
Decentralized Control of Minimalistic Robotic Swarms For Guaranteed
Target Encapsulation

Himani Sinhmar and Hadas Kress-Gazit

Abstract— We propose a decentralized control algorithm for
a minimalistic robotic swarm with limited capabilities such that
the desired global behavior emerges. We consider the problem
of searching for and encapsulating various targets present in
the environment while avoiding collisions with both static and
dynamic obstacles. The novelty of this work is the guaranteed
generation of desired complex swarm behavior with constrained
individual robots which have no memory, no localization, and
no knowledge of the exact relative locations of their neighbors.
Moreover, we analyze how the emergent behavior changes with
different parameters of the task, noise in the sensor reading,
and asynchronous execution.

I. INTRODUCTION

A swarm of robots is typically composed of simple indi-
vidual robots with limited capabilities. Minimalistic swarm
robotics [1] emphasizes the use of simple reactive robots
which use pre-programmed behaviors, similar to reflexes,
without maintaining any internal state. The simplicity of
individual robots means they can be mass manufactured and
can also be scaled to micro or nano-scale. This can be
particularly relevant to nanomedical applications [2], [3] in
which a single complex robot cannot be deployed due to
space and energy constraints.

Developing decentralized control laws for robots in a
swarm that guarantee the overall swarm behavior is a chal-
lenging task due to constraints such as limited computational
power, imprecise locomotion, and the use of simple sensors.
In this paper we present a discrete-time decentralized control
algorithm for a robotic swarm with limited robot capabilities
to search for and encapsulate targets in the environment,
while avoiding collisions with static and dynamic obstacles.
We are inspired by nanomedicine applications, such as a
swarm of nano-robots searching for and encapsulating tu-
mors by following a chemical gradient [4], [5]. In addition
to the control, we provide bounds on parameters that will
guarantee the swarm will achieve the task.
Related work: Work on minimalistic swarm robotics typ-
ically uses experiments or simulations to show the desired
emergent behavior of the swarm given pre-programmed local
rules. Using experiments with physical robots (e.g. [6], [7]),
researchers have determined the optimal number of robots
required for a swarm to complete a task; however, that
work does not provide guarantees for achieving the desired
behavior. In [8] and [9], simulations are used as a proof of
concept to evaluate the aggregation and flocking capability
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of a minimalistic algorithm. In [10], the authors propose a
probabilistic model for studying the collaborative dynamics
of robots pulling sticks, which depends on the geometry but
is limited to events which are constant in space and time.
In [11]–[16], the authors either use evolutionary algorithms
or an exhaustive parameter grid search over the entire space
of possible controllers and provide convergence guarantees,
assuming no obstacles in the environment. Moreover, in these
studies, the robots are either equipped with obstacle detecting
range sensors or have an infinite sensing range. In [17]
authors use genetic algorithm with novelty search to explore
the space of controllers to determine the emergent behaviors
possible given a limited set of robot capabilities.

Research in formal verification of swarms has used model
checking techniques to prove properties of known swarm
algorithms. In [18]–[20], the authors use temporal logic
to formally specify the emergent behaviors of a robotic
swarm and verify different properties of the swarm. While it
provides formal guarantees, using model checking becomes
intractable as the size of the system increases.

Recent studies have moved from minimalism and explored
robots that use direct communication, broadcast information,
and can learn and represent the environment. In [21], [22] an
algorithm is proposed which is based on selective broadcast-
ing of repulsion and attraction signals among swarm agents
requiring limited direct communication between robots for a
given swarm task. These studies also make use of extensive
simulations and experiments for emergent behavioral analy-
sis of the swarm without providing formal guarantees. The
work in [23] introduced an automatic methodology to deter-
mine whether a swarm of robots with direct communication
capabilities would display an emergent behavior irrespective
of the number of agents present. In [24], [25] authors provide
convergence guarantees on the emergent behavior of the
swarm assuming that the robots have knowledge of the
relative location of their neighbors.
Contribution: The novelty of this work is three fold: (i) we
propose a correct-by-construction local control law for the
robots that guarantees the emergence of the desired global
behavior under bounds we compute on the maximum number
of robots that are required for encapsulating a target, the
maximum step size of a robot, and the minimum number
of sensors on a robot, (ii) we consider minimalist robots
that have no memory, no self-localization ability, do not
know the relative location of their neighbors, no explicit
communication ability, and are only equipped with omni-
directional sensors and signal emitters, and (iii) we analyze
the robustness of the control algorithm to noise in the sensors

ar
X

iv
:2

21
2.

08
98

4v
1 

 [
cs

.R
O

] 
 1

8 
D

ec
 2

02
2



Fig. 1: Robot model with p = 5.

and to asynchronous execution.

II. PRELIMINARIES

A. Environment and Robot model

Workspace: The robots operate in a continuous environ-
ment, E ⊆ R2 with a convex boundary. The environment
has a fixed global frame, F .
Target: A target g = (cg, rg) is a disk of radius rg centered
at cg ∈ E. G is a set of all targets contained in E.
Robot: A robot, R = (cr, γr, rr, p, Z), is modeled as a disk
of radius rr centered at cr ∈ E with orientation γr ∈ S, as
shown in Fig. 1. Each robot is reactive and memoryless. It
cannot localize itself and has no knowledge of the relative
locations of other robots or targets. There is no explicit
communication between the robots.

The robot is controlled through rotational and translational
velocities [26] in a turn-then-move scheme . The kinematics
of a robot are described by Eq. (1) which is a typical unicycle
model [27]. At each time step, θ ∈ S and d ∈ R+ are
the control inputs corresponding to the angle turned and the
distance moved by a robot. The maximum distance a robot
can move at each time step is dmax.

γr,T = γr,T−1 + θ

cr,T = cr,T−1 + d[cosγr,T sinγr,T ]T (1)

Each robot has p omnidirectional sensors arranged on the
boundary of the robot disk. Z denotes the set of measure-
ments from all sensors. The angle between the kth sensor
and the robot’s x axis (heading direction) is denoted by
φk ∀k ∈ {1 · · · p}.
Signal sources: We consider three types of signals that a
robot’s sensor can detect: sg from a point source at the center
of a target, sr from a point source at the center of the robot
and se from a line source present on the entire environment
boundary. The strength of any signal s ∈ {sg, sr, se} as
sensed by the robot’s kth sensor located at a distance dkj
from signal source j is given by the function Bs(dkj ). Each
signal source has a maximum influence distance βs, such
that Bs(dkj ) = 0 ∀dkj ≥ βs. Every sensor can only sense
the sum total of signal strength zks which it receives from
all signal sources of type s, as defined in Eq. (2). For the
line source signal se, this summation becomes an integral
over the boundary segment which lies inside the influence
distance βe.

zks =
∑
j

Bs(d
k
j ) (2)

To model realistic sensors, we add noise to zks ; specifically,
we use the noise model in [28]. For example, a noise level of

Fig. 2: Possible asymmetric placement of sensors for p = 5.
The sensing region of a sensor is equivalent to the influence
region of a source. As can be seen, any source s, located at a
distance of rsafe

s from the robot’s center (cyan colored circle)
will be inside the sensing region of at least one sensor.

15% of aggregated signal intensity is modeled as a normal
distribution with a mean of 0 and a standard deviation of
0.15 as shown in Eq. (3)

zks = (1− nks)
∑
j

Bs(d
k
j ), nks ∼ N (0, 0.152) (3)

To ensure that zks ≥ 0, we consider a truncated normal distri-
bution, −1 ≤ nks ≤ 1. For a robot, the kth sensor’s reading
consists of the tuple (zkg , z

k
r , z

k
e ). Let Zg = {z1

g · · · zpg}, Zr =
{z1
r · · · zpr} and Ze = {z1

e · · · zpe}. Then the measurement set
Z = Zg ∪ Zr ∪ Ze. We define rsafe

s ∀s ∈ {g, r, e} as the
distance each robot must maintain from a source at all times.

We assume the sensors are arranged on the robot’s bound-
ary such that at least one sensor is in the influence region
of a source, s, when the robot center is rsafe

s away from s.
Note that we do not assume symmetric placement; Fig. 2
depicts one such valid, asymmetric placement. For the ease
of exposition, in this paper we use a separation angle of 2π/p
between sensors and indicate what change needs to be made
in the case of asymmetric placement.
Target encapsulation: Let Ag = (cg, r

safe
g , rencap

g ) be an
annular region between two concentric circles of radius rsafe

g

and rencap
g centered at cg such that rencap

g > rsafe
g . The target

g ∈ G is said to be encapsulated if the total number of robots
currently present in the annular region, Ag , is ng . A robot
is considered to be in the annular region of a target g if,

rsafe
g < ‖cr − cg‖ ≤ rencap

g (4)

Assumption 1. Any two targets are at least (2βg + 2rr + ε)
units apart, where ε is a small positive number. This ensures
that a robot can sense at most one target at a time.

Assumption 2. When a target is encapsulated, it stops
emitting a signal and emits a single burst of a shut off signal.
The influence distance of this signal is limited to rencap

g , and
we assume that robots within the influence region, i.e. in the
annular region Ag , set u = 0 thereafter but keep emitting
their signal to ensure no collisions with other moving robots.
This assumption emulates the behavior of nanorobots which
would wrap around the tumor’s surface to destroy it.

Assumption 3. The inverse of the signal function Bs exists
and is known to the robots, i.e. given a signal strength reading
of source s for the kth sensor, a robot can compute the
distance dks = B−1

s (zks ). Furthermore, we assume that the



signal strength strictly decreases with the radial distance from
a source. Since each sensor only senses an aggregated signal,
the computed distance dks is typically not the true distance
to a single source.

III. PROBLEM FORMULATION

Consider m targets in an environment E. Given the user-
provided safe distance rsafe

s a robot R needs to maintain from
a source, the number of robots ng needed to encapsulate
each target g ∈ G, the total number of robots n such that
n ≥

∑
g∈G ng , and the total number of sensors p on a robot,

find a control law u(t) that will result in all targets G being
encapsulated while ensuring the robots maintain rsafe

s .
In the following we derive such a control law while

providing bounds on the parameters p, dmax, βr, rencap
g and

ng which guarantee collision free encapsulation behavior.

IV. APPROACH

We design the control of a robot as a combination of three
behaviors: (i) random walk when no target is sensed, (ii)
moving towards a target when sensing one, and (iii) collision
avoidance with the other robots, the targets and the envi-
ronment boundary. The robot transitions between behaviors
based on the signal thresholds Isafe

s ∀s ∈ {sg, sr, se}. In
Section IV −A we define virtual sources and use them later
to compute Isafe

s based on rsafe
s . In Sections IV-B and IV-C

we find control parameters for a single robot that guarantee
it will move towards a target while avoiding collisions.

A. Virtual Sources

Since a robot’s sensor measures only the total signal
strength from nearby sources, it can neither figure out the
relative location of the sources nor the total number of
sources it is currently sensing. The same signal strength
could correspond to a single source nearby or a cluster of
sources farther away. Therefore, we define a virtual source at
a radial distance from the sensor such that the signal strength
from this source is equivalent to the total signal strength
sensed by the sensor. Fig. 3 shows a single robot centered at
point R and a virtual source centered at point S. The distance
dks = B−1

s (zks ) is known from the sensor reading zks of the
kth sensor (point A in Fig. 3), and S is located on a circle
centered at point A with radius dks . From the geometry of
4SRA we have,

RS = rrcos(∠SRA) +

√
(dks)2 − r2

rsin
2(∠SRA) (5)

Assuming sensor k is receiving the strongest signal from
source s, i.e. zks ≥ zls,∀l 6= k, we are interested in finding

Fig. 3: Virtual source S located dks from the kth sensor and
ds from robot center R such that ∠SRA ∈ [−π/p, π/p].

the shortest possible distance ds between the robot and the
virtual source. We will use that to determine the maximum
distance the robot can safely move. Now, if the virtual source
is placed such that ∠SRA > π/p in either direction of RA,
then the maximum signal reading would be seen at (k±1)th

sensor and not at this sensor. This restricts the range of
possible directions in which the virtual source can be located
with respect to the robot’s center to ∠SRA ∈ [−π/p, π/p].
It can then be seen that the source will be closest to the
robot’s center when ∠SRA = ±π/p and farthest when
∠SRA = 0. Substituting ∠SRA = π/p and RS = ds in
the above equation we have,

ds = rrcos(π/p) +

√
(dks)2 − r2

rsin
2(π/p) (6)

Asymmetric sensor placement: Replace π/p in Eq. (6) with
half of the maximum angle that the kth sensor makes with
either of its adjacent sensors.

B. Target attraction

We use the Lyapunov stability theorem [29] to find the
control parameters d and θ such that a robot moves towards
a target g ∈ G when sensing it. Let V = ‖cg − cr,T ‖2 >
0 be the candidate Lyapunov function, then cg is stable if
VT+1 ≤ VT , that is, ‖cg − cr,T+1‖2 ≤ ‖cg − cr,T ‖2. Using
Eq. (1),

‖cg − cr,T − u‖2 ≤ ‖cg − cr,T ‖2

Let γg be the angle between the vectors (cg − cr,T ) and u,
and d = ‖u‖ then,

������‖cg − cr,T ‖2 + d2 − 2d ‖cg − cr,T ‖ cosγg ≤������‖cg − cr,T ‖2
(7)

d2 − 2d ‖cg − cr,T ‖ cosγg ≤ 0 (8)

Ignoring the unlikely, perfectly symmetric scenario where 2
sensors receive the maximum intensity from a target, let k
be the index of the sensor such that zkg > zlg,∀l 6= k. Then
the direction of the target with respect to the robot’s center is
within the angular range [φk−π/p, φk +π/p] as explained
in Section IV-A. This implies that γg ∈ [θ−(φk−π/p), θ−
(φk+π/p)] where θ is the direction of the robot motion. The
necessary condition to satisfy Eq. (8) is that cosγg ≥ 0, that
is, γg ∈ [3π/2, 2π] ∪ [0, π/2]. Using these two conditions,
the angular range of possible control directions θ is given by
Eq. (9). Fig. 4 shows an example of the angular range Θatt

g

for a robot with p = 5 as computed by its sensor closest to
the target.

Θatt
g = [φk + π/p+ 3π/2, φk − π/p+ π/2] (9)

Let dg be the estimate of ‖cg − cr,T ‖ obtained using
zkg , then from Eq. (8), d ≤ 2dgcosγg . In Algorithm 1,
DistAttractTarget computes the maximum possible
value of d such that, 0 ≤ d ≤ min{2dgcosγg, dmax}.
Asymmetric sensor placement: Replace −π/p and π/p in
Eq. (9) with half of the angle that the kth sensor makes
with sensor k − 1 and sensor k + 1 respectively (assuming
counterclockwise ordering of sensors as shown in Fig. 1).



Fig. 4: The direction of motion θ for a robot should be within
the angular range Θatt

g for it to move towards a target.

C. Collision Avoidance

To avoid collisions with a source s ∈ {g, r, e}, we set
signal thresholds Isafe

s such that the robot triggers collision
avoidance behavior before the distance between a source and
a robot’s center, as estimated from a sensor’s reading, is equal
to rsafe

s . Since rsafe
s is defined between the robot’s center

and the source we set ds = rsafe
s in Eq. (6), to obtain dks =√

(rsafe
s )2 + r2

r − 2rrrsafe
s cos(π/p). Furthermore, to account

for a scenario where the distance between the source and
the robot is just marginally greater than rsafe

s , we add the
maximum distance dmax the robot can move at this time
step to dks . Then the threshold strength Isafe

s , s ∈ {g, r, e} is
given by Eq. (10).

Isafe
s = Bs

(
dmax +

√
(rsafe
s )2 + r2

r − 2rrrsafe
s cos(π/p)

)
(10)

Asymmetric sensor placement: Replace π/p in Eq. (10)
with half of the maximum angle between two adjacent
sensors on the robot.
Collision avoidance with a static obstacle: Let cstatic

o

be the location of a static obstacle (target or boundary). To
avoid collision, the robot’s motion at time step T should
be such that it does not move towards the obstacle, that is∥∥cstatic

o − cr,T+1

∥∥ ≥ ∥∥cstatic
o − cr,T

∥∥.
Let k be the index of the sensor receiving the maximum

intensity from the static source s ∈ {g, e} such that zks ≥
Isafes and zks > zls, ∀l 6= k. Then the direction of the obstacle
with respect to the robot’s center is within the angular range
[φk − π/p, φk + π/p] as explained in Section IV-A. Let γo
be the angle between the vectors (cstatic

o − cr,T ) and u, that
is γo ∈ [θ − (φk − π/p), θ − (φk + π/p)]. Now, using Eq.
(1) to simplify the collision avoidance constraint we get,

d2 − 2d
∥∥cstatic

o − cr,T
∥∥ cosγo ≥ 0 (11)

If γo is chosen such that cosγo ≤ 0, then Eq. (11) is always
satisfied. Using both constraints, the angular range for θ to
avoid static obstacles is given by Eq. (12).

Θavo
s = [φk + π/p+ π/2, φk − π/p+ 3π/2] (12)

Asymmetric sensor placement: Replace −π/p and π/p
in Eq. (12) with half of the angle that kth sensor makes
with sensor k − 1 and sensor k + 1 respectively (assuming
counterclockwise ordering of sensors as shown in Fig. 1).
Collision avoidance with other robots: In the case of
dynamic obstacles (i.e. other robots), the condition in Eq.
(11) would not be sufficient for collision avoidance, since
the other robot can move toward the robot. Furthermore, a
robot might be surrounded by multiple moving robots, so the

control parameters should be chosen such that it avoids all
of the nearby robots.

For any sensor k, its virtual source is located at a radial
distance of dkr = B−1

r (zkr ) within the angular range [φk −
2π/p, φk + 2π/p] as shown in Fig. 5. At time step T , given

Fig. 5: The distance to move in θ direction is computed using
the reading from kth and lth sensor.

the direction of motion θ (shown by the dashed magenta
line), let k and l be the indices of the sensors that are closest
to θ i.e. φk < θ < φl such that dlr < dkr . Then the distance
that the robot can move is chosen such that it maintains a
safe distance of rsafe

r from neighboring moving robots after
moving d units in the direction of motion. At T + 1, the
closest virtual source to the robot is at S. The maximum
distance that this virtual source could have moved at T is
dmax. To ensure safety, ‖cr,T+1 − S‖ ≥ rsafe

r + dmax. Using
the geometry of 4cr,TAcr,T+1, we have

dlr −
√
d2 + r2

r − 2drrcos(φl − θ) ≥ rsafe
r + dmax (13)

0 ≤ d ≤ rrcos(φl − θ)

+

√
(dlr − rsafe

r − dmax)2 − r2
rsin

2(φl − θ) (14)

In Algorithm 1, the function DistAvoDynObs computes
the maximum possible value of d from Eq. (14).

D. Control for Each Robot

Algorithm (1) describes the control generation for a robot
in the swarm. If the total signal strength received by a robot
from static sources s ∈ {g, e} is greater than the preset safe
threshold, i.e. max(Zs) ≥ Isafe

s , the robot finds a direction
of motion (θ ∈ Θavo

s ) that maximizes the possible distance,
d, such that it moves away from the source s while avoiding
nearby moving robots (lines 2-3).

When the robot senses a target g ∈ G such that the
maximum signal strength received is less than the safety
threshold Isafe

g , it moves towards the target while avoiding
collisions with nearby robots. The parameters d and θ for
this behavior are chosen based on Section IV-B (lines 4-6).

If the computed distance d is zero, the robot chooses the
control parameters based on the reading of sensor k receiving
the minimum signal strength zkr (lines 7-10), as that is the
safest direction to move in. When the robot is outside the
influence of all targets, it performs a random walk while
avoiding collisions with nearby robots (lines 11-17).

V. SAFETY AND LIVENESS GUARANTEES

In this section we assume noiseless sensors and derive
constraints on different parameters, that if satisfied, guarantee



Algorithm 1: Control algorithm for a robot

Input : Z, Bs, p, rsafe
s , ∀s ∈ {r, g, e}

Output: d, θ
// compute Θatt

g , Θavo
e , Θavo

g

1 if max(Zs) ≥ Isafe
s , s ∈ {g, e} then

2 θ = arg max
ϕ∈Θavo

s

DistAvoDynObs(Zr, Br, ϕ, r
safe
r )

3 d = DistAvoDynObs(Zr, Br, θ, r
safe
r )

4 else if 0 < max(Zg) < Isafe
g then

5 θ = arg max
ϕ∈Θatt

g

DistAvoDynObs(Zr, Br, ϕ, r
safe
r )

6 d = min
(
DistAvoDynObs(Zr, Br, θ, r

safe
r ),

DistAttractTarget(Zg, Bg, θ, r
safe
g )

)
7 if d = 0 then
8 k = argmin(Zr)
9 θ = φk

10 d = DistAvoidRobots(Zr, Br, θ, r
safe
r )

11 else
12 θ = randsample([0, 2π])
13 d = DistAvoDynObs(Zr, Br, θ, r

safe
r )

14 if d = 0 then
15 k = argmin(Zr)
16 θ = φk

17 d = DistAvoidRobots(Zr, Br, θ, r
safe
r )

that there are no collisions, the robots are never stuck in a
deadlock and all targets in the environment are encapsulated.
In Section VI we analyze how sensor noise and asynchronous
control execution affect these guarantees and lead to inter-
esting emergent behaviors.

A. Safety: Collision avoidance

Lemma V.1. The estimate of the relative distance ds between
a virtual source and robot’s center in Eq. (6) is always less
than or equal to the distance from the actual closest source.

Proof. A sensor receives the sum total of signal strengths
from all nearby sources, which is always greater than or
equal to the signal strength from a single source because
Bs(d) is always positive. From Assumption (3) and Eq. (2),
the radial distance dks of the virtual source from the kth

sensor decreases as the sensor reading zks increases. Hence,
the radial distance dks is always equal to (if there is a single
source) or less than (if there are multiple nearby sources) the
radial distance from the actual closest source. As detailed in
Section IV-A and Eq. (6), a robot always chooses the minimal
possible radial distance ds from the virtual source.

Lemma V.2. If every robot in the swarm implements a
local behavior, as outlined in the Algorithm 1, such that the
following requirements hold, then a robot always maintains
a given safe distance rsafe

s from a source s ∈ {g, r, e}:
1) The influence distance of a source βs ≥ B−1

s (Isafe
s )

2) In the initial state, a robot is at least rsafe
s units away

from every source

Proof. Condition (1) ensures that the maximum influence
distance of a source is at least rsafe

s . Using Lemma V.1
and Eq. (10), collision avoidance behavior (IV-C) is always

triggered for a robot before the distance between a source and
a robot’s center, as estimated from a sensor’s reading, is equal
to rsafe

s . As elaborated in Section IV-C, a robot always either
moves in a direction with no obstacles or moves a distance
d such that a minimum distance of rsafe

s is maintained from
the virtual source. Condition (2) enforces that the swarm is
safe at the initial time step.

B. Absence of deadlocks

A deadlock occurs in a swarm if two or more robots are
in a configuration where none of them can move, i.e. d = 0.

Lemma V.3. No deadlocks can occur in a swarm if,

1) The total number of robots in the swarm is such that
they can be placed in a configuration where any two
robots are at least (βr + rr) units apart.

2) The maximum influence distance of a robot’s source βr
satisfies B−1

r (Isafe
r )+dmax < βr < rsafe

r +rrcos(π/p)
3) The maximum distance a robot can move in a time step

dmax <
rsafer +rrcos(π/p)−

√
(rsafer )2+r2r−2rrrsafer cos(π/p)

2
4) The total number of sensors on a robot is p ≥ 3

Proof. To ensure safety, the influence region of a robot’s
source should be large enough so that Lemma V.2 is satisfied.
In a scenario where a robot is marginally outside βr of a
nearby robot and moves dmax, we get βr > B−1

r (Isafe
r ) +

dmax. Furthermore, the influence distance should be small
enough such that when two robots are at a relative distance
of rsafe

r , at least one sensor on each robot is outside the
influence region of the other robot. This, along with condition
(1), ensures that there always exists at least one robot in the
swarm which has u 6= 0 in an obstacle free direction.

Fig. 6 shows two robots that are rsafe
r apart. From geom-

etry, we get βr < rsafe
r + rrcos(π/p). These constraints on

βr give us an upper bound on the maximum step size of a
robot,

B−1
r (Isafe

r ) + dmax < rsafe
r + rrcos(π/p) (15)

Using Eq. (10) we have,

2dmax +
√

(rsafe
r )2 + r2

r − 2rrrsafe
r cos(π/p)

< rsafe
r + rrcos(π/p) (16)

dmax <
rsafe
r + rrcos(π/p)

2

−
√

(rsafe
r )2 + r2

r − 2rrrsafe
r cos(π/p)

2
(17)

Fig. 7 shows how dmax (as a function of rr) changes with
the number of sensors p. As can be seen from Eq. (17), as p
grows, dmax approaches rr. Furthermore, we require p ≥ 3
otherwise dmax < 0 for any given rsafe

r > 0.

Asymmetric sensor placement: Replace π/p in Eq. (15)
with half of the maximum angle between two adjacent
sensors on a robot.



Fig. 6: When two robots are rsafe
r distance apart at least one

sensor is outside the influence region βr.

Fig. 7: dmax as a function of p for equally spaced sensors.

Fig. 8: Geometry of a target and two robots to compute an
upper bound on ng .

C. Liveness: Encapsulating all targets

Lemma V.4. A robot performing a random walk in a
bounded environment will always eventually explore the
entire area [30].

Lemma V.5. For any random initial condition such that,
1) the number of robots ng required to encapsulate a

target g satisfies,

ng ≤
2π

cos−1

(
1− (βr+rr)2

2(rencap
g )2

) = n0 (18)

2) the outer radius of the annular region Ag , rencap
g ≥

rsafe
g + 2dmax.

all g ∈ G will eventually be encapsulated.

Proof. The maximum number of robots, n0, that can be
present simultaneously in the annular region Ag to satisfy
Eq. (4) should be such that they are outside each other’s
influence region. That is, the minimum relative distance
between any two consecutive robots is βr + rr. This, along
with condition (2), ensures that there exists a configuration
where the robots encapsulating a target are in the annular
region without any chattering. From Fig. 8, ∠R2GR1 =

cos−1

(
1− (βr+rr)2

2(rencap
g )2

)
is given by the cosine rule of triangles.

We define n0 = 2π
∠R2GR1

. Since in the annular region a

robot oscillates between getting attracted to a target and
maintaining a distance of rsafe

g from it, the upper bound
on rencap

g is such that Eq. (4) can be satisfied despite these
oscillations.

Let the number of robots specified to encapsulate a target
ng be less than n0. At any time step T , if there are less than
ng robots in Ag , a robot in the influence of a target always
finds either an obstacle free direction to move towards the
target or it finds a non-zero distance to move in the direction
of the sensor receiving the minimum signal from nearby
robots (Lemma V.3). This behavior leads to an increment
in the Lyapunov function of the robot but ensures that the
robot does not get stuck in a local minima caused by an
obstacle between itself and the target. When ng > n0, there
is a dynamic equilibrium of robots near the target such that
at least n0 robots are almost always present in Ag .

From assumption (2), when a target is encapsulated, it
stops emitting a signal and all the robots in Ag stop moving.
The robots that were outside Ag but inside the target’s
influence region will transition into a random walk behavior.
It follows from Lemma V.4 and Lemma V.3 that a swarm
will always eventually encapsulate all the targets.

VI. ANALYSIS OF SWARM BEHAVIOR

In this section, we investigate how the parameters p, ng ,
and noisy sensors affect the emergent behavior of the swarm.
We used three metrics to compare the emergent behavior: the
total time for encapsulating all targets g ∈ G, the cumulative
path length traveled by all robots, and the probability of
target encapsulation while ensuring no collisions.

In the following, the environment consists of one target
and the number of robots is n = 10. We fixed the total
simulation time to be 3000 time steps and ran 100 simula-
tions for each data point with the same initial conditions.
This was done to study the effect of the parameters on the
emergent behavior by keeping other conditions constant. The
randomness in each simulation is due to the random choice
of θ. Moreover, at each time step, all robots in the swarm
move with different rotational and translational speeds where
the translational speed is capped at (dmax/∆t).
Effect of the noisy sensors: If a measurement is noisy,
it implies that the distance a robot estimates using
DistAvoDynObs and DistAttractTarget is not ac-
curate, which might cause collisions. To avoid collisions,
a simple solution would be to tweak the safety thresholds
defined in Section IV-C; however, this would require a
bounded noise model with known bounds. We ran two
experiments to analyze the affect of noise on the behavior.
Experiment 1: We did not modify the safety thresholds and
all robots implemented algorithm 1 as is, with p = 7. In Fig.
9, we show how increasing the noise levels (Eq. 3) affects
the total number of collisions observed between robots and
static and dynamic obstacles. We repeated this experiment
(100 simulations per noise level) for each of the following:
(i) different white noise added to each sensor on every robot
(ii) the same white noise added to all sensors on a robot
(iii) the same white noise added to all sensors on all the
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Fig. 9: Total collisions with dynamic and static obstacles;
safety bounds assume noiseless measurements.

robots in the swarm. In all cases of added noise, we observed
that the number of collisions with static obstacles (targets
and environment boundary) increased with an increase in
the noise levels. In contrast, at all noise levels there were no
collisions among robots.

A possible hypothesis for this emergence is that our
control algorithm ensures that robots in close vicinity move
so as to avoid each other. For clusters of moving robots,
the virtual source is already closer than the actual source,
resulting in less sensitivity to noisy measurements. Such
robustness to noise could be attributed to the fact that the
randomness of white noise is averaged out to zero in the
swarm. In case of static obstacles, since the source does
not move away from the robot, the noise filtering is no
longer two-sided and hence there is a higher probability of
collisions.

Experiment 2: Since collisions with only static obstacles
were observed, we truncated the noise on static signals to
−0.6 < nks ≤ 0.6 ∀s ∈ {g, e}, ∀k ∈ {1 · · · p}. We
also changed the safety thresholds for static obstacles to
Isafe
s = Isafe

s (1 − 0.6)∀s ∈ {g, e}. This ensured that the
collision avoidance behavior is triggered in the worst case
scenario of a robot being located almost at rsafe

s of a static
source but estimating it to be further away. A decrease in
Isafe
s implies that rsafe

s increased, resulting in the increase of
rencap
g or the area of the annular ring in Fig. 8. This led to

an increase in the bound on n0 from Eq. (18). Given this
more conservative bound, we did not observe any collisions
with static or dynamic obstacles.

For all the remaining analysis below, we consider a noise
level of 15% in the measurements and a truncated noise
addition (within 2 standard deviations) for signals from static
sources (targets and the boundary).
Effect of asynchronous control: In Fig. 10a we show
how the frequency of the sensing and control updates af-
fects the total time taken for encapsulation as compared
to synchronous control. We set ng = 5 and an initial
update time of t0 = 0 for all robots. For asynchronous
control, the sensors update frequency for each robot was
randomly chosen from [1, 2, 3, 4] global time steps; it was
1 time step for synchronous control. Less frequent sensor
and control updates of some robots in the swarm resulted in
a higher total time taken for task completion. We observed a
similar phenomenon in Fig. 10b where the sensor and control
update frequency is the same (every 2 global time steps) for
all robots, but they differ in their initial start time which

(a) (b)
Fig. 10: The total time taken for task completion as a function
of p for asynchronous and synchronous control such that
in (a) each robot has a different sensor update frequency
with the same initial start time and in (b) each robot has a
different initial start time with same sensor update frequency.
The box plot shows median, 25th and 75th percentiles and
the min/max values. The line connects the medians.

Fig. 11: Cumulative path length of all robots as a function of
p. Distance is measured in robot diameter. The line connects
the medians.

was randomly chosen from {0, 1, 2, 3, 4, 5}. For synchronous
control, all robots started at t0 = 0 with sensing and control
updates every 2 global time steps.
Effect of the number of sensors p: In Fig. 11, we show how
increasing the number of sensors on a robot affects the cu-
mulative path length traveled by the robots for encapsulating
the target. Here ng = 5 and the control is synchronous. The
cumulative path length decreased quickly as the number of
sensors are increased. This is because with an increase in p,
robots have an increased sense of directionality, resulting in
less chattering due to simultaneous attraction and repulsion
towards the target and nearby robots.

Effect of varying ng: In Fig. 12a, we show how varying the
number of robots required for target encapsulation ng affects
the total time taken for target encapsulation. The number of
sensors is p = 8, and n0 = 6.9051 implying ng ≤ 6 for
guaranteed task completion . Fig. 12b shows the probability
of task completion. As expected, the task is completed 100%
of the time if ng ≤ 6, it is completed 26% of the time
for ng = 7, and is never completed within the time bound
for ng > 7. Hence, the guaranteed desired emergence only
happens when the conditions in Section V are met.

Scalability and Emergent behaviors(video): In the sup-
plemental video we demonstrate different emergent swarm
behaviors created by different parameter choices. Our control
algorithm is highly scalable, as shown in a large scale
simulation of 25 targets and 200 robots. We also show task
completion for asymmetric placement of sensors.
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Fig. 12: (a) Total time taken for target encapsulation (with
simulation time capped at 3000 time-steps) and (b) proba-
bility of success for target encapsulation as a function of ng
when n0 = 6.9051.

VII. CONCLUSION

In this paper, we show how robots equipped with simple
omnidirectional sensors and an isotropic signal emitter are
capable of finding and encapsulating targets in the environ-
ment while avoiding both static and dynamic obstacles. Our
decentralized controller is agnostic to the number of robots
and targets in the environment. We presented a detailed
analysis of the implemented decentralized controller and
provided bounds on the maximum step size of a robot,
minimum number of required sensors, and maximum number
of robots required for encapsulation such that the desired
emergent behavior is guaranteed. We further studied the
effects of noise, uncertainties, and asynchronous control
on the emergent behavior and observed an interesting phe-
nomenon of robot-robot collision avoidance regardless of the
(bounded) noise level. In future work, we will implement
our algorithm on physical robots. We will analyze how the
presence of other obstacles and targets moving in patterns
affect the emergent behavior. We will also explore different
target search strategies such as Lev́y walk and correlated
random walks for a swarm with no memory.
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