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Efficient Spatial Representation and Routing of Deformable
One-Dimensional Objects for Manipulation
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Abstract— With the field of rigid-body robotics having ma-
tured in the last fifty years, routing, planning, and manip-
ulation of deformable objects have recently emerged as a
more untouched research area in many fields ranging from
surgical robotics to industrial assembly and construction.
Routing approaches for deformable objects which rely on
learned implicit spatial representations (e.g., Learning-from-
Demonstration methods) make them vulnerable to changes in
the environment and the specific setup. On the other hand,
algorithms that entirely separate the spatial representation of
the deformable object from the routing and manipulation, often
using a representation approach independent of planning, result
in slow planning in high dimensional space.

This paper proposes a novel approach to routing deformable
one-dimensional objects (e.g., wires, cables, ropes, sutures,
threads). This approach utilizes a compact representation for
the object, allowing efficient and fast online routing. The
spatial representation is based on the geometrical decomposition
of the space into convex subspaces, resulting in a discrete
coding of the deformable object configuration as a sequence.
With such a configuration, the routing problem can be solved
using a fast dynamic programming sequence matching method
that calculates the next routing move. The proposed method
couples the routing and efficient configuration for improved
planning time. Our simulation and real experiments show the
method correctly computing the next manipulation action in
sub-millisecond time and accomplishing various routing and
manipulation tasks.

I. INTRODUCTION

Objects such as wires, cables, ropes, threads, and sur-
gical sutures can be found in many industrial, surgical,
construction, and everyday settings. In the literature, they
are commonly called Deformable One-dimensional Objects
(DOOs) or Deformable Linear Objects (DLOs). Automation
of tasks involving rigid bodies had been extensively studied
in industrial robotics; however, the need for further automa-
tion of manual tasks is forcing robotics applications to move
towards working with DOOs, raising research interest in
various robotics areas [1], [2], [3].

A crucial part of many robotics applications involving
DOOs is routing [2], [4], [5]. Routing, also known as route
planning, finds a viable path to change the initial state of
a DOO to a goal state. Path in this context depends on
the application and may mean a path in Euclidean space, a
trajectory in the configuration space of the DOO, or a series
of actions performed on the DOO.
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Fig. 1: Routing and manipulation of a deformable one-
dimensional object from the initial configuration in figure (a)
to the goal configuration in figure (f). (a) Initial configuration.
(b-c) Manipulating the cable based on the first iteration of
routing. (d) Resulted configuration after the first round. (e-f)
The second iteration of routing and the final result.

Several representation methods have been used to capture
the state of a DOO in route planning and manipulation
problems. These representations range from spring-mass
models [6] to linear combination of curves [7], [8], and fixed-
length segments [9], [10].
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Planning methods for routing DOOs for manipulation can
be categorized into computational algorithms and approaches
based on learning.

Computational routing methods are generally sampling-
based approaches. These methods sample the space and
use search methods such as Probabilistic Roadmaps (PRM)
and Rapidly-exploring Random Trees (RRTs) for finding the
route from the initial DOO state to the final state. Guo
et al. [4] propose the RRT-BwC (Bi-direction with Constrain)
planning algorithm to plan for aircraft cables assembly in
narrow cabins with obstacles. Their method is based on the
geometric formulation of the objects and the bi-directional
RRT search to route in the high dimensional planning space.
Amato et al. [5] find an approximate route by pre-computing
a global roadmap using a variant of PRM, then refine the
route by constrained sampling and applying adaptive forward
dynamics. Moll and Kavraki [7] propose DOO planning
using minimal-energy curves and a sampling-based planning
method such as PRM. Roussel et al. [11] use quasi-static
and dynamic models coupled with sampling-based methods
to plan for an elastic rod manipulation. Koo et al. [12]
and Ma et al. [13] apply RRT search-based approaches for
routing and manipulation of DOOs. For all these methods,
the solution can be statistically guaranteed, but they suffer
from the curse of dimensionality, and in complex routing
cases, the time and space complexity of the algorithms may
make the algorithms slow and infeasible for many practical
scenarios.

On the other hand, the learning-based methods primarily
consist of learning-from-demonstration approaches, poten-
tially working with any DOO type for any task. However,
they are not generalizable and quickly fail when the experi-
ment setup conditions even slightly deviate from the learning
data [14], [15], [16].

Our contribution is proposing a novel approach to solving
the DOO routing problem that is suitable for both offline and
online routing due to its efficiency and speed. This approach
relies on the geometrical decomposition of the task space
into convex regions. It uses this discretized space to describe
the DOO’s configuration using a compact sequence, which
is simplified from the original 3-D continuous space descrip-
tion. Unlike the existing routing methods that have to find
a solution by exploring a high-dimensional space, our new
spatial representation allows utilizing a high-speed dynamic
programming sequence matching method that reduces the
planning delay to near zero, making it suitable for online
planning for routing and manipulation tasks.

In the next section, we will describe the problem and our
assumptions. Section III presents our spatial representation
method. Section IV proposes our routing approach based on
the described spatial representation method. Section V shows
our experiments and presents our results. Finally, Section VI
discusses the proposed approach and presents the roadmap
for further improvements.

II. PROBLEM DEFINITION

In the rest of this manuscript, we refer to the area where
the task is taking place as work region. We assume that the
exact positioning of a deformable one-dimensional object is
only important inside the work region, and the details of
its positioning outside this region are ignored. Additionally,
we presume that the work region falls within the workspace
of the manipulator robot, and the robot can access all of the
work regions. Moreover, we assume that the work region is a
"free space" with different components occupying some of its
space. All the components’ positions, shapes, and dimensions
are presumed to be known.

The exact positioning of a DOO in the work region is
called its state, which contains the exact places in space
occupied by a DOO.

Given the initial and desired states of a DOO in a work
region, routing is finding the sequence of actions required to
perform on the DOO to change its state from the initial state
to the final state.

The actual DOO state is continuous and needs to be
converted to a discrete spatial representation for robotics
and computer applications. Common different ways of such
representation include sampling equidistant points along the
DOO’s medial axis, fixed-length B-splines, and fixed-length
cylinders connected by spherical joints [4], [9], [17].

We propose to use a more efficient spatial representation
based on the convex decomposition of the work region,
combined with a fast sequence matching algorithm to solve
the routing problem. Our proposed method is completely
independent of the DOO dynamics and tries to embed the
dynamics effects in the state representation. We relax the
problem assuming that the slack of the DOO is not important.
In other words, we assume that the application working with
the DOO is not affected if the DOO has some extra slack
in any area of the work region. For example, suppose a
cable is not laying straight in a region and has a rather
significant bending in a region. In that case, the extra bending
is considered slack, and our algorithm does not consider
it. We define slack as extra curves in DOO that do not
pass around any components or anchor points; the slack can
virtually be eliminated by creating tension in the DOO.

The following sections describe our proposed spatial rep-
resentation and the routing method for DOOs.

III. SPATIAL REPRESENTATION

Let us introduce a graph Gs (called a spatial repre-
sentation graph) to model the spatial representation of a
deformable one-dimensional object passing through a work
region.

The work region should be decomposed into convex sub-
spaces to generate the vertices Vs of the spatial representation
graph Gs. These subspaces are called convex polygons in
2-D and convex polytopes in 3-D spaces. Each of these
subspaces is a vertex in the graph Gs. If the work region
is not enclosed (i.e., if a portion of DOO can lie outside
the work region), a new vertex is added to Vs to represent
the "outside" region. There are many exact and approximate
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Fig. 2: Convex decomposition of an example circuit board.
(a) The original board. (b) The result of convex decomposi-
tion. Each component on the board is used for defining the
convex region vertices. The centroid of each convex region
is marked with a dot.

approaches for convex decomposition, and each can be used
for this work [18], [19], [20], [21]. Figure 2 illustrates the
convex decomposition on an example circuit board. Each
of the components on the board is a node of the convex
polygons generated from the board’s layout.

The generated convex regions allow efficiently defining
subspaces in both 2-D and 3-D. It is desirable to represent
the subspace only in 2-D when possible for simplicity. Much
of the workspace in the finish line of industrial robotics
is on a tabletop which can be approximated as a 2.5-D
space. Meaning two dimensions are far more significant than
the third dimension. There are specific scenarios where a
3-D work region can be simplified as a 2-D region with
additional 3-D "tunnel"-like components such as bridges,
passes, and tunnels. To allow the 2-D representation for
these work regions, we can add a vertex to Vs for each of
the entrances of these components. Figure 3 shows all the
vertices constructed from the example board of Figure 2(a)
with the yellow dots representing the vertices of the entrances
of the tunnel components.

Once all the vertices Vs are defined, the edges Es for the
spatial representation graph Gs can be computed using the

Fig. 3: The vertices Vs of the spatial representation graph
Gs constructed from the example board in Figure 2(a). The
tunnel entrance vertices are depicted by yellow dots. Note
that the outside region vertex is omitted in the illustration.

following rules:
• Vertices from the neighbor convex regions (convex regions

sharing a side) are connected with an edge.
• Convex regions with a side not shared with any other

convex region (i.e., convex regions surrounding the work
region) are connected to the outside vertex.

• Vertices for entrances of a tunnel component are connected
to each other.

• Each vertex for the tunnel entrances is connected to the
vertex of the convex (or outside) region that it is lying on.
Figure 4 shows the spatial representation graph Gs con-

structed for the circuit board of Figure 2(a).
Without the loss of generality, we assume that the size of

Vs is n+ 1, with the vertices numbered from −1 to n− 1,
and −1 reserved for the outside vertex.

Having computed the graph Gs, a DOO lying in the work
region or passing through it can be represented by an ordered
sequence C of the vertex numbers it is passing through. We
call this sequence representing the DOO as configuration of
DOO. Note that if the DOO is bidirectional (does not have a
pre-assigned head and tail), it can have two sequences for the
same configuration that are reverse of each other. For exam-
ple, the configuration of the DOO drawn on the circuit board
in Figure 5 is C = (−1, 1, 27, 28, 11, 4, 1, 6, 4, 15, 6, 9,−1)
or its reverse. Note that if the graph Gs is computed correctly,
every two consecutive vertices in C should have an edge in
Es.

Based on the assumptions of the problem (see Section II),
the extra slack of a DOO in each region is not encoded
into its configuration. However, the extra slack is encoded if
the DOO goes through some neighboring regions and comes
back (e.g., if the DOO "touches" the neighbor convex region
while passing through a convex region). Such instances are
encoded as palindrome subsequences (i.e., subsequences that
are the same if read backward or forward). Removing such
subsequences may be desirable depending on the application
and simplifies the configuration C of a DOO in the work
region.



Fig. 4: The spatial representation graph Gs computed from
the example board of Figure 2(a). For simplicity, the edges
connected to the outside vertex are not depicted here.

Fig. 5: An example DOO passing through the spatial repre-
sentation graph vertices of Figure 4.

We should note that the idea of convex decomposition in
planning has been explored in other contexts before [22],
[23], [24]. However, it is used differently here for defining
the DOO configuration rather than planning itself.

IV. ROUTING

Assume that the current configuration C0 of a deformable
one-dimensional object in a work region is provided along
with the desired goal configuration Cg of the DOO.

The problem is to route the DOO in the work region from
the current configuration C0 to the goal configuration Cg .
A naive solution to the routing problem is to completely
undo C0 into a "free" DOO, then apply Cg configuration
by passing through all the vertices in Cg . However, this
solution is inefficient and requires the maximum number of
manipulative actions. A more efficient approach is to keep
the matching areas between the current and goal configura-
tions and only manipulate what is necessary to reduce the
number of manipulative actions.

We propose utilizing the sequence matching algorithms to
minimize the number of actions required to change from C0

into Cg . Let us assume that the manipulator supports two
motion primitives: 1) pick a DOO at a specific point, and 2)

place the picked DOO at a specific point in the work region.
Then the following actions on the configuration sequences
can be applied:
• Replacing the ith element si in C0 with the jth element gj

in Cg: Pick the DOO where it is passing through vertex
si and place it at vertex gj .

• Removing the ith element si in C0 that does not correspond
to an element in Cg: Remove the DOO from region si.

• Inserting the jth element gj in Cg that does not correspond
to an element in C0: Adding (i.e., stretching) the DOO to
region gj .
With these three actions, we propose modifying the well-

known Levenshtein sequence distance algorithm [25] to
obtain the manipulation actions required for routing.

The original Levenshtein algorithm computes the mini-
mum required edits (i.e., replacement, deletion, and inser-
tion) to convert the initial sequence to the final sequence.
To return this minimum distance, Levenshtein’s dynamic
programming method computes a matrix that retains the
minimum number of edits required for converting the first
i elements of the initial sequence to the first j elements of
the final sequence. While the algorithm itself only computes
the minimum number of edits, the types of edits can be
extracted by backtracing this matrix once the algorithm is
finished. Note that these edits are not unique, and backtracing
will only output only one of the feasible solutions with the
minimum number of actions.

To use the Levenshtein algorithm for the routing problem,
the following modifications are required:
1) When comparing two elements si and gi, they match if

they are the same vertex number (i.e., si = gi). However,
if they are both −1 (the "outside" vertex), they only match
if there is a common neighbor for them in the sequence
(e.g., if si−1 = gi+1). In other words, the two outside
regions are considered the same only if they are next to
the same vertices. That same vertex may occur before or
after −1.

2) The cost for each action is set to 1. However, for a tunnel-
like component, the action cost of either of the operations
depends on how many vertices come before and after it.
In other words, for the ith element in the sequence of size
n, the cost will be 2×min(i−1, n− i)+1. For example,
to remove the DOO from a tunnel-like region, it must
free either the start of the DOO or the end of the DOO
and put everything back again, bypassing the tunnel.

If the DOO is bi-directional, the algorithm should be
repeated with one of the sequences reversed to get the least
number of actions. Then, backtracing can give the actions
needed to perform on the DOO to change its configuration
from C0 to Cg . The time and space complexities of the
algorithm are O(nm), where n and m are the lengths of
the current configuration (|C0|) and goal (|Cg|) configuration
sequences. Figure 6 shows the routing actions for a DOO to
get from its current configuration to the goal configuration.

For realizing the computed actions, a single manipulator
can act as below:
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Fig. 6: Routing of a deformable one-dimensional object from
the current configuration to a goal configuration. (a) The
current (purple) and goal (pink) deformable objects drawn on
the example board of Figure 2(a). (b) The result of routing
from the current to final configuration. Red and cyan arrows
show removal and move (replacement) actions, respectively.

• For replacement of element si in C0 with element gj in
Cg: Pick the DOO where it is passing through vertex si
and place it at vertex gj .

• Removing element si in C0: Pick the DOO where it is
passing through vertex si, and place it at the point where
the goal DOO crosses from gj−1 to gj .

• Inserting element gj in Cg: Pick the DOO where it is
crossing si−1 into si, and place it at (i.e., stretch it to)
vertex gj .
The details on how these actions are implemented depend

on the motion primitives of the robot and the environment.
We call the point on the DOO where the picking happens

as picking point and the points where the two sequences
match (i.e., no action is required) as fixed points. If more
than one manipulator is available, the second manipulator
can grab the closest fixed point before the picking point,
and the third manipulator can grab to the closest fixed point
after the picking point to prevent these points from moving.

The proposed routing algorithm does not incorporate the

DOO dynamics and, therefore, cannot understand the result
of the actions taken by the manipulator on the whole DOO
configuration. To mitigate the lack of dynamics knowledge,
routing and manipulation action can be performed iteratively
until the current configuration matches the goal configura-
tion. A single routing and then a manipulative action is
performed at each iteration to get the DOO closer to the
goal configuration.

V. EXPERIMENTS AND RESULTS

To test the proposed method, we implemented it for a
routing and manipulation task. The task includes a single-
arm manipulating a cable on the circuit board of Figure 2(a)
to change its current configuration to a goal configuration.
This board is originally designed for task #3 of the Assembly
Performance Metrics and Test Methods by the National
Institute of Standards and Technology (NIST) to measure
the capability of robotics systems for performing advanced
manipulation on cables [26] and later adopted for the Robotic
Grasping and Manipulation Competition in IROS 2020.

We performed many simulation experiments and several
experiments with different settings on our robot. Each ex-
periment included several iterations of routing and a manip-
ulative action (i.e., pick and place actions) until the cable
configuration had matched the given goal configuration.

We performed 200 simulation experiments, where we
randomly placed a 0.3-0.5 m cable on the 0.38 m NIST
board and randomly (in 170 tests) or manually (in 30 tests)
placed a cable of the same length on the board as the goal
configuration. The average number of actions over all the
experiments was 4.34, and the maximum number of actions
was 9. The processing time for each routing step was less
than 1 ms for all the experiments. Figure 6(b) illustrates an
iteration of our simulated routing experiments.

For the robot experiments, we manually placed the ca-
bles on the NIST board. We considered automated layout
detection for this board using real-time rectangle and ellipse
detection [27] methods, but used manual specification by the
user to save the implementation time. At each step of the
planning, we utilized the DOO detection algorithm proposed
in [9] to automatically detect the cable and extract its con-
figuration on the circuit board. Then the goal configuration
was manually given to the system. Our experiments showed
that the method could also extend to real systems. Figure 1
shows the routing and manipulation experiments using our
Universal Robots UR3 arm robot.

VI. CONCLUSIONS AND FUTURE WORK

We presented a novel method for the spatial representation
and routing of a deformable one-dimensional object that
is efficient and fast. The proposed method decomposes the
work region into convex polygons and polytopes. Then it
uses the decomposition to encode the configuration of a DOO
in this work region. The resulting configuration is a sequence
of the regions the DOO passes from, effectively simplifying
the routing algorithm to a modified sequence matching
method with a quadratic time and space complexity. The



iteration of our routing algorithm with manipulative actions
can accomplish the desired routing and manipulation tasks.
The low planning time and overhead makes it ideal for
offline as well as online planning problems for routing and
manipulation. Our experiments showed that the method could
correctly plan the manipulation actions and achieve goal con-
figurations of the DOO from various initial configurations.

The proposed approach is still in its infancy and can be
extended further to cover many real-world tasks that are
currently being addressed using slower and less efficient
methods such as sampling-based planners. In its current
iteration, this method can be used in tasks where the en-
vironment can be divided to separate convex regions and for
a manipulator with two primitive actions: pick a point on
the DOO, and place it in a specific point. The algorithm
can be easily extended to include more manipulator motion
primitives, such as wrapping the DOO around a component
or passing through loops to create knots.

Finally, the proposed routing and manipulation algorithm
ignores the dynamics of a cable. Although the routing algo-
rithm itself can work well independent from the dynamics,
in our real-world tests, we realized that considering the
dynamics during manipulative tasks can help the system
with performing the pick/place tasks. Additionally, further
incorporating simple dynamics into the routing method’s
cost calculation in the future can reduce the number of
actions (i.e., iterations) required for performing a rout-
ing/manipulation task by more accurately predicting the
result of the manipulation task at each iteration.
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