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Abstract— Localization in topological maps is essential for
image-based navigation using an RGB camera. Localization
using only one camera can be challenging in medium-to-large-
sized environments because similar-looking images are often
observed repeatedly, especially in indoor environments. To
overcome this issue, we propose a learning-based localization
method that simultaneously utilizes the spatial consistency from
topological maps and the temporal consistency from time-
series images captured by the robot. Our method combines a
convolutional neural network (CNN) to embed image features
and a recurrent-type graph neural network to perform accurate
localization. When training our model, it is difficult to obtain
the ground truth pose of the robot when capturing images
in real-world environments. Hence, we propose a sim2real
transfer approach with semi-supervised learning that leverages
simulator images with the ground truth pose in addition to real
images. We evaluated our method quantitatively and qualita-
tively and compared it with several state-of-the-art baselines.
The proposed method outperformed the baselines in environ-
ments where the map contained similar images. Moreover, we
evaluated an image-based navigation system incorporating our
localization method and confirmed that navigation accuracy
significantly improved in the simulator and real environments
when compared with the other baseline methods.

I. INTRODUCTION
Autonomous mobile robots have been attracting attention

because of their potential utility in daily applications such
as transportation of objects, automatic cleaning, guidance,
and patrols. As opposed to navigation systems using multiple
LiDARs, some studies have tackled vision-based navigation
using a monocular camera owing to their low cost, light
weight, compact size, robustness, and high availability.

One of the existing techniques for visual navigation is vi-
sual simultaneous localization and mapping (SLAM), which
simultaneously creates a map of the environment with a
three-dimensional structure and estimates self-position [1]–
[4]. Although visual SLAM can produce a detailed map of
the environment, it requires accurate camera calibration. In
addition, collision avoidance and robustness against environ-
mental changes create challenges for visual navigation.

To address these issues, image-based navigation using
topological maps has recently attracted significant atten-
tion [5]–[13]. A topological map is a graph-structured map
created from the image sequences obtained by the robot.
Each node in the map contains a monocular camera image.
Adjacent nodes are connected on edges based on image
similarity [5] or reachability estimation [11]. During naviga-
tion, the robot identifies its own position as a node number
on the topological map. The robot then generates subgoal
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Fig. 1: Localization for image-based navigation of robots,
utilizing the graph structure of topological maps and
time-series information from images observed by the
robots. Our method distinguishes between similar images
via a recurrent-type graph neural network.

images between the identified and destination nodes [14].
The navigation system derives velocity references to control
the robot using the subgoal images and the current image
from the robot [12], [13]. Further details are provided in the
evaluation section of this paper.

In this study, we focus on localization in a topological
map. Most localization methods for image-based navigation
are based on image retrieval using the current robot image
as the query, and the node images as the references [5]–
[8]. However, these methods pose two issues during naviga-
tion. Topological maps, especially in indoor environments,
often contain similar images (as shown in Fig. 1) because
indoor environments such as office rooms, corridors, meeting
spaces, and airports are often composed of repetitions of one
environment. In such cases, baseline localization methods
often select the wrong node, which leads to navigation
failures.

Another issue is that collecting massive numbers of images
and the ground truth (GT) poses in a real environment is
challenging. Hence, we cannot conduct supervised learning
using the real images.

In this study, we propose a graph neural network-based
localization method that can utilize spatial and temporal
consistency using a topological map and time-series images
from the robot (Fig. 1). The proposed method is based on two
intuitive ideas. Adjacent node images in the map can help
identify the correct nodes. Adjacent node images contain the
same objects as in the current robot image and have similar
appearances. This spatial consistency can be learned via a
graph neural network using the proposed method. Another
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idea is to learn temporal consistency using robot time-series
images via the LSTM layer. The history of the robot’s motion
can eliminate the possibility of selecting similar but incorrect
nodes.

In addition, e propose a semi-supervised learning method
that utilizes simulator images with the GT pose in addition
to real images without the GT pose. The GT pose in the
simulator images enables supervised learning to achieve
accurate localization even in the real images [12], [15].

We evaluate the effectiveness of the proposed method by
comparing it with several baseline methods. We also tested it
on a robot navigation task using the Gibson simulator [16],
[17] and a real environment. The evaluation results show
that the proposed method provides accurate localization and
achieves highly accurate navigation in both simulated and
real-world environments. The main contributions of this
study are as follows:
• We proposed a novel graph neural network-based local-

ization method. To the best of our knowledge, our study
is the first application that uses a recurrent-type graph
neural network for localization in a topological map.

• We developed a semi-supervised learning method using
real-world images without the GT pose and simulator
images with the GT pose for sim2real transfer.

• We implemented an image-based navigation system that
incorporated the proposed localization method into the
evaluation.

II. RELATED WORKS

There is a long history of research on visual navigation for
mobile robots. We begin with a comprehensive discussion
of visual navigation. We then focus on visual localization,
which is particularly relevant to our method.

A. Visual Navigation System

Visual navigation can be broadly divided into model- and
learning-based approaches. For model-based visual naviga-
tion, researchers have proposed solutions based on visual
servoing and visual SLAM.

Visual servoing [18]–[20] controls an agent to minimize
the difference between the current and goal states. Because
the difference is defined in the image space, performance
suffers when the environment changes or large obstacles
occlude large parts of the environment. Navigation methods
based on visual SLAM [1]–[4] first use the camera images
to construct a map that can be used by the robot to localize
and compute actions to achieve a goal. The success of visual
SLAM-based methods relies on acquiring an accurate metric
model, and their performance decays when mapping failures
occur.

To address these issues, multiple learning-based ap-
proaches have been recently proposed as image-based navi-
gation. Image-based navigation using a topological map [5]–
[10] involves localization and planning from a topological
representation of the environment that represents the connec-
tivity between regions. The latest advances in reinforcement
learning [21]–[24] and imitation learning [25]–[27] have also
pushed the state of the art in image-based navigation.

B. Visual Localization

Visual localization using maps can be roughly divided into
camera re-localization and visual place recognition. Camera
re-localization estimates the camera pose in Euclidean space
in small known environments. Several approaches such as
direct camera pose regression [28], [29], coarse-to-fine [30]–
[32], and structure-based approaches [33]–[36] have been
studied. By contrast, visual place recognition is a task that
involves retrieving images from a very large image database.
It is mainly based on hand-crafted or deep-learning-based
image features [37], [38].

Visual localization for image-based navigation retrieves
the closest node on the graph, but does not estimate the
camera pose in Euclidean space. Therefore, it can be imple-
mented for image retrieval on a graph, similar to visual place
recognition. In one of the earliest studies [5], localization
was performed by estimating similarity using the Siamese
network [39]. This can be replaced by other image retrieval
methods, such as NetVLAD [37].

Image retrieval methods are estimated from only a single
image; however, it is reasonable to use time-series obser-
vations for visual navigation. Our method employs a graph
convolutional LSTM to improve the localization accuracy
of a graph, which can handle time-series observations and
spatial information from topological maps.

III. PROBLEM STATEMENT

We consider the problem of localizing a robot that moves
along the edges of a topological map in an indoor environ-
ment. A topological map is a graph-structured map created
from a sequence of images obtained by the robot during its
past trajectories. The images are held as nodes and spatially
adjacent nodes are connected by edges in the topological
map. Note that the self-position localized in this research is
not the position in Euclidean space, but the index of the node
closest to the robot.

In the following section, we define the topological map
as a directed graph G = (V,E), where V = {vi}i=1:n is
the set of n nodes, and vi is the obtained image at node i.
Also, E = {(rk, sk)}k=1:m is a tuple of m edges, where
edge k is connected from source node sk to target node
rk. The robot position is expressed as a sequence of node
indices Y = {yt}t=1:T corresponding to the observed images
O = {ot}t=1:T . Each robot position yt denotes the index of
the node closest to the robot. The topological localization
problem is defined as follows: Given the topological map
G(V,E), find a current node yt at every time step t using
past observed images O.

IV. PROPOSED METHOD

As mentioned in the introduction, baseline localization
methods have difficulty accurately localizing the self-position
when multiple similar node images are contained in the
topological map. To solve this problem, we use the time-
series images observed by the robot and spatial information
from the topological map to consider spatial and temporal
consistency for accurate localization. In this section, we



Fig. 2: Network structure of our proposed method with
GCLSTM. The Spatio-temporal aggregation module aggre-
gates the features from the Feature extraction module to
consider spatial and temporal consistency. Note that Feature
extraction and Identification modules are performed for each
node image.

describe the proposed neural network configuration that
utilizes spatio-temporal information sequentially.

A. Spatio-Temporal Consistent Localization

We propose a novel graph neural network-based local-
ization method that utilizes the spatial information from
topological maps and time-series images observed by the
robot. An overview of the proposed method is presented in
Fig. 2. Our model consists of three modules: a “Feature
extraction module”, a “Spatio-temporal aggregation mod-
ule”, and an “Identification module”. The Feature extraction
module extracts a feature from the current node image and
each remaining node image and calculates the relationship
between them. The Spatio-temporal aggregation module ag-
gregates the features of neighboring and past nodes. The
Identification module calculates the localization probability
for each node. The details of each module are provided in
the following.
Feature extraction module This module consists of the
ResNet encoder and fully connected (FC) layers. The current
image ot and node images V are encoded into feature
vectors by the ResNet-18 encoder. The ResNet encoder is
used to extract the features of the images and reduce the
dimensions. The FC layers are employed to extract the
similarity between the current image and each node image.
The features extracted from the FC layers are fed into the
Spatio-temporal aggregation module.

In inference tasks, ResNet-18 for the node images can be
calculated offline to reduce the online computational load.
Spatio-temporal aggregation module This module consists
of graph convolutional LSTM (GCLSTM) [40] and a skip
path with the FC layers. We employ GCLSTM to simulta-
neously handle temporal information from time-series obser-
vations and spatial information from the topological maps.
GCLSTM is an extended model of a graph convolutional
neural network (GCN), which is a general and effective
framework for learning representations of graph-structured

data. We introduced this graph-convolutional strategy into
our topological localization.

The graph convolution function in GCN is generally
computed as the weighted sum of the features corresponding
to each node and its neighbor nodes. By introducing this in
GCLSTM, we can aggregate the features of the neighboring
nodes of interest. Moreover, GCLSTM can introduce time-
series information to the graph convolution by using an
LSTM-based structure. Therefore, by using GCLSTM, we
can introduce information, such as the node which closes
to the node that has achieved high probability in previous
observations is more confident, into the network.

While the GCLSTM layer outputs the overall features
by convolving the features of neighboring nodes, it dilutes
features of a self-node. To address this issue, we employ one
FC layer to skip the GCLSTM layer to directly propagate
the features of self-nodes to the later layers. The FC layer
reduces the dimensions of the features, which is equal to
those of the GCLSTM outputs. Note that the FC layers for
each node share the same weights and biases. The details of
GCLSTM architecture are shown later.

Identification module This module consists of FC layers
and a softmax operator. Two FC layers output the one-
dimensional likelihood for each concatenated feature from
the Spatio-temporal aggregation module. Finally, the like-
lihood of each node is fed into the softmax operator to
estimate a localization probability. The node with the highest
probability can be estimated as the self-position.

In each module, we employ the ReLU activation function
and batch normalization for all FC layers.

B. GCLSTM Architecture

Following [40], the GCLSTM layer can be computed with
the following equations:

it = σ(G1(xt, E) + G2(ht−1, E) + wci � ct−1 + bi), (1)
ft = σ(G3(xt, E) + G4(ht−1, E) + wcf � ct−1 + bf ), (2)
ct = ft � ct−1

+ it � tanh(G5(xt, E) + G6(ht−1, E) + bc), (3)
o = σ(G7(xt, E) + G8(ht−1, E) + wco � ct + bo), (4)
ht = o� tanh(ct) (5)

where xt ∈ Rn×dx , ht ∈ [0, 1]n×dh , and ct ∈ Rn×dh are the
input, cell output, and cell state, respectively. Additionally,
� and σ are the Hadamard product and sigmoid function,
respectively, and i, f, o ∈ [0, 1]n×dh are the input, forgetting,
and output gates. Weights and biases bi, bf , bc, bo ∈ Rdh
are parameters of the model to be optimized in training. In
addition, Gk,k=1:8 is an arbitrary graph convolution func-
tion that aggregates the features of neighboring nodes. In
this study, we used a graph isomorphism network (GIN)
[41], which is known for its simple architecture and high
discriminative/representational power. The GIN updates the
node representations as follows:

Gk(xt, E) = MLPk((1 + εk)xt,i + Σj∈{1:n}xt,j) (6)



where MLPk(·), εk, and j are the multilayer perceptron
consisting of two FC layers, weight coefficient, and indexes
of neighboring nodes for node i, respectively.

The GCLSTM layer is structured to output ht by inheriting
the past cell output ht−1 and cell state ct−1 in addition to
the input xt. Because the cell output ht−1 is the output
of the prior step, it corresponds to short-term memory, and
the cell state ct−1 corresponds to long-term memory that
is sequentially updated inside the cell according to (3). In
addition, because the input xt aggregates the information of
the neighboring nodes using the graph convolution function,
it is possible to infer, for example, that the current self-
position is located around a node that showed a feature that
is highly likely to be the self-position several steps in the
past. Therefore, by using the GCLSTM layer in the proposed
method, it is possible to estimate the self-position using the
features of the past and surrounding nodes in the long and
short terms.

C. Training process
To train the models shown in Fig. 2, we utilize the

tuples (O′, G, Y ) from the training dataset. Here, O′ =
{ot}t=T−τ :T is the list of images observed by the robot from
T −τ to T , and G is the topological map. Y = {yt}t=T−τ :T
is a list of GT indices for the nodes closest to each image
in O′. In addition, τ is the step length for training.

We calculate Ŷ by feeding O′ and G. Then, we optimize
our model by minimizing the cross-entropy loss for τ steps
from the estimated Ŷ and the GT Y .

D. Semi-supervised Learning Method
In the actual navigation, the robot cannot follow the exact

image path from the topological map. The robot will deviate
from its path depending on environmental changes, the
robot’s motor performance, and obstacle collision avoidance.
To localize accurately in these cases, the time-series images
for topological map G and the time-series images for the
robot’s observation O′ for training should be obtained from
different trials of teleoperation. However, we cannot obtain
Y for the different time-series real images because there are
no GT poses.

Hence, we propose a learning method that uses both
simulated and real images to train our model to improve
robot localization performance in the real world. Because
the simulator can provide the pose of each image ot, the
ground-truth node yt can be calculated for training. In this
study, yt is computed as

yt = arg min
i=1:n

{‖pt − pi‖+ ωm|θt − θi|}, (7)

where p· ∈ R2 is the position in the x − y coordinates
[m] and θ· ∈ R1 is the attitude angle in the yaw direction
[deg]. Simulators also allow a large quantity of images to be
collected in diverse environments.

If we use the simulated images only, it is expected that
sim2real transfer issues will occur. Hence, we create G and
O′ from same time-series images for the real images. For
the real images, we obtain yt from the node number of
the nearest node in the time step. To achieve a sim2real

transfer, we randomly mix the simulator dataset and the real
dataset to create a mini-batch to improve the localization
performance for the real images. Additionally, using the
real dataset allows our model to learn static and dynamic
environmental changes because our open dataset [15], [42],
[43] includes pedestrians, changes in lighting conditions, and
so on.

E. Map Sampler

Because the memory of computational resources has an
upper limit, when the number of nodes in the topological
map G is very large, it is impossible to train models by
loading the images of all the nodes into memory. In this
study, we devised and introduced a map sampler to construct
a partial topological map G

′
with the number of nodes n

′

by sampling nodes from G to include all elements of Y , the
list of ground truths of the observed time-series images.

The method of constructing G
′

using the map sampler is
as follows. First, to include Y in G

′
, all the nodes in Y are

copied into an empty topological map G
′
. Next, to add a new

neighboring node to G
′
, we randomly sample a node in G

that is connected by an edge with the node in G
′

and is not
yet included in G

′
, and then copy it to G

′
. We sample G

′

from G by iterating this sampling process until the number
of nodes in G

′
reaches the upper limit n

′
. According to our

map sampler, the sampled G
′

can always include nodes of
Y and can accommodate as many edges as possible to form
a realistic map.

During training, the proposed method is trained by con-
verting the tuple (O

′
, G, Y ) into (O

′
, G
′
, Y ) using the map

sampler described above. The proposed map sampler also has
an effect in terms of data augmentation because it randomly
generates G

′
with different graph structures even when the

same G is used.

V. EXPERIMENTS

We evaluated the proposed localization method for both lo-
calization and navigation tasks. First, we describe the dataset
and the experimental setups. Subsequently, we present our
results and compare them with several baselines.

A. Datasets

In the training and testing, we used both real images
without the GT pose and simulator images with the GT pose.

1) Real images: We employed the Go Stanford (GS)
Dataset [12], [15]. The GS dataset contains 360◦ camera im-
ages collected at the Stanford University campus. It contains
106,560 real images of 12 buildings and 39,307 simulator
images of 36 environments from a mobile robot. Because
the robot has no internal or external sensors to detect its
global pose, the images in the GS dataset do not include the
GT pose. Further details are shown in [12], [15].

For the topological map using real image sequences, we
created a node for every m images in the sequences, and an
edge was set from the previously created node to the newly
created node. In this study, the value of m was set at 7.



2) Simulator images: The simulator dataset was collected
by the interactive Gibson simulator (iGibson) [16], [17].
iGibson is a photorealistic robot simulator developed at the
Stanford Vision and Learning Lab, which uses the Bullet
physics engine to simulate interactions between objects.

To obtain the virtual environments to be rendered by
iGibson, we measured 50 rooms in our facility using the Mat-
terport scanner 2. Then, we virtually teleoperated the robot to
collect time-series images three times in each environment.
The duration of one sequence was approximately 6 min. We
separated the entire dataset into the following categories: 36
rooms with 108 trajectories for training, 7 rooms with 21
trajectories for validation, and 7 rooms with 21 trajectories
for testing.

Observed images O′ and the topological map G were
created using two individual trajectories per environment.
Hence, nine combinations (= 3 O′ ×3 G ) were prepared
for training, validation, and testing.

A topological map of each room was created with nodes
based on the GT pose of each node. Specifically, the first
observation image in each trajectory is set as the first node
v1, and a new node vi∀i ∈ {2, ..., n} is added to the
topological map when the position p [m] ∈ R2 in the xy
coordinate and the attitude angle θ [◦] ∈ R1 in the yaw
direction satisfy the following equation:

‖p− pi−1‖+ ωm|θ − θi−1| > αth, (8)

where i, ωm, and αth are the index of the node in the
topological map, the weight factor to balance the relative
magnitude of the position and attitude, and the threshold for
creating a new node, respectively. In this study, we set ωm
= 0.025 and αth = 1.0 by trial and error. The edge is set to
be connected from vi−1 to vi. In addition, to ensure closure
of the map loop, the edge was connected from the most
recently created node to node vj∀j ∈ {1, ..., i − 2} when
‖p− pj‖+ ωm|θ − θj | > αth was satisfied.

B. Experimental Setup

We set the length of the time-series of data during training
to τ=90, and set the number of nodes in the map to be
extracted by the map sampler described in section IV-E
to n

′
=200. For data augmentation, we randomly set the

deviations in brightness, contrast, and saturation to ±0.1
and hue to ±0.05 for the set of robot-observed and node
images. As the convolutional neural network that extracts
image feature vectors, we used ResNet-18 [44], which was
pre-trained with ImageNet [45].

The learning rate of our model except for ResNet-18 was
set to 0.001. We provided a smaller learning rate of 0.00001
for ResNet-18 to be fine-tuned. The proposed method was
trained until the minimum value of the validation loss was
no longer updated for 1000 consecutive iterations.

C. Result: Localization

The baseline methods used for comparison with the pro-
posed method in terms of the localization performance are
as follows.

1) Pixel MSE [46]: The node with the smallest pixel-wise
mean squared error (MSE) in each channel is localized
as the current node.

2) SSIM [47]: Structural similarity index
measure (SSIM) is used to measure the similarity
between two images, considering the distribution
of pixel values, contrast, and structure. The node
image with the highest similarity to the observation is
localized to the current node.

3) SiameseNet [5]: SiameseNet [5] estimates the similar-
ity between two input images. The node image with
the highest similarity to the observation is localized as
the current node. We trained this model in the same
manner as in [5] and with the same dataset as our
method.

4) NetVLAD [37]: We employed the pretrained model
(VGG-16 + NetVLAD + whitening, trained on Pitts-
burgh dataset) for better results. This is a convolutional
neural network (CNN) architecture that is directly
trainable in an end-to-end manner directly for place
recognition tasks.

For the ablation study, we evaluated our method, and our
method excluding the GCLSTM layer, the skip path with the
FC layer, and real images from the training dataset (semi-
supervised learning methodology described in section IV-D).
Our method excluding the GCLSTM layer consists of four
FC layers with ReLU and batch normalization.

Table I presents the results of the numerical experiments
on the unseen (test) datasets. The table shows the accuracy
(AC) [ % ], accuracy within one edge (AC*) [ % ], pose
error (PE) [ m + ωm∗◦ ], and map error (ME) [ edge ] for
the four data categories. The category ”Not deviated” refers
to the simulator dataset in which the time-series images and
the topological maps are created from the same trajectory.
”Deviated≤ 1.0” and ”1.0 <Deviated≤ 2.0” refer to a
simulator dataset of time-series images and topological maps
from different trajectories; the distance ‖pt−py∗t ‖+ωm|θt−
θy∗t | between the observed image ot and the GT node y∗t is
less than 1.0 in the former, and greater than 1.0 and less
than or equal to 2.0 in the latter. ”Real image” refers to a
dataset consisting of real images (GS dataset [12], [15]). The
numbers in the table represents the average of the localization
results.

As can be observed from Table I, the proposed method
outperformed all baseline methods on all metrics. For the
ablation study, our method was slightly inferior to our
method without real images when testing with data in
”1.0 <Deviated≤ 2.0”, but showed high performance in the
other metrics. It is considered that this occurred because our
method without real images was trained only on the simulator
images and optimized for them.

Moreover, the map error in the real data is relatively large
for all methods. Because the topological map with the real
images does not have the loop-closed points owing to the lack
of GT poses, all methods estimate almost the same node at
close poses, albeit with large map errors in some cases. Note
that the time-series images of the real image do not deviate
from the topological maps. In Section V-D, we evaluate the



TABLE I: Performance comparison of localization with baseline methods in unseen environment. Table shows the
accuracy (AC) [ % ], accuracy within one edge (AC*) [ % ], pose error (PE) [ m + ωm∗◦ ] and map error (ME) [ edge ] in
localization.

Not deviated Deviated ≤ 1.0 1.0 < Deviated ≤ 2.0 Real image
Model AC / AC* PE / ME AC / AC* PE / ME AC / AC* PE / ME AC / AC* PE / ME
Pixel MSE [46] 0.751 / 0.840 1.463 / 1.987 0.632 / 0.758 1.945 / 2.462 0.284 / 0.472 3.300 / 4.561 0.736 / 0.820 - / 28.423
SSIM [47] 0.837 / 0.920 0.668 / 0.958 0.758 / 0.874 0.902 / 1.114 0.290 / 0.472 3.183 / 4.294 0.744 / 0.830 - / 22.259
SiameseNet [5] 0.785 / 0.955 0.427 / 0.543 0.704 / 0.920 0.619 / 0.755 0.331 / 0.593 2.149 / 3.164 0.708 / 0.838 - / 13.650
NetVLAD [37] 0.788 / 0.929 0.568 / 0.847 0.725 / 0.891 0.777 / 1.127 0.328 / 0.493 2.824 / 4.190 0.760 / 0.856 - / 12.603
Our method 0.851 / 0.981 0.225 / 0.252 0.798 / 0.950 0.353 / 0.462 0.383 / 0.604 1.937 / 2.926 0.775 / 0.894 - / 7.038

w/o GCLSTM 0.779 / 0.941 0.505 / 0.719 0.696 / 0.892 0.770 / 1.075 0.335 / 0.579 2.157 / 3.199 0.653 / 0.778 - / 20.218
w/o skip 0.823 / 0.970 0.303 / 0.361 0.756 / 0.931 0.508 / 0.685 0.359 / 0.600 2.206 / 3.025 0.761 / 0.872 - / 8.426
w/o real image 0.839 / 0.972 0.289 / 0.384 0.782 / 0.941 0.427 / 0.549 0.380 / 0.613 2.156 / 3.118 0.718 / 0.831 - / 16.728

navigation performance of our method in largely deviated
scenes in real environments.

Fig. 3 shows examples of node images localized by the
baselines and proposed method for images observed by the
robot. From left to right, Fig. 3 shows the image observed
by the robot and the localized node images produced by
SiameseNet, NetVLAD, and our method, respectively. The
prediction error in pose [ m + ωm∗◦ ] (PE) and that in the
edge distance of the map (ME) [edge] are given at the
bottom of the images. As shown in Fig. 3, in some cases the
baseline method significantly misestimated the self-position
when the topological map contains multiple similar node
images. However, the proposed method localized the self-
position accurately even when the topological map contained
multiple similar node images.

D. Result: Navigation
1) Overview of navigation system with our localization:

In addition to the sole evaluation of localization, we evaluate
our proposed localization approach on the navigation system.
Fig. 4 shows a block diagram of the proposed navigation sys-
tem with our localization. The following three modules are
used: i ) localization, ii) planning, and iii) control modules.

i) Localization module estimates the number of nodes
that correspond to the current robot position in the
given topological map. We implemented our model in
this module to evaluate our method on navigation.

ii) Planning module generates subgoal images from
the current node to the destination node. Dijkstra’s
method [14] was applied to minimize the number of
images to shorten the navigation time.

iii) Control module derives the linear and angular velocity
from the next subgoal image from “selection” and the
current robot image. We provide the control policy of
the DVMPC [12] to robustly control the mobile robot
toward the subgoal position without collisions.

In our system, we calculate these modules every 3 fps until
the robot arrives at the target position.

2) Comparison to baselines in simulation: First, we com-
pared the navigation performance of our method with the
following three baseline methods in a simulation.

i) SPTM [5]: We construct the same navigation system
as [5] and train their models with the same dataset as
our method. Following [5], the localization is based on
the SiameseNet.

TABLE II: Quantitative results for image-based naviga-
tion in unseen simulator environment. The table shows the
success rate (SR), collision rate (CR), time over rate (TR),
and coverage rate (CovR) [%].

Env Method SR CR TR CovR

Area1 SPTM [5] 0.27 0.69 0.04 72.63
SPTM with DVMPC [5], [12] 0.77 0.06 0.17 85.44
SPTM+ with DVMPC [5], [12] 0.78 0.10 0.12 84.74
Our method 0.85 0.05 0.01 89.49

Area2 SPTM [5] 0.44 0.55 0.01 78.18
SPTM with DVMPC [5], [12] 0.95 0.04 0.01 95.80
SPTM+ with DVMPC [5], [12] 0.91 0.06 0.03 94.11
Our method 0.96 0.04 0.00 96.75

Area3 SPTM [5] 0.49 0.50 0.01 83.90
SPTM with DVMPC [5], [12] 0.78 0.12 0.10 87.96
SPTM+ with DVMPC [5], [12] 0.80 0.17 0.03 86.35
Our method 0.84 0.10 0.06 88.10

Mean SPTM [5] 0.40 0.58 0.02 78.24
SPTM with DVMPC [5], [12] 0.83 0.07 0.09 89.73
SPTM+ with DVMPC [5], [12] 0.83 0.11 0.06 88.40
Our method 0.88 0.06 0.06 91.44

ii) SPTM with DVMPC [5], [12]: We replace the control
module of SPTM with DVMPC [12].

iii) SPTM+ with DVMPC [5], [12]: We apply our local-
ization method without GCLSTM instead of Siame-
seNet in SPTM with DVMPC. The only difference
between the two methods is the localization method.

We chose three simulation environments and performed
100 trials in each environment. The distance between the
robot’s initial position and the goal node is within 10 [m]
and is randomly generated in each trial. Before navigation,
we collected time-series images by teleoperating the virtual
robot and created the topological map in each environment,
following section V-A. In each trial, we stopped the navi-
gation when the robot collided with the obstacles and when
the total navigation time exceeded the threshold.

Table II shows the mean of the four metrics. SR denotes
the success rate to arrive at the target final position, CR
denotes the collision rate where the robot collides with
obstacles, TR denotes the time over rate where the 180 [s]
threshold is exceeded, and CovR denotes the coverage rate
against the desired trajectories between the start and goal
positions.

From Table II, we can confirm that our navigation sys-
tem with our localization method outperformed all baseline
methods in all three environments. The main advantage of
our localization method lies in the difference in performance



Fig. 3: Excerpts of node images localized by the baseline method (SiameseNet [5]) and the proposed method (Ours)
for the robot’s observed image. The baseline method misestimated a location where the images are similar, while the
proposed method is more accurate in its estimation.

Fig. 4: Block diagram of image-based navigation system with our localization. “Localization module” is our proposed localization
with the GCLSTM. “Planning module” generates the visual trajectory from the current node to a target node. “Control module” derives
linear and angular velocities to control the mobile robot.

TABLE III: Navigation performance in unseen real en-
vironments. The table shows the success rate (SR) and
coverage rate (CovR) [%].

Env Method SR CovR

Env1 SPTM with DVMPC [5], [12] 0.70 85.00
Our method 0.90 95.00

Env2 SPTM with DVMPC [5], [12] 0.50 73.80
Our method 0.60 83.00

Env3 SPTM with DVMPC [5], [12] 0.60 88.00
Our method 0.70 91.00

Mean SPTM with DVMPC [5], [12] 0.60 82.26
Our method 0.73 89.66

between our method and SPTM+ with DVMPC.
3) Experiments with physical robot: We evaluated our

method with a physical robot in a real-world environment.
Navigation experiments were conducted with a vizbot, a
small robot platform. The mobile base of the vizbot is the

Roomba from iRobot. We utilized an Nvidia Jetson Xavier as
the control personal computer and a Ricoh Theta S as a 360-
degree camera to implement our image-based navigation.

We compared our method to the best baseline method
in the previous section, SPTM with DVMPC [5], [12]. We
chose three environments and performed 10 trials in each
environment. Other conditions in the physical robot experi-
ments were the same as those in the simulator experiments.

Table III shows the mean of the success rate (SR) and
coverage rate (CovR). As in the simulator environment,
our method showed a better success rate and coverage rate
against the baseline method in the real world.

VI. CONCLUSIONS
We proposed a localization method utilizing recurrent-type

graph neural networks that uses the spatial information of the
environment and the temporal information from the robot’s
trajectory. The proposed method was trained on simulator



images with the GT pose as well as real images without the
GT pose for sim2real transfers. The evaluation results show
that the proposed method outperforms the baseline method
in localization and navigation tasks. Because the proposed
method uses the graph structure of the topological map and
the time-series information of the robot’s observation images
for localization, it can achieve an accurate estimation even
when the topological map contains multiple similar node
images.

In the future, we are planning to improve the localization
performance in the largely deviated scene from the topo-
logical map. Even while avoiding large obstacles, the robot
needs to precisely localize its own position for more robust
navigation.
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