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Abstract— Domain shifts, such as appearance changes, are a
key challenge in real-world applications of activity recognition
models, which range from assistive robotics and smart homes
to driver observation in intelligent vehicles. For example, while
simulations are an excellent way of economical data collection, a
Synthetic→Real domain shift leads to > 60% drop in accuracy
when recognizing Activities of Daily Living (ADLs).

We tackle this challenge and introduce an activity domain
generation framework which creates novel ADL appearances
(novel domains) from different existing activity modalities
(source domains) inferred from video training data. Our frame-
work computes human poses, heatmaps of body joints, and
optical flow maps and uses them alongside the original RGB
videos to learn the essence of source domains in order to
generate completely new ADL domains. The model is optimized
by maximizing the distance between the existing source ap-
pearances and the generated novel appearances while ensuring
that the semantics of an activity is preserved through an
additional classification loss. While source data multimodality is
an important concept in this design, our setup does not rely on
multi-sensor setups, (i.e., all source modalities are inferred from
a single video only.) The newly created activity domains are then
integrated in the training of the ADL classification networks,
resulting in models far less susceptible to changes in data distri-
butions. Extensive experiments on the Synthetic→Real bench-
mark Sims4Action demonstrate the potential of the domain
generation paradigm for cross-domain ADL recognition, setting
new state-of-the-art results. Our code is publicly available at
https://github.com/Zrrr1997/syn2real_DG.

I. Introduction

When roboticists apply visual activity recognition models
in practice, they will quickly discover the problem of domain
shifts. In fact, a model is rarely deployed under conditions
identical to the ones in the training set, as we face changes in
illumination, camera type and -placement [1], [2]. One do-
main change vital in robotic ADL assistance is the transition
from synthetic to real data, as simulations ease the burden
of intrusive data collection and privacy concerns in domestic
environments [3], [4], [2], [5]. Especially in the light of the
ageing population, domain-invariant recognition of Activities
of Daily Living (ADL) is an important element for household
robot perception and human-tailored planning [6], [7].

Recently, the paradigm of novel domain generation has
been proposed as a way of extensive data augmentation for
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Fig. 1: An overview of the proposed Synthetic→Real activity recognition
pipeline improved through neural network-based generation of novel activity
domains. In addition to synthetic RGB videos, the training data is enriched
with modalities explicitly extracted from videos (source modalities) and
action representations from the novel modalities generated with our model.
Such multimodal diversification of the training samples significantly miti-
gates adverse effects of the Synthetic→Real domain shift.

image recognition, leading to more domain-invariant models,
e.g., for digit classification [8]. At the same time, activity
analysis allows a plethora of true modalities based on human
movement. Apart from raw RGB videos, modalities such as
optical flow or body poses can be automatically extracted and
used as source domains for learning to generate more diverse
and activity-specific novel domains. Despite its high potential
for mitigating domain shifts, such domain generation has
been overlooked in activity analysis and is therefore the main
motivation of our work.

We aim to make a step towards ADL recognition less
susceptible to changes in data distribution and introduce a
generative framework enriching the training data through
generation of previously unseen activity domains. In our
approach, multimodal action representations derived, e.g.,
from body pose, joint heatmaps and optical flow, are used
to learn creating novel activity domains by maximizing the
distance between the existing modalities (source domains)
and the generated appearances (novel domains) while ensur-
ing that the semantics of an activity are preserved through
an additional Classification Loss. The newly generated novel
modalities are then mixed with the initial source modalities
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Fig. 2: Architecture of our multimodal framework for generation of novel ADL modalities. First, multiple modalities related to the body pose and movement
are extracted and used alongside the original RGB videos as our source modalities Xk . Activity examples in these source modalities are then fed into the
Domain Generator (DG) as single images in order to generate novel modalities. The distribution divergence between each source-novel domain pair is
estimated via the Novelty Loss, whereas the Diversity Loss computes the divergence for each novel-novel domain pair. The source domains and the generated
novel domains are both used as inputs to the Action Classifier, which makes separate predictions for both. The same generator is used to reconstruct the
original input and the Reconstruction Loss is computed. The error signals for training our model via backpropagation are depicted as red arrows.

and constitute a diversified version of the training set (see
overview in Figure 1). Multimodality is a central concept
in our framework and we believe that the novel domain
generation paradigm suits activity analysis especially well, as
body pose and movement dynamics enable a wider range of
existing source modalities, which in return encourages higher
diversity of the generated novel domains. Nevertheless, our
framework does not rely on multi-sensor setups since all
source modalities are inferred from RGB videos only.

The problem of domain shift on the Synthetic→Real
benchmark is presented in Table I. The current state-of-
the-art model is trained on the synthetic Sims4Action [4]
dataset and experiences a large domain gap of ≈ 57% when
evaluated on real data. We conduct extensive experiments
on the Synthetic→Real ADL recognition benchmark [4]
and make two observations. Firstly, multimodality itself is
highly beneficial for cross-domain ADL recognition and
using the body pose related data representations alone leads
to a significant performance boost. Secondly, our idea of
generating novel ADL appearances for training data en-
hancement consistently improves recognition results. Our
framework outperforms state-of-the-art results, demonstrat-
ing the potential of multimodal domain generation for human
activity analysis without using any pre-training on real data.

Training: Sims4Action [4] Testing: Balanced Accuracy [%]
Model Pre-training Synthetic Real Domain Gap

S3D [9] Kinetics-400 [10] 84.61† 23.23 61.38
None 56.52 12.40 44.12

I3D [11] Kinetics-400 [10] 81.12 23.25∗ 57.87
None 66.91 10.91 56.00

TABLE I: Current state-of-the-art results for the Synthetic → Real∗ and
Synthetic → Synthetic† benchmarks from Let’s Play for Action [4]. All
four models are trained on Sims4Action. The Synthetic and Real test sets
are Sims4Action [4] and Toyota Smarthome [12] respectively.

Note on our Terminology. Similarly to [13], [14], we define
a domain as a joint distribution PXY over a feature space
X and a label space Y. In our work, we extract multiple
modalities from synthetic data and learn to generate novel

modalities. Since each modality occupies a distinct feature
subspace X

′

and exhibits a unique appearance, we use the
terms modality and domain interchangeably.

II. RelatedWork
A. Recognizing Activities of Daily Living

To effectively interact with people, robots need to accu-
rately perceive the current state of the human. Despite the
impressive progress in general activity classification [15],
[10], [16], [17], [9], [18], [19], [20] and a variety of frame-
works introduced specifically for robotics applications [6],
[21], [22], [23], [24], [25], this task remains very challenging
in robotics, as agents often operate in a dynamic world
where changes in concept-of-interest and data appearances
may occur at any time [26]. In assistive robotics, recognizing
Activities of Daily Living (ADL) is especially interesting and
is often addressed by collecting and labelling new datasets
tailored for the ADLs- and environments-of-interest [27],
[28], [12], [21]. Creating such datasets which intend to real-
istically reflect real-world households requires larger efforts
for sensory setups and data curation which results in datasets
being smaller in comparison to general action classification
benchmarks often created from web data [10], [29]. Method-
ologically, ADL recognition research is strongly influenced
by architectures introduced in general video classification,
with 3D Convolutional Neural Networks (CNNs) [11], [9],
[30] being common backbone architectures [12], [31], but
also more specialized approaches often derived from the
body pose, have been introduced [32], [33], [24]. At the
same time, recent research has raised alarming evidence, that
deep learning-based ADL recognition approaches are very
sensitive to changes in data distribution [4]. Mitigating this
effect by exploring the domain generation paradigm [8] in
the field of ADL recognition for the first time is the main
contribution of our work.

B. Synthetic Human Actions
Given the difficulty of collecting labeled datasets, learning

from simulated data has been researched in many different



fields of computer vision and is also emerging in video-
based learning tasks, for example for pose recognition [34],
[35], [36] and more recently in the domain of human activity
recognition [37], [38], [4], [39], [5]. The latter works focus
on either augmenting existing training data by mixing it with
generated data [37], [40], [5], learning action categories on
synthetic data only [4] or on learning compositions of actions
within virtual domains [38]. [41] make use of a hybrid
approach and combine real videos with rendered synthetic
humans shown from different viewpoints. While synthetic
examples are an excellent alternative to intrusive and time-
consuming ADL dataset creation, the transition from sim-
ulations to real data at test-time comes with a remarkable
performance drop [4] (see Table I). In this work, we focus
on the Synthetic→Real transition in ADL recognition. We
introduce a multimodal framework which leads to more
domain-invariant recognition models by learning to generate
new appearance versions of the synthetic training samples
and by using them to diversify the training dataset.

C. Domain Generalization and Adaptation

Unsupervised domain adaptation methods learn a task on
a source domain and try to solve this task on a target
domain by learning a mapping given unlabelled data from the
target domain, a task which has seen significant development
in recent years in the field of video-based learning [42],
[43], [44], [45], [46], [47], [48], [49]. In contrast, domain
generalization describes the ability to maintain performance
on a target domain despite not having access to any training
data from this domain. Recently, Zhou et al. [8] proposed
the domain generation paradigm, which is fundamentally
different from previous work, as it learns to map source data
to unseen, newly generated domains. Our work extends the
image-based technique of [8], for the first time exploring it
in the scope of ADL recognition and video recognition in
general, which opens many additional possibilities of ADL-
related source modalities, such as body poses or optical flow.

III. Multimodal Generation of Activity Domains

In this section, we introduce a multimodal framework for
better domain generalization in activity recognition, aiming
to lighten the impact of appearance changes when moving
from synthetic ADL training data to real-world robotic
applications. We follow the domain generation paradigm [8]
recently proposed for image recognition, extending it to
the scope of human activity analysis. Conceptually, our
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Fig. 3: Examples of the source Xk (top row) and novel modalities X̃k (bottom
row). H: Heatmaps, L: Limbs, OF: Optical Flow. We use all 8 modalities
Xk ∪ X̃k for training and evaluate our models on Real data.

framework produces novel modalities X̃k by learning to
transform given source modalities Xk and comprises of four
main building blocks: 1) A modality extraction module used
to compute multiple source modalities from the original RGB
video 2) a pre-trained domain classifier DC, 3) an action
classifier AC, 4) and a domain generator DG. As we are using
each extracted modality as a source domain we refer to the
source and novel domains as source and novel modalities.

The task we address is Synthetic→Real domain gener-
alization. We train an action classifier AC on samples from
Synthetic domains xs ∈ Xk ∪ X̃k with action labels y ∈ Y . In
domain generalization, training and test data originate from
distinct probability distributions, in our case xs ∼ psynthetic

and xr ∼ preal, and test samples xr neither have labels,
nor are seen during training. Our goal is to classify each
instance xr in the Real target test domain Xr, which has
a shared action label set Y with the training set. For this,
we utilize the synthetic Sims4Action [4] dataset for training
and the real Toyota Smarthome [12] and ETRI-Activity3D-
LivingLab (ETRI) [21] as two separate test sets.

A. Extracting Source Modalities

The nature of activity recognition and video data in general
allows us to leverage a wide range of modalities, such as
body pose and movement dynamics, which would not be
applicable in conventional image classification. We utilize
four source modalities Xk, k ∈ {0, 1, 2, 3} which are extracted
directly from the training data (i.e., RGB videos). The source
modalities consist of 1) heatmaps of the body joint locations,
2) limbs connecting the joints as lines, 3) dense optical flow
extracted between each two frames, and 4) raw RGB images
(see top row of Figure 3). The heatmaps and limbs are
extracted using the AlphaPose [50], [51], [52] pose detector,
which infers 17 joint locations. The heatmaps modality
h(x, y) at pixel (x, y) is obtained by applying 2D gaussian
maps, centered at each joint location (xi, yi) and weighted
by its confidence ci as seen in Equation 1.

h(x, y) = exp
(
−((x − xi)2 + (y − yi)2)

2σ2

)
· ci (1)

The limbs domain is composed by connecting the joints with
white lines and weighting each line by the smaller confidence
of its endpoints. The optical flow is estimated using the
Gunner-Farneback method [53]. We refer to these modalities
as the four source modalities Xk (see top row in Figure 3).

B. Domain Classifier

The domain classifier DC is trained on the synthetic
Sims4Action [4] to classify the source modalities Xk with

Softmax
L

OF

RGBH: Heatmaps, L: Limbs, OF: Optical Flow

ResNet-18 H

Fig. 4: Domain Classifier (DC): Overview of inference and training. The
DC model is pre-trained end-to-end on Sims4Action.
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Fig. 5: Domain Classifier: Computation of the Novelty Loss for all source-
novel modality pairs (Xk , X̃k). Note that the Diversity Loss is computed the
same way with all novel-novel pairs (X̃k , X̃l)k,l.

labels k ∈ {0, 1, 2, 3} as shown in Figure 4. Afterwards,
its weights are frozen and it is utilized for training the
domain generator DG. The frozen DC is used to obtain
embeddings from the source Xk and novel modalities X̃k as
seen in Figure 5. The Sinkhorn distance [54] between the
embeddings is utilized as a distribution divergence metric
and it is used to compute the Novelty Loss for each source-
novel modality pair (Xk, X̃k) and the Diversity Loss for all
novel-novel pairs (X̃k, X̃l)k,l (see Equations 2, 3). The error
gradient is propagated back to the domain generator DG and
conditions it to produce novel modalities, which are both
diverse and different from the source modalities.

C. Domain Generator

The goal of the domain generator DG is to extend and
diversify the synthetic training data from Sims4Action [4].
The DG model is trained on the four source modalities Xk to
generate four novel modalities DG(Xk) = X̃k, which should
be as diverse as possible, while remaining semantically and
structurally consistent. The diversity of the new modalities
is enforced by the Novelty and Diversity loss terms LNovelty

and LDiversity. The Novelty Loss maximizes the distribution
divergence between the source and novel modalities, while
the Diversity Loss maximizes the distribution divergence
between each pair of generated novel modalities. The diver-
gence measure we use is the Sinkhorn distance [54] d(·, ·)
between the embeddings obtained by the domain classifier
and is computed as illustrated in Figure 5. To ensure that the
new modalities are dissimilar to the source modalities and
are also dissimilar to each other these two loss terms are
maximized w.r.t. DG as shown in Equations 2 and 3.

LNovelty = max
DG

3∑
k=0

d(X̃k, Xk) (2)

LDiversity = max
DG

3∑
k=0

3∑
l=0

d(X̃k, X̃l) (3)

where k, l ∈ {0, 1, 2, 3}, k , l, and X̃k = DG(Xk).
Furthermore, the domain generator is conditioned to pre-

serve the semantic and structural consistency of the actions in
the novel modalities by minimizing the action Classification
Loss LClass and the Reconstruction Loss LCycle.

LClass = min
DG

3∑
k=0

LCE(AC f (X̃k),Yk) (4)
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Fig. 6: Example of AC training with three modalities (k = 2). The input
sequences are concatenated along the channel dimension C. The action
classifier AC is trained on both the source Xk and novel X̃k modalities
for action recognition and makes separate predictions for both. Note that
the input to the AC model is sequence-based (S = 16) as opposed to the
image-based DC and DG (S = 1). Its frozen copy AC f is pre-trained on the
source modalities from Sims4Action and is only used for the computation
of LClass in Equation 4. The error gradient from AC f flows back to the
novel modalities as its prediction is used to train DG with LClass (Eq. 4).

LCycle = min
DG

3∑
k=0

||DG(DG(Xk)), Xk ||1 (5)

where Yk is the ground-truth action label, LCE is the cross-
entropy loss, and AC f is the frozen action classifier pre-
trained on Sims4Action’s [4] source modalities Xk (explained
in Section III-F). Note that we train on mini-batches. For this
reason, Xk, X̃k,Yk refer to individual batches of size B in all
equations, rather than the whole dataset.

D. Action Classifier

The action classifier AC is firstly pre-trained only on the
source modalities Xk and then trained further on both Xk and
X̃k to assign the correct activity label. This encourages the
model to learn representations in both the source and novel
modalities and results in a larger and a more heterogeneous
training set. The novel modalities increase the diversity of
the training samples as their distribution differences are
maximized by LNovelty and LDiversity, which leads to a more
versatile training dataset. The generation of X̃k can hence be
viewed as a method for data augmentation.

E. Model Architectures

As our action classifier AC, we utilize a 3D-CNN model to
exploit the temporal features in the videos, which are impor-
tant for action recognition [55], [30], [56]. 3D-CNN models
such as the Inflated 3D-ConvNet (I3D) [11] have shown
remarkable performance in recognition for ADL [12], [11].
Our action classification 3D-CNN model is implemented
with the Separable 3D architecture (S3D) [9]. The S3D
model leverages separable convolutions and replaces most of
the 3D convolutions of I3D with cheaper 2D convolutions
to reduce the complexity while boosting the performance



of I3D. For the domain classifier DC we employ ResNet18
[57] to learn to classify all source modalities (see Figure 4).
Lastly, the domain generator DG, which also operates on
single images, is modelled after Zhou et al. [8] and consists
of two down-sampling conv-layers, two residual blocks [57]
with instance normalization [58] and two transposed conv-
layers to up-sample back to the input’s size.

F. Training Procedure

All of our models are trained only on Sims4Action [4].
The AC model is evaluated in the end on the real Toyota
Smarthome [12] and ETRI [21] datasets to test its capability
for domain generalization. The rest of the models are used
only for the computation of loss terms - AC f ,DC, or for
enhancing AC’s training data - DG. The domain classifier
DC is trained on Sims4Action to distinguish the source
modalities Xk as seen in Figure 4. Then the DC model is
frozen and used solely for the computation of LNovelty and
LDiversity as in Figure 5 for the rest of the training.

Before we jointly train the other two models AC and DG,
we pre-train an action classifier on all source modalities
Xk. We then produce two copies of the pre-trained action
classifier - the first copy AC f is frozen and used only to
enforce the semantic consistency of the domain generator in
LClass (see Equation 4). The second copy AC is further fine-
tuned on both the source Xk and novel modalities X̃k with
the cross-entropy loss. Only the AC model is evaluated in
the end on the real Toyota Smarthome and ETRI datasets.

Loss Computation. In each iteration, a sequence of images
is sampled from random chunks of the training videos from
all source modalities Xk. The modality images from the
sequence are concatenated along the channel dimension and
are used to train the AC model. Each individual image
from the sequence is transformed by DG into the novel
modalities X̃k, which are reshaped into image sequences (see
Figure 6 top-left). The novel modality sequences are again
concatenated along the channels and fed to AC and AC f . The
weights of AC f are not updated, but its error is propagated
back to the domain generator to compute LClass as seen in
the red arrows in Figure 6. The Novelty and Diversity loss
terms are computed with the help of the frozen DC model
and the Sinkhorn distance [54] (see Figure 5). Finally the
Reconstruction Loss is computed by iterating over all source
and novel modality images and applying Equation 5. The
final loss function LDG for the DG model is:

LDG = min
DG

λcLClass + λrLCycle − λd(LNovelty +LDiversity) (6)

where λc, λr, λd are balancing parameters for the loss terms.
The AC model is trained on both the source and novel

modality sequences. Hence, the Task Loss LAC is:

LAC = min
AC

3∑
k=0

αLCE(AC(Xk),Yk) + (1 − α)LCE(AC(X̃k),Yk) (7)

where α balances training on source Xk and novel modalities
X̃k and the other terms follow the notation of Equation 4.

Fig. 7: Visualizations using t-SNE [59] embeddings from DG in both, real
and generated ADL domains. All domains are marked with different colors.

G. Evaluation Procedure

Firstly, we evaluate the performance of S3D-based AC
models without our domain generalization method. To in-
vestigate the effect of multimodality, we train 15 AC models
on all

∑4
i=1

(
i
4

)
= 15 source modality combinations from

Sims4Action. We use early fusion via channel concatenation
for each of these combinations. Then, we evaluate all AC
models on the real Toyota Smarthome [12] and ETRI [21]
datasets to estimate their domain generalization capabilities.

Afterwards, we apply our domain generalization approach
to each of these AC models and create two copies of each -
AC and AC f . For each modality combination, we initialize
a new domain generator DG and train it alongside its corre-
sponding AC and AC f models on Sims4Action as described
in Section III-F. A pre-trained domain classifier DC is re-
used in all 15 training sessions. In the end, we evaluate
all the AC models on the real Toyota Smarthome [12]
and ETRI [21] datasets. The motivation for evaluating all
modality combinations is to explore which modalities syn-
ergize well and to show that the novel domains improve
the domain generalization for the vast majority of the 15
modality combinations.

H. Implementation Details

We use the same hyperparameters for all of our training
sessions and experiments. The action classifiers are pre-
trained on Sims4Action’s [4] source modalities for 200
epochs. Then the domain generator and action classifier are
trained jointly on Sims4Action for 50 epochs as described
in Section III-E. The input frame size is 112 × 112 and the
sequence length for the S3D action classifier is S = 16
frames. The input videos are divided into chunks of 90
frames each following the protocol of [4]. During training
we randomly sample 16 consecutive frames from the chunks
and feed them to the domain generator and action classifier.
We utilize the Adam optimizer [60] with η = 10−4, β1 = 0.5,
and β2 = 0.999. For regularization, we employ a weight



decay of λ = 5 · 10−5 for all models. We set λc = λd = 1,
λr = 10, and α = 0.5 for LDG and LAC . The embedding size
of DC is 512 and we set σ = 6 for Equation 1.

IV. Experiments

A. Benchmark Details

We focus on domain generalization between simulated and
real data using Sims4Action [4] as a training dataset. For
testing, we use real data, which originates from the Toyota
Smarthome [12] and ETRI [21] datasets. Sims4Action pro-
vides ten hours of synthetic video material recorded from the
computer game Sims 4, covering 10 basic human actions
of daily living which have direct correspondences in the
two real datasets. Toyota Smarthome [12] contains video
material of 18 subjects performing 31 unscripted activities
of daily living within a single apartment, and ETRI [21]
is composed of 50 subjects performing 55 actions recorded
from various perspectives that robots can be located in a
home environment. However, we use only the 10 action
correspondences to Sims4Action from both real datasets for
our evaluation. We use the official cross-subject test split
from Toyota Smarthome [31], [12], in which 7 of the subjects
are reserved for testing. The same protocol is adopted in the
state-of-the-art results [4] on the Synthetic→Real bench-
mark. For ETRI, we use the unsupervised domain adaptation
protocol from [61] and use the whole dataset for testing. Note
that during test-time we extract the pose and optical flow
modalities from the real test samples so that they match the
input format of the AC network.

As our evaluation data was collected in real house-
holds [12], [21], the number of samples per activity class is
unbalanced and follows a Zipf-like distribution rather than a
uniform one. We therefore focus on the balanced accuracy
(mean per-class accuracy) as our main evaluation metric
and additionally report the unbalanced accuracy (correct
prediction rate among the complete test set). Note, that while
we also evaluate the unbalanced accuracy to be consistent
with [4], the metric is highly biased towards overrepresented
categories in the test set and should be taken with caution
especially in real-life datasets, where the categories are not
evenly distributed. We therefore consider the balanced accu-
racy as a much more reliable and less biased metric, as per-
class-averaged metrics are used in most of the unbalanced
activity recognition datasets [12], [29], [62].

B. Qualitative Analysis

First, we inspect the domain generation results produced
by the domain generator DG provided in Figure 3. The model
has learned to produce novel appearances, which might seem
unusual at first sight, but the activity semantics are preserved
through the additional classification loss LClass. Note, that the
movement typical for the activity is more obvious in video
results, than in still images.

To better understand the learned representations, we visu-
alize the output of the domain generator’s bottleneck layer
with the t-distributed stochastic neighbor embeddings (tSNE)
[59] in Figure 7. The embeddings are produced by sampling

10 random frames from each video from the Sims4Action
dataset for each of the source modalities. Each image sample
is fed to the domain generator and its embedding is used for
the t-SNE visualization. The DG model is then applied again
to the novel modalities X̃k to obtain their embeddings. The
plot in Figure 7 shows that each modality forms an individual
cluster of points. This confirms that the generator has learned
features which help differentiate between all 8 modalities
Xk ∪ X̃k. Furthermore, the modalities span a wider and non-
overlapping distribution in the latent space, i.e. the training
dataset has been diversified by adding the novel modalities
X̃k, which leads to better domain generalization.

C. Quantitative Results
In Table III, we compare the ACs trained only on the

source modalities Xk to the ones which are trained including
the generated novel modalities X̃k. All modalities Xk∪ X̃k are
produced from Sims4Action [4] only. Additionally, we con-
sider all 15 modality combinations and evaluate all models
on the real Toyota Smarthome [12] and ETRI [21] datasets
via the balanced and unbalanced accuracy metrics.

For most combinations, the extension of the training
dataset with novel modalities increases the balanced accuracy
significantly, in some cases by up to 13% points (ETRI: L).
This is especially prevalent in multi-modal settings joined
over early fusion, and we hypothesize that the generation of
additional data alleviates overfitting problems which arise
when training a larger, multi-modal model. Optical flow
(OF) profits the least from this technique when combined
with other modalities, in some cases performing worse
than the baseline. This might be explained by OF’s low
accuracy on the Synthetic→Synthetic benchmark (44%),
i.e. OF is a weak modality on Sims4Action. However,
performance losses in these cases are small in comparison
to the significant gains which are achieved by the other
combinations. We do list unbalanced accuracy as well, which
provides similar results. Note that the improvement depends
on the modality combination and test dataset. However, the
average improvement for the balanced accuracy for Toyota
Smarthome/ETRI is +3.1%/+2.8% and +4.7%/+8.0% for
unbalanced accuracy.

Approach Pre-training Toyota SmartHome Etri Activity
Balanced
Accuracy

Unbalanced
Accuracy

Balanced
Accuracy

Unbalanced
Accuracy

Random Choice None 10.00 10.00 10.00 10.00
Currently reported state-of-the-art results on the Synthetic→Real benchmark

S3D [11], [4] None 12.40 19.95 11.71 13.86
S3D [11], [4] Kinetics-400 [10] 23.25 22.75 23.45 28.57

Other domain generalization methods on the Synthetic→Real benchmark
TA3N [43] ImageNet [63] 14.19 14.44 25.11 35.12
APN [64] ImageNet [63] 22.09 17.19 27.97 37.67
VideoDG [64] ImageNet [63] 25.71 21.12 25.55 41.09

Our model with domain generation (best modality combination)
Ours None 27.73 32.20 29.05 41.88

TABLE II: Comparison of our model to state-of-the-art results on the
Synthetic→Real benchmark [4] and to three additional domain general-
ization methods - TA3N [43], APN [64], and VideoDG [64].

D. Comparison to State-of-the-art and Other Approaches
In Table II we compare the best results achieved by our

approach (i.e., the best modality variants from Table III



Balanced Accuracy Unbalanced Accuracy Balanced Accuracy Unbalanced Accuracy Bal. Acc. Unbal. Acc.

Synthetic→Real Synthetic→Synthetic

Test Set Toyota Smarthome [12] ETRI [21] Sims4Action [4]

Input

Train Set Only Xk Ours: Xk ∪ X̃k Only Xk Ours: Xk ∪ X̃k Only Xk Ours: Xk ∪ X̃k Only Xk Ours: Xk ∪ X̃k Only Xk

Individual
RGB 13.7 13.3 (-0.4) 18.5 17.6 (-0.9) 11.7 15.0 (+3.3) 13.9 15.6 (+1.7) 61.8 59.4
Heatmaps (H) 20.2 25.8 (+5.6) 20.0 23.7 (+3.7) 15.2 17.9 (+2.7) 22.2 40.9 (+18.7) 71.4 70.4
Limbs (L) 22.0 27.7 (+5.7) 21.9 21.7 (-0.2) 16.1 29.1 (+13.0) 16.2 38.7 (+22.5) 75.1 74.4
Optical Flow (OF) 21.3 22.6 (+1.3) 31.5 32.2 (+0.7) 11.6 14.7 (+3.1) 13.5 17.5 (+4.0) 44.5 43.7
Early Fusion by Channel Concatenation
RGB + H 10.3 20.7 (+10.4) 6.1 22.8 (+16.7) 7.3 12.9 (+5.6) 7.6 14.8 (+7.2) 76.8 77.2
RGB + L 13.5 18.5 (+5.0) 8.2 18.6 (+10.4) 13.4 15.7 (+2.3) 15.9 23.5 (+7.6) 81.5 81.0
RGB + OF 19.4 17.0 (-2.4) 31.0 30.4 (-0.6) 14.6 14.1 (-0.5) 20.9 41.9 (+21.0) 70.4 72.3
H + L 15.7 25.3 (+9.6) 15.7 20.2 (+4.5) 15.0 17.8 (+2.8) 16.5 17.9 (+1.4) 57.8 50.1
H + OF 16.7 23.7 (+7.0) 20.0 24.6 (+4.6) 12.6 14.2 (+1.6) 15.7 17.9 (+2.2) 71.1 64.7
L + OF 19.7 19.8 (+0.1) 24.8 22.1 (–2.7) 11.4 12.5 (+1.1) 13.4 16.7 (+3.3) 72.7 71.2
RGB + H + L 15.3 13.9 (-1.4) 10.0 23.2 (+13.2) 5.8 12.2 (+6.4) 5.8 13.8 (+8.0) 73.7 73.1
RGB + H + OF 11.6 13.4 (+1.8) 13.0 29.5 (+16.5) 12.8 14.2 (+1.4) 12.5 22.3 (+9.8) 70.7 73.1
RGB + L + OF 12.0 14.1 (+2.1) 15.0 13.5 (-1.5) 11.5 10.1 (-1.4) 15.9 17.8 (+1.9) 83.0 79.8
H + L + OF 25.1 20.7 (-4.4) 36.8 22.9 (-13.9) 15.2 12.5 (-2.7) 13.9 15.6 (+1.7) 77.1 72.9
RGB + H + L + OF 12.1 18.6 (+6.5) 7.0 27.4 (+20.4) 10.3 13.0 (+2.7) 9.1 18.9 (+9.8) 66.8 65.1

TABLE III: Evaluation results for all 15 modality combinations on the Synthetic→Real benchmark for the real Toyota Smarthome [12] and ETRI [21]
datasets and on the Synthetic→Synthetic benchmark for Sims4Action [4]. Our method of generating novel modalities X̃k for the training data leads to a
significant improvement of the vast majority of the models on the Synthetic→Real benchmark. The performance on Sims4Action is listed to illustrate the
domain gap. The performance boost by adding novel modalities X̃k to the training data is indicated in brackets for each modality combination.

marked in bold), and compare them with current state-of-
the-art results on the Sims4Action Synthetic→Real bench-
mark [4]. We also compare our method to three other
domain generalization methods: TA3N [43], APN [64], and
VideoDG [64]. To this end, we train all three models end-
to-end on Sims4Action [4] and follow the same evaluation
protocols for Toyota Smarthome [12] and ETRI [21], which
we used for our approach in Section IV-C.

Despite not making use of pre-training, we significantly
improve the state-of-the-art on both accuracy metrics and on
both real test datasets. Our method also consistently outper-
forms the other domain generalization methods TA3N [43],
APN [64], and VideoDG [64]. APN and VideoDG also out-
perform the previous state-of-the-art on some metrics, which
supports the claim that a domain generalization strategy for
the Synthetic→Real benchmark is beneficial.

V. Conclusion and Limitations

In this paper, we explored the paradigm of novel domain
generation for recognizing Activities of Daily Living (ADL).
Our work is motivated by the idea, that such synthesis
of novel action appearances diversifies the training data
and therefore mitigates the problem of domain shift. We
specifically aim for Synthetic→Real ADL recognition and
introduce a multimodal framework which leverages RGB,
body pose, joint heatmaps and optical flow to learn gener-
ating novel modalities. Our experiments confirm that com-
plementing training data with novel modalities leads to sig-
nificant improvements in domain generalization, outperform-
ing previous state-of-the-art results on the Synthetic→Real
benchmark and other domain generalization approaches on
both real test datasets Toyota Smarthome and ETRI.

While our method strongly improves the performance in
case the data appearance has changed at test-time, it is
not without limitations. First, we observe, that the model
complexity increases with the number of source modali-
ties, leading to a difficult optimization and longer training

times. Secondly, while we achieve state-of-the-art results on
the Synthetic→Real benchmark, we acknowledge, that this
comes with additional computational cost, as the body pose
needs to be estimated first. Nevertheless, our work makes a
step towards real-life utilization of synthetic datasets, which
would enable far less intrusive data collection for raising
action recognition capabilities of ADL robotic applications.
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