differing users, environments, and
robot models.

A. User Functionality and Behavioral Models.

We adapt the Structured Workflows for Natalia to Jose
(Table I) while keeping all other Building Blocks fixed:
- New MUF: Jose has severe neck mobility limitations with
partial neck rotation ROM. Unlike Natalia, they require their
caregiver to place a food item inside their mouth cavity for
Bite Transfer.
- New MUB: Unlike Natalia, Jose shows their intent for
wanting a bite by turning towards the robot, and expresses
their consent for the food item to be placed inside their mouth
by opening it. They prefer the food item to be placed one-
third inside their mouth cavity. Similar to Natalia, they expect
the robot to learn their preferred bite sequence.
In the Structured Workflows for this scenario, while Bite
Acquisition remains similar, the Task breakdown for Bite
Transfer changes. Bite Transfer begins with the robot moving
to a fixed pose in-front of Jose such that their head is visible
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Fig. 8: Robot-assisted feeding for an individual simulating Jose.
Top left: Jose watches television. Top right: They show the intent of
taking a bite by looking at the robot. Bottom left: Robot performs an
inside-the-mouth transfer due to Jose’s mobility limitations. Bottom
right: Robot retracts leaving food item inside the mouth.
to its camera. In accordance with their MUB, the robot waits
for them to turn towards the robot and then moves the food
item to in-front of their mouth. Once Jose’s mouth is open,
the robot moves the food item inside their mouth cavity to
successfully transfer the bite. The demonstration of our robot
feeding an individual simulating Jose can be seen in Fig. 8
and found on our website [34].

B. Robot Model.
We consider a different Robot Model MR while keeping

the same user and environment models:
- New MR: We use the Kinova Gen3 7-DoF robot arm with
a Robotiq 2F-85 gripper, holding a custom fork fitted with
an ATI Force/Torque sensor.
As the robot has a similar morphology to the one considered
in Sec. VII-B, the Structured Workflows remain the same.
However, the change in its dimensions and DoF affect its per-
formance in Bite Transfer as shown in Table II. We observe
that the new MR performs better than the previous model
which could be an effect of having better manipulability.

TABLE II: MR comparision (averaged over three seeds)
Robot Arm Success Rate Relative Angle (in rad.)

Kinova Gen3 6-DoF 1.0 0.3996 ∓ 0.0018
Kinova Gen3 7-DoF 1.0 0.3496 ∓ 0.0008

C. Environment Model.
We consider a different Environment Model ME while

keeping the same user and robot models:
- New ME: Natalia is sitting at her dining table on a wheelch-
air with a robot arm mounted beside its right armrest. There
is a plate in-front of her, consisting of solid bite-sized food
items. She is dining along with her friends in a social setting.
While dining in this social setting, Natalia prefers the robot
to bring the food item to a fixed position on her right side for
Bite Transfer. This is to avoid any form of social distraction
due to the robot motion. The demonstration of our robot
feeding an individual simulating Natalia in the new ME can
be seen in Fig. 9 and found on our website [34].ß

IX. OPEN CHALLENGES

As more roboticists get involved in physical robot
caregiving, it is important to identify open problems that one
can work on. Therefore, we reached out to care recipients and

Is Mouth 
Open?

Fig. 9: Robot-assisted feeding for an individual simulating Natalia
in a social dining scenario. Top left: Natalia having a conversation.
Top right: In this ME, Natalia faces the robot and opens her mouth.
Bottom left: Robot moves close to her mouth. Bottom right: Natalia
leans forward and takes the bite.

caregivers to better understand the critical factors that affect
caregiving for ADLs. We used SPARCS to create caregiving
scenarios around them and obtained recommendations on
ADL assistance. We conducted a user study with 8 care
recipients (6 male; 2 female) and 2 caregivers (both female),
between the ages of 21 and 60. All data collection and user
studies in this paper were approved by the Cornell University
Institutional Review Board. Here we list some key open
challenges:

Feeding. While there has been a lot of work on robot-
assisted feeding, many challenges still need to be addressed
for real-world applicability. Through our user study, we
identify four unique challenges in feeding: (i) determining
the level of autonomy because, it is not only personalized to
a user but also to different tasks within feeding, (ii) acquiring
a variety of food items with different physical characteristics
across shape, size, texture, compliance, etc., (iii) designing
the embodiment such that it can potentially perform other
tasks while still being well suited for feeding, and (iv)
determining when to switch between human supervision and
autonomous control with our users preferring to switch to
human supervision at the tail-end of a task (e.g. precisely
aligning to a food item for Bite Acquisition) for finer control.

Dressing and Bathing. Shared autonomy methods purely
based on joystick-based control have been considered viable
for controlling caregiving robots. However, they may not
be feasible for many tasks within dressing and bathing.
For example, when dressing a user with a t-shirt, the user
may not be able to see around and control the joystick due
to occlusion. Thus, a significant challenge here is to build
caregiving robots that allow multiple modes of interfaces to
control the robot. Participants also highlighted that dressing
the lower body is more complex than the upper body. In
most cases, lower body dressing is performed while the
care recipient is lying on their bed. Dressing them in this
state requires high payload capacity and reasoning under
partial observability. These requirements make the physical
interaction in this task particularly challenging. Also, bathing
and dressing tasks would conceivably require a robot to
collaborate with the user and their caregiver(s), and task
allocation during physical caregiving is a major challenge.



Transferring. At first glance, though transferring may
seem to require a robot with high payload capacity, our users
highlight that existing robot hardware can still be used. This
is possible by collaborating with human caregivers to operate
assistive devices such as hoyer lift, sit-to-stand lift, sliding
board, etc. A major challenge is to design intelligent col-
laboration policies, and enable seamless integration between
these robots and other assistive devices. As pointed out by a
care recipient, transferring can begin with coarsely moving
them to a bed or a wheelchair using an assistive device such
as a hoyer lift. The robot can then be used for finer limb-
repositioning to successfully complete this ADL.

X. DISCUSSION

We introduced SPARCS, a framework for physical robot
caregiving. SPARCS enables roboticists to translate real-
world care requirements into guidelines for physical robot
caregiving. Occupational therapists use similar frameworks
when designing caregiving interventions. Compared to these
frameworks, we define the components of SPARCS by
grounding them in robotics. We release SPARCS-box, which
allows roboticists to communicate with stakeholders from the
caregiving community. In the future, we intend to improve
SPARCS-box to make it more accessible and add features
that incentivize stakeholders to use this platform.

SPARCS currently defines Building Blocks and Structured
Workflow in a fairly subjective manner. Though we highlight-
ed some possible ways of representing them, it remains to
be explored what an ideal representation would be. Through
this work, we are taking the first steps towards systematically
structuring this impactful but scattered field of physically
assistive robotics. We hope that our framework will speed
up the progress in this domain, bringing us one step closer
to caregiving robots that can provide long-term assistance.
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