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Abstract— Chemical gas dispersion poses considerable threat
to humans, animals and the environment. The research areas
of gas source localization and gas distribution mapping aim
to localize the source of gas leaks and map the gas plume
respectively, in order to help the coordination of swift rescue
missions. Although very similar, these two areas are often
treated separately in literature. In some cases, inferences on
the gas distribution are made a posteriori from the source
location, or vice-versa. In this paper, we introduce GaSLAM,
a methodology that couples the estimation of the gas map and
the source location using two state of the art algorithms with a
novel navigation strategy based on informative quantities. The
synergistic approach allows our algorithm to achieve a good
estimation of both objectives and push the navigation strategies
towards informative areas of the experimental volume. We
validate the algorithm in simulation and with physical experi-
ments in varying environmental conditions. We show that the
algorithm improves on the source location estimate compared
to a similar approach found in literature, and is able to deliver
good quality maps of the gas distribution.

I. INTRODUCTION

Chemical leaks can cause uncontrolled dispersion of gas in
the air, endangering animals, humans and the environment.
Two research areas are concerned with studying the gas
dispersion phenomenon: Gas Distribution Mapping (GDM)
aims to create a map of the gas dispersion in a given environ-
ment, while Gas Source Localization (GSL) aims to identify
the source of the dispersion. The recent advances in the fields
of robotics, chemical sensing and embedded systems allow
both GDM and GSL to be performed by robotic platforms.
Ground robots have been primarily employed for GDM and
GSL [1], [2]. However, flying vehicles are increasing in
popularity because of their versatility and volume coverage,
even though they are often constrained to a 2D movement
[3]–[5]. Recent research in these fields aims to allow for
exploration of a tridimensional volume, in order to provide
more information about the gas dispersion.

Rotary-winged Unmanned Aerial Vehicles (UAVs), en-
dowed with sensing capabilities, are often used for GDM
and GSL [4]–[7]. While these vehicles have great maneuver-
ability properties, the turbulence of their propellers, called
“wake”, interacts with the gas dispersion and can hinder
gas detection [8], [9]. An interesting alternative is provided
by Nano Aerial Vehicles (NAVs, up to 15cm [10]). Their
smaller propellers cause less disturbance to the gas plume
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[3], [11]–[13]. The drawback of NAVs is their limited flight
time capability.

A variety of approaches have been proposed to achieve
GDM [14]. The Kernel DM+V method learns a 2D statistical
model of the gas distribution, providing the mean and the
variance of the map [15]. This model was extended to 3D
in [16] and tested with a ground robot following a pre-
planned trajectory. In our previous work [12], we presented
an adaptive path planning strategy that, coupled with the map
estimation provided by the 3D Kernel DM+V/W algorithm,
delivered good quality maps of the environment. Since
this algorithm is less computationally expensive than other
alternatives and we successfully used it in 3D in previous
work, we leverage it in this paper as well.

GSL algorithms often take inspiration from strategies
observed in nature [2], focusing in particular on the re-
liance on olfaction for foraging purposes observed in living
species. Bio-inspired algorithms require low computational
and memory resources, and are very reactive. Examples of
bio-inspired algorithms deployed on UAVs and NAVs are
[11], [17], [18]. Gradient-based approaches also require low
computational resources [19]. In this class of algorithms, the
plume is assumed to have a smooth concentration gradient
that can be followed easily by a robot.

A class of GSL algorithms frequently used in recent years
is the probabilistic one, where a probability distribution
models the belief about the source location. The belief is
updated after obtaining each new observation using Bayesian
estimation, until the probability distribution can be described
by a Dirac distribution. The most notable algorithms be-
longing to this category are Infotaxis [20] and Source-Term
Estimation (STE) [21]. Probabilistic algorithms can estimate
several environmental parameters beyond source location,
such as the release rate of the gas source [5]. Moreover, the
estimation has a measure of uncertainty that can be used to
quantify its quality. Finally, different types and configurations
of sensing nodes can be used to gather the necessary data,
involving single or multiple nodes endowed with different
degrees of mobility. The biggest drawback of these methods
is their high computational cost.

In the scope of this work, an STE algorithm based on
[22] is used for the estimation of the source location. The
algorithm collects gas samples of the distribution and fits
them to a plume model, with the objective of estimating the
parameters of the model. STE algorithms have mostly been
tested in simulation and in 2D [5], but have also been tested
in 3D simulation [23].

In literature, GDM and GSL approaches are often tackled



separately. In some instances, conclusions on the source
location are drawn by the gas concentration map, where
higher concentration indicates source presence [3], or a gas
map is created a posteriori, knowing the source location [5].

The estimation part of GDM and GSL is often coupled
with non-adaptive path planning approaches, where the robot
follows a predefined route. However, path planning strategies
where the robot moves to zones that are richer in information
are more efficient and scale better to larger environments
[12]. An example of an adaptive path planning approach
based on informative quantities for STE is presented in [22].
In this work, Partially Observable Markov Decision Pro-
cesses are used to select the goal position that would provide
the highest amount of information among four candidate
positions in 2D. In [24], the Kullback-Leibler divergence
(KLD) [25] is used to predict the most informative goal
position. Adaptive path planning strategies for GDM are
found in [26], where several strategies based on Informative
Path Planning (IPP) are tested in simulation, and in [12],
where approaches that couple IPP with a clustering approach
are used to achieve GDM in 3D.

In this paper, we introduce GaSLAM, Simultaneous Gas
Localization and Mapping, a methodology that explores the
synergies created by the simultaneous application of state
of the art GDM and GSL methods. The benefits of our
approach are two-fold: the underlying plume model used
by the GSL method serves as an indicator of the gaseous
zones throughout the whole map, while the GDM method
provides an averaged gas estimation of the explored areas,
which confirms the presence of gas. Moreover, the averaged
gas data from GDM can be used for the GSL estimation,
instead of adopting a navigation strategy that stops to gather
several samples at each goal position.

Concretely, the contributions of the paper are:
• A methodology to combine state of the art GSL and

GDM techniques to provide a good estimate of the gas
map and of the source location within it in 3D.

• A navigation strategy that relies on the synergies be-
tween the two algorithms and on informative quantities.

• A novel source declaration algorithm that fits our
methodology.

We tested our method in a high-fidelity simulator and with
real experiments in varying environmental conditions in a
three dimensional volume.

II. APPROACH AND ALGORITHMS

In this section, we provide an overview of GaSLAM.
Furthermore, we give details about the GDM and GSL
techniques employed in this paper, the strategies put in place
to combine them effectively, and the navigation approach
used throughout the work. Finally, the source declaration
method used in this work will be presented.

A. Overview

The objective of GaSLAM is to provide a satisfactory
gas map of a 3D volume and localize the origin of the
gas dispersion by exploring synergies between a GDM

and a GSL algorithm. Concretely, we combine knowledge
acquired by both algorithms and exploit their respective
estimation processes for an effective navigation strategy. The
gas concentration map provided by the plume model used
by the STE will be referred to as STE map, while the gas
concentration map provided by the 3D Kernel DM+V/W will
be referred to as Kernel map. Both maps are divided into N
cells and have the same size and resolution.

In our algorithm, the Kernel map is continuously updated
with new readings throughout the whole flight time budget
Bt. When a goal position is reached, the estimation of the
parameters of the STE is updated, and the STE map is
created using the plume model and the current estimate
of the parameters. The data used by the STE parameter
estimation is the Kernel map, which provides an averaged
estimation of the gas distribution. The STE map is then
used, together with the Kernel map, to identify the next goal
position through the proposed navigation algorithm. Once
the confidence on the quality of the current gas distribution
and source location estimations is high, the algorithm starts
logging the source location estimations. At the end of the
flight, a source position is declared using the estimations
recorded, and a final gas map is produced by combining the
information contained in the Kernel map and in the STE
map.

An overview of GaSLAM is provided in Algorithm 1 and
detailed in the following sections.

Algorithm 1 GaSLAM: Simultaneous Gas Source Localiza-
tion and Distribution Mapping Algorithm

while t < Bt do
Update Kernel map
if Goal reached then

Update STE
Generate STE map
Navigation (Algorithm 2)

end if
if High confidence in estimation then

Start Source Recording (Sr = True)
end if

end while
Declare Source and Create Final Map

B. 3D Kernel DM+V/W Mapping

The 3D Kernel DM+V/W algorithm uses a multivariate
Gaussian weighting function to create a gas map of the
environment [16]. A Gaussian kernel is used to compute the
weights at the distance between where the measurement µi
is taken and the center x(k) of cell k, with k ∈ N :

w
(k)
i = N (|x(k) − µi|, σ0) =

1

(2π)
3
2 |Σ| 12

e−
1
2 (x(k)−µi)TΣ−1(x(k)−µi) (1)

where Σ is the covariance matrix, which dictates the shape of
the kernel. Σ depends on the stretching coefficient γ, which



determines the uncertainty of the wind estimate, and on the
kernel width σ0, which affects the amount of extrapolation
on individual readings. Although the 3D Kernel DM+V/W
algorithm also takes into account wind information, in the
scope of this work we use wind direction and intensity
information known a priori in our setup.

C. Source Term Estimation

STE is a probabilistic framework that aims to estimate a
set of parameters of the gas distribution. To do so, it relies on
a plume concentration model. We use the Pseudo-Gaussian
concentration model employed in [27]:

C(m) =
Q

2πūσy(x− xs)σz(x− xs)
e
− (y−ys)2

2σ2y(x−xs)
− (z−zs)2

2σ2z(x−xs)

∀x ≥ xs
(2)

where m = (Q, xs, ys, zs, σy, σz) and corresponds to the set
of parameters that the model is trying to estimate, namely
the release rate Q, the source position (xs,ys,zs), and the
standard deviation of the gas dispersion on Y and Z (σy and
σz , respectively). ū indicates the average wind speed, which
is known a priori in our setup.

The parameters of the model are estimated using the
probabilistic methodology described in [22]. A Bayesian
formulation is used to estimate the posterior distribution
of the parameters m, P (m|D), where D is the sampled
gas data. A Metropolis-Hasting method [28] is used as an
approximation method to evaluate the posterior function
through efficient sampling. When an estimation of the model
parameters m is available, GaSLAM uses Equation (2) to
infer the values of gas concentration throughout the whole
map. The generated gas map corresponds to the STE map in
this work.

In [22], the prior P (m) of the Bayesian formulation is
defined as a uniform distribution for all parameters, while
the likelihood P (D|m) is defined as:

P (D|m) ∝ exp
(
− 1

2

N∑
i=0

(Di − Ci(m))2

σ2
M + σ2

D

)
(3)

where σM and σD are the standard deviations of model
and measurement error, which are assumed to follow a
normal distribution with zero mean. The likelihood, which
represents the probability that data D is obtained given a set
m of parameters, is computed for each grid cell i. Ci(m)
is the gas concentration value of the cell i computed by
Equation (2) for m parameters. In [22], Di is the average
of 50 concentration values gathered by the sensor in a
given location, and corresponds to the actual measured gas
value. However, the flight time constraints of the robotic
platform employed in this work, coupled with the propeller
disturbance, discourage a sampling strategy that has the robot
collect samples for several seconds at a given location. We
therefore collect samples continuously while in flight and
feed them to the 3D Kernel DM+V/W, which creates an
averaged gas map. When a goal position is reached, the STE

algorithm estimates the model parameters using the averaged
gas map provided by the 3D Kernel DM+V/W.

D. Navigation

The navigation strategy is inspired by the one proposed in
[22] and chooses the next goal position by combining two
vectors, one promoting exploration of the volume and one
promoting exploitation of the information already gathered:

Vgoal = (1− α)Vexplore + αVexploit (4)

where α is a coefficient that changes dynamically and
encodes the reliability of the information gathered.

The exploration vector Vexplore points from the current
position to the cell iexplore, which has the highest KLD to
confidence ratio:

iexplore = argmax
i∈N

KLDi

ci
(5)

The KLD measures the difference between two probability
distributions, P and Q [25], and is computed as:

DKL(P ||Q) =
∑
i

P (i)log2

(
P (i)

Q(i)

)
(6)

where P is the probability distribution of the gas samples in
each grid cell and Q is the estimated next step probability
distribution. Higher values of KLD indicate that the samples
taken so far are not homogeneous in value, and more samples
should be gathered in that area to reach a higher consensus
on the gas value. Examples of usage of the KLD as a reward
functions for IPP approaches are [12], [22], [24].

The confidence value c is computed for each cell in the
scope of the 3D Kernel DM+V/W algorithm as:

ci = 1− exp
(
− Ωi
σ2

Ω

)
∀i ∈ N (7)

where Ω is the weight of the gas readings of the cell and σΩ

is a scaling coefficient. The value of c is used in the original
3D Kernel DM +V/W algorithm to scale the concentration
values of each cell. In this work, instead, we use it to direct
exploration towards areas of lower confidence.

The exploitation vector is computed as follows:

Vexploit =

{
Vsource if E > ThE or Sr = False

Vdiff if E < ThE and Sr = True

where E is the entropy of the posterior probability of the
STE, ThE is a threshold picked with preliminary exper-
iments, and Sr indicates whether the recording of source
guesses has started. When E is above ThE , the confidence
on the source guess is low. Thus, the exploitative vector
pushes to move towards the currently guessed source location
to decrease the uncertainty around the guess. When good
confidence is reached on the estimation, the exploitation vec-
tor is equal to Vdiff , which points to the highest difference
between the STE map and the Kernel map, di, computed as:



di = |ki − si| ∀i ∈ Ng (8)

where ki is the gas value of the Kernel map and si is the
gas value of the STE map. Ng is a subset of N and indicates
cells that are identified as gaseous both in the Kernel map
and in the STE map. To identify if a cell contains gas or
not, we use a K-means segmentation algorithm to divide the
Kernel map and the STE map into gas and no-gas zones.

The coefficient α, which guides the exploration-
exploitation trade-off of Equation (4), is computed as:

α =

√
Ng
Nkg

(9)

where Nkg is the number of cells identified as gaseous in the
Kernel map by the K-means segmentation. This coefficient
is higher if the overlap between the gaseous zone of the
STE map and of the Kernel map is high. A high coefficient
indicates that the parameters estimated by the STE are able to
generate a map, based on the Pseudo-Gaussian plume model,
that matches the Kernel map dispersion. The value of α
is always contained between 0 and 1, and the root square
is used to enhance smaller overlaps of gas zones in order
to push the algorithm towards exploitation to confirm the
estimation of the parameters.

Concretely, the navigation algorithm presents an initial
explorative phase, followed by an exploitative phase where
the robot navigates within the plume and its edges. The
navigation algorithm is summarized in Algorithm 2.

Algorithm 2 Navigation Algorithm

K-means Segmentation
Compute Vexplore
Compute α
if E < ThE and Sr = True then

Compute Vdiff
else

Compute Vsource
end if
Update Vexploit
Update goal

E. Source Declaration

In GSL methods, the source declaration is usually the last
step of the algorithm, when the confidence in the estimation
is deemed acceptable. In our scenario, the drone continues
to fly for a set amount of time and guesses on the source
location continue to be made according to the new data. The
source declaration algorithm proposed in this work saves all
the guesses made on source location after an acceptable level
of confidence in the estimation is reached and then uses the
RANSAC algorithm [29] to produce the final source position
estimation.

The estimation of the source parameters is considered
good when the entropy of the posterior E falls below a

threshold ThE [22]. Moreover, values of α above 0 indicate
some overlap between the STE map and the Kernel map.
Therefore, when the conditions E < ThE and α > 0 is
satisfied, the recording of the source positions starts.

When the time budget Bt elapses, the RANSAC algorithm
produces the final source position estimate by dividing the
recorded source guesses into outliers and inliers. It achieves
this by computing how many recorded positions fall within a
set distance Sth from each recorded position. The algorithm
then finds which recorded position has the highest number
of neighbors, labels them as inliers, and computes the final
declared source as the mean of the inlier positions weighted
by the posterior entropy value associated with them. The
threshold Sth is set to:

Sth = 2
√

(x2
r + y2

r + z2
r ) (10)

where xr, yr and zr are the resolutions of the source guesses
on the three axis respectively.

F. Final Map Creation

The final gas map is created at the end of the algorithm by
integrating the STE map with the Kernel map. Namely, all
cells that are considered gaseous by the K-means segmenta-
tion of the Kernel map will be integrated in the STE map,
even if they are not considered to be as gaseous by the STE
map. Moreover, all the cells that are considered non-gaseous
will be attributed a value that corresponds to the average
Kernel map reading of non-gaseous zones. We chose this
integration method because it entrusts the Kernel map with
having more accurate gas predictions, but still refers to the
STE map for the general shape of the plume.

III. EXPERIMENTAL EVALUATION

This section introduces the platform employed for this
work, presents an overview of the algorithmic parameters
chosen for this work, describes the environmental conditions
in which the algorithm was tested, and outlines the evaluation
metrics. Finally, it presents the simulation and experimental
setups.

A. NAV Platform

The robotic platform employed for this work is a Crazyflie
V2.1 (CF2, Bitcraze AB, Malmö, Sweden). The NAV is
enhanced with a custom Printed Circuit Board (PCB) hosting
a MICS-5521 CO/VOC sensor from SGX Sensortech Tech-
nologies with a sampling frequency of 10 Hz. The sensor
is placed at the bottom of the drone, since better sensing
performance was achieved previously with this configuration
[11]. A Motion Capture System (MCS) from Motion Anal-
ysis is used for localization. The total payload of the NAV
amounts to 6.5g, which includes five MCS markers and the
custom PCB. The velocity of the NAV is kept constant at
0.5 m/s for a total flight time Bt, 4 minutes and 30 seconds
in our case. The velocity was selected to allow the NAV to
gather a satisfactory number of samples within a grid cell,
while still keeping a fast enough speed for exploration. The
CF2 communicated with a PC serving as ground station over



Fig. 1: Crazyflie V2.1 with a custom PCB for gas sensing at
the bottom.

the 2.4 GHz ISM radio band. The position data, acquired
by the MCS, is sent to the CF2 through the radio link. All
algorithmic computations are carried out off-board.

B. Algorithmic Parameters

The parameters of the 3D Kernel DM+V/W algorithm
were chosen in accordance to previous work [12]. The
model and measurement errors of the likelihood σM and σD
are merged into one single parameter σE which takes into
account the error that we expect to observe because of the
effect of the wake of the propellers on the gas dispersion and
the subsequent divergence of the gas plume from the model.
The value was determined with preliminary experiments.

Although the STE algorithm provides an estimation of
several parameters of the gas distribution, in this work we
chose to focus on analyzing the estimation of the source
location parameters. The estimation of the other parameters
will be used for future work, where it will be coupled
with the gas map estimation of the 3D Kernel DM+V/W
to provide gas values closer to the ground truth.

C. Environmental Parameters

In order to assess the performance and robustness of
the algorithm in different environmental conditions, two
parameters were taken into account: wind speed and source
release rate.

The wind speed impacts the width of the plume. Stronger
winds generate a narrower plume, which is harder to detect,
especially in the exploration phase. However, guesses on the
source location should be more precise after gas particles
are detected. Lower wind speeds instead generate a wider
plume, which might be detected faster, but source guesses
might be further from the true source position. In this paper,
we test our algorithm in wind speeds equal to 0.2 m/s and
0.7 m/s, consistent with real world scenarios.

The source release rate parameter impacts the density of
the gas plume. A higher source release rate should aid the gas
detection, especially when using a vehicle with propellers.
During the experiments, a stationary electric pumping device
is used to release a mix of ethanol and air in the experimen-
tal volume. The source release rate values chosen for the
evaluation are 0.5 L/min (high) and 0.25 L/min (low). The
air to ethanol ratio of the mix is unknown.

The environmental configurations are shown in Table I.

Label Wind Speed Release Rate
A 0.2 m/s low
B 0.2 m/s high
C 0.7 m/s low
D 0.7 m/s high

TABLE I: Environmental configurations

D. Evaluation Metrics

The outcome of the source localization is evaluated using
the mean of the error between the true source position and the
declared source position in the three coordinates, computed
for each experimental setting as:

PE =
√

((x− xs)2 + (y − ys)2 + (z − zs)2) (11)

The final map is evaluated using two metrics: the RMSE
and the shape coverage. The RMSE is used to quantify the
difference between the final gas map and the ground truth
map of the gas. It is computed as:

RMSE =

√
ΣNi=1(di − gi)2

N
(12)

where di is the final gas value of each grid cell and gi is the
corresponding ground truth value. We compare the RMSE of
the final map with the one of the STE map, RMSESTE , to
show how our method improves map estimation. Note that
we do not compare to the RMSE of the Kernel map, since
this provides an estimate of the explored areas only.

Although the RMSE gives a good sense of the quality of
the map, the fluctuations of the readings can sometimes cause
high discrepancy with the ground truth values, especially
in areas of high gas. For this reason, in our previous work
[12], we introduced the shape coverage metric, which aims to
describe if the shape of the plume of the final map overlaps
with the ground truth. It is computed as the probability of
a cell to be identified correctly as containing gas or not
according to the ground truth:

SC = p(di ≥ Thd|gi ≥ Thg||di < Thd|gi < Thg) ∀i ∈ N
(13)

where Thd and Thg are the thresholds used to determine
whether or not a cell contains gas. Please refer to [12] for a
discussion on these thresholds.

To ease the comparison between the different methods, the
metrics are combined in one overall metric:

M = (SC ∗ |1−RMSE|)/PE (14)

Higher values of this metric indicate better performance. We
consider runs where the source position in X is further than
5 meters from the true position as failed and we do not take
them into account in the computation of the metrics. The X
axis is the one parallel to the wind in our setup.

E. Simulation Setup

We used Webots [30], a high-fidelity open-source simula-
tor, for the simulation experiments. The wind and gas fields
were simulated using a gas dispersion plugin [31], which



provides reasonably realistic environmental conditions based
on the filament-based plume dispersion model proposed
in [32]. Ten simulations were run for each environmental
condition using a simulated CF2 equipped with a gas sensor.
In order to challenge the algorithm, the source position is
randomized in Y and Z, the crosswind plane.

The simulator does not model the effect that the wake of
the propellers has on the gas dispersion. Moreover, the gas
dispersion is model-based and might not correspond exactly
to a real plume. In [12], we highlighted some of the limi-
tations of simulation with respect to real experiments in the
context of gas mapping. In order to provide a comprehensive
evaluation of our algorithms, we validated our simulation
results with physical experiments.

F. Wind Tunnel Setup

Physical experiments were conducted in a wind tunnel of
volume 18x4x2 m3. A honeycomb filter is used to laminarize
the adjustable wind speed inside the tunnel. The limitations
in terms of flight time of the NAV employed for this
work prompted us to constrain the experimental volume
to 7x2x0.5 m3, which is comparable to other approaches
found in literature given the size and capabilities of the
flying platform. The experiments are carried out in a quasi-
laminar regime, higher turbulence in the wind or different
environmental conditions might cause different results. The
initial position of the robot corresponds to the right corner
of the volume opposite to the source. Ten experiments were
carried out for each environmental condition.

We acquired a ground truth map of the gas distribution
using an array of static sensors mounted on a traversing
system (a 3-axis robotic manipulator present in many wind
tunnels). The same type of gas sensor as the one mounted
on the NAV was used. The sensors sample at 10 Hz for
2 seconds at the center of each grid cell. The data is then
averaged after eliminating outliers. The data coming from the
static sensors is calibrated against the NAV sensor in order
to compensate for small manufacturing differences.

IV. RESULTS

This section presents the results of GaSLAM in simulation
and with physical experiments. The source localization re-
sults are qualitatively compared to the ones obtained in [22]
with the same setup and STE algorithm, but using a ground
robot and a different navigation strategy. An indication of
the improvement on gas map quality with our algorithm is
given by the comparison of the RMSE to the RMSESTE .

A. Simulation Results

The results of the source position estimation obtained in
simulation are presented in Figure 2. It can be seen that
the error is generally low for all axes and it is similar
across different environmental conditions, consistently with
the findings in [22].

An overview of the evaluation metrics in simulation is
reported in Table II. The RMSE metric shows that the
estimated gas dispersion differs the most from the ground

Fig. 2: Error with respect to the true source position in X,Y,Z
for different environmental conditions in simulation.

Fig. 3: Error with respect to the true source position in
X,Y,Z for different environmental conditions in physical
experiments

truth in scenario B, with low wind and high source release
rate. This is probably due to the fact that the whole shape of
the plume is not captured well, which is also confirmed by
the corresponding shape coverage metric. The RMSESTE
shows that integrating the Kernel map and the STE map only
yields slight improvements in simulated scenarios with high
winds. The shape coverage highlights that the shape of the
plume is better captured in higher wind speed conditions. The
PE metric highlights that scenarios A and D are the ones
where the algorithm performs best. Two runs out of forty
were considered as failed in simulation, yielding a success
rate of 95%.

Setup RMSE RMSESTE SC PE M
A 0.0486 0.0384 0.7321 0.3732 1.8663
B 0.0883 0.0541 0.6856 0.5359 1.1665
C 0.0294 0.0296 0.8219 0.6789 1.1750
D 0.0477 0.0638 0.8214 0.3700 2.1141

TABLE II: Evaluation metrics - average of 10 runs in
simulation

B. Real Experimental Results

The results obtained with real experiments regarding the
location of the gas source are presented in Figure 3. The



Fig. 4: Examples of different maps used in the algorithm for an experimental run with high wind and high release rate
during physical experiments. The true source position is indicated by a red cyrcle.

variance of the results is bigger compared to simulation,
which is expected. The error on the X axis is, on average,
worse for the experiments carried out in high wind and
low source release rate, probably because the drone had a
hard time acquiring a lot of meaningful gas data in this
configuration. The error in the Y axis is lower for both
configurations with higher wind. This is due to the fact
that the plume is narrower with higher wind. The error in
Z is similar across all approaches. In our previous work
[12], we showed that the Kernel maps can suffer from a
slight error in Z due to the Kernel interpolation. It would
be interesting to investigate further if there is a correlation
between this and the error in Z for the source position. Our
algorithm obtained better estimation of the source position
compared to the results obtained with ground robots in [22]
for low wind scenarios, and comparable results for high wind
scenarios. This can be explained by the addition of a more
comprehensive source declaration process, and by the more
dynamic navigation method that constantly re-evaluates the
exploration-exploitation trade-off.

An example of maps generated by GaSLAM can be found
in Figure 4. The ground truth map, the Kernel map and the
STE map are shown next to each other. The black parts of the
Kernel map indicate cells for which there were no readings
and therefore were not explored. From the Kernel Map, it
can be seen that more exploration of non gaseous zones
happens further from the source, while the drone converges
to gaseous zones as it moves closer to the source position.
The segmented maps obtained with the K-means algorithm
are also shown, highlighting the zones that are considered

as gaseous by the algorithm. The final map highlights that
the inclusion of the average value of non-gaseous cells of
the Kernel map corresponds more closely to the equivalent
no-gas cells in the ground truth. The shape of the plume
is also fairly well highlighted. With this method we obtain
a final map of the whole experimental volume, in contrast
with GDM only approaches, where only a map of the volume
covered is obtained.

The metrics are reported in Table III. Scenarios with
high winds have higher shape coverage and lower RMSE,
indicating that the overall quality of the map is higher. This
confirms the trend identified in simulation. In contrast to
simulation, a reduction in the RMSE can be observed in
the final map produced with GaSLAM compared to the
final STE map across all scenarios. Moreover, the shape
coverage is higher than the best performing scenarios of our
GDM-only approach in [12], tested in a scenario identical
to D. These findings confirm that the integration of Kernel
map and STE map is useful to improve the quality of the
map. The localization error instead is the highest for lower
wind and lower source release rate. According to the overall
metric, the algorithm performs best with high wind and high
source release rate, which was to be expected given the fact
that a denser and narrower plume can be sensed by the
drone and described more easily by the STE model. No runs
were considered to have failed in physical experiments. In
general, the algorithm seems to be fairly robust to different
environmental conditions, with the exception of low wind
and low release rate. More experiments in harsher conditions
are needed to reinforce this claim.



Setup RMSE RMSESTE SC PE M
A 0.1026 0.1103 0.7948 0.8988 0.7936
B 0.1145 0.1275 0.8093 0.9939 0.7211
C 0.0929 0.1166 0.8711 1.2852 0.6148
D 0.0754 0.1007 0.8523 0.9298 0.8475

TABLE III: Evaluation metrics - average of 10 runs in
physical experiments

V. CONCLUSIONS AND OUTLOOK
In this paper, we present GaSLAM, an algorithm that

organically combines state of the art methods in GDM and
GSL with the objective of obtaining a map of the gas
distribution and localizing the source of the gas dispersion
within it. This method leverages the information coming
from both algorithms to maximize the knowledge of the
environment and uses it for an adaptive navigation strategy
based on informative quantities. The method was tested in
different environmental conditions and presented a fair level
of robustness to most of them. We show that GaSLAM
can produce good source localization and mapping estima-
tions, improving on comparable GSL-only and GDM-only
approaches carried out in the same setup.

We believe that the general framework of this method,
consisting of the synergies between STE and 3D Kernel
DM+V/W algorithms and the adaptive navigation method
based on a continuous trade-off between exploration and
exploitation, could be the foundation of other methods aim-
ing for simultaneous gas distribution mapping and source
localization. Future work will focus on the improvement of
this method within the same framework by analyzing, for
example, the employment of different informative quantities
in the navigation method, and by integrating the source
release rate estimate of STE into the algorithm.

REFERENCES

[1] L. Marques, U. Nunes, and A. T. de Almeida, “Olfaction-based mobile
robot navigation,” Thin solid films, vol. 418, no. 1, pp. 51–58, 2002.

[2] X. Chen and J. Huang, “Odor source localization algorithms on
mobile robots: a review and future outlook,” Robotics and Autonomous
Systems, vol. 112, pp. 123–136, 2019.

[3] J. Burgués, V. Hernández, A. J. Lilienthal, and S. Marco, “Smelling
nano aerial vehicle for gas source localization and mapping,” Sensors,
vol. 19, no. 3, p. 478, 2019.

[4] P. P. Neumann, M. S. I. V. H. Bennetts, and I. M. Bartholmai, “Adap-
tive gas source localization strategies and gas distribution mapping
using a gas-sensitive micro-drone,” Technology (BMWi), vol. 4, no. 5,
p. 6, 2012.

[5] M. Hutchinson, C. Liu, and W.-H. Chen, “Source term estimation of a
hazardous airborne release using an unmanned aerial vehicle,” Journal
of Field Robotics, vol. 36, no. 4, pp. 797–817, 2019.

[6] T. Kersnovski, F. Gonzalez, and K. Morton, “A UAV system for
autonomous target detection and gas sensing,” IEEE Aerospace Con-
ference, (12 pages), 2017, DOI 10.1109/AERO.2017.7943675.

[7] L. Bing, M. Qing-Hao, W. Jia-Ying, S. Biao, and W. Ying, “Three-
dimensional gas distribution mapping with a micro-drone,” in 34th
Chinese Control Conference, 2015, pp. 6011–6015.

[8] M. Rossi and D. Brunelli, “Gas sensing on unmanned vehicles:
Challenges and opportunities,” in IEEE New Generation of Circuits
and Systems Conference, 2017, pp. 117–120.

[9] T. Villa, F. Salimi, K. Morton, L. Morawska, and F. Gonzalez,
“Development and validation of a UAV based system for air pollution
measurements,” Sensors, vol. 16, no. 12, p. 2202, 2016.

[10] M. Hassanalian and A. Abdelkefi, “Classifications, applications, and
design challenges of drones: A review,” Progress in Aerospace Sci-
ences, vol. 91, pp. 99–131, 2017.

[11] C. Ercolani and A. Martinoli, “3D odor source localization using a
micro aerial vehicle: System design and performance evaluation,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems,
2020, pp. 6194–6200.

[12] C. Ercolani, L. Tang, A. A. Humne, and A. Martinoli, “Clustering and
informative path planning for 3D gas distribution mapping: Algorithms
and performance evaluation,” IEEE Robotics and Automation Letters,
vol. 7, no. 2, pp. 5310–5317, 2022.

[13] S. Shigaki, M. Fikri, and D. Kurabayashi, “Design and experimental
evaluation of an odor sensing method for a pocket-sized quadcopter,”
Sensors, vol. 18, no. 11, p. 3720, 2018.

[14] J. Burgués and S. Marco, “Environmental chemical sensing using
small drones: A review,” Science of the Total Environment, vol. 748,
p. 141172, 2020.

[15] A. J. Lilienthal, M. Reggente, M. Trincavelli, J. L. Blanco, and
J. Gonzalez, “A statistical approach to gas distribution modelling with
mobile robots-the kernel DM+V algorithm,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2009, pp. 570–576.

[16] M. Reggente and A. J. Lilienthal, “The 3D-kernel DM+V/W algo-
rithm: Using wind information in three dimensional gas distribution
modelling with a mobile robot,” in IEEE International Conference on
Sensors, 2010, pp. 999–1004.

[17] P. P. Neumann, V. Hernandez Bennetts, A. J. Lilienthal, M. Bartholmai,
and J. H. Schiller, “Gas source localization with a micro-drone using
bio-inspired and particle filter-based algorithms,” Advanced Robotics,
vol. 27, no. 9, pp. 725–738, 2013.

[18] S. Shigaki, T. Sakurai, N. Ando, D. Kurabayashi, and R. Kanzaki,
“Time-varying moth-inspired algorithm for chemical plume tracing in
turbulent environment,” IEEE Robotics and Automation Letters, vol. 3,
no. 1, pp. 76–83, 2017.

[19] V. Genovese, P. Dario, R. Magni, and L. Odetti, “Self organizing
behavior and swarm intelligence in a pack of mobile miniature robots
in search of pollutants,” in Proceedings of the IEEE/RSJ international
conference on intelligent robots and systems, vol. 3. IEEE, 1992, pp.
1575–1582.

[20] M. Vergassola, E. Villermaux, and B. I. Shraiman, “‘infotaxis’ as a
strategy for searching without gradients,” Nature, vol. 445, no. 7126,
pp. 406–409, 2007.

[21] M. Hutchinson, H. Oh, and W.-H. Chen, “A review of source term
estimation methods for atmospheric dispersion events using static or
mobile sensors,” Information Fusion, vol. 36, pp. 130–148, 2017.

[22] F. Rahbar, A. Marjovi, and A. Martinoli, “An algorithm for odor source
localization based on source term estimation,” in IEEE International
Conference on Robotics and Automation, 2019, pp. 973–979.

[23] ——, “Design and performance evaluation of an algorithm based on
source term estimation for odor source localization,” Sensors, vol. 19,
no. 3, p. 656, 2019.

[24] M. Hutchinson, C. Liu, and W.-H. Chen, “Information-based search
for an atmospheric release using a mobile robot: Algorithm and
experiments,” IEEE Transactions on Control Systems Technology,
vol. 27, no. 6, pp. 2388–2402, 2018.

[25] S. Kullback and R. A. Leibler, “On information and sufficiency,” The
Annals of Mathematical Statistics, vol. 22, no. 1, pp. 79–86, 1951.

[26] C. Rhodes, C. Liu, and W.-H. Chen, “Informative path planning for
gas distribution mapping in cluttered environments,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2020, pp.
6726–6732.

[27] S. P. Arya et al., Air pollution meteorology and dispersion. Oxford
University Press New York, 1999, vol. 310.

[28] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and
E. Teller, “Equation of state calculations by fast computing machines,”
The journal of chemical physics, vol. 21, no. 6, pp. 1087–1092, 1953.

[29] K. G. Derpanis, “Overview of the ransac algorithm,” Image Rochester
NY, vol. 4, no. 1, pp. 2–3, 2010.

[30] O. Michel, “Cyberbotics Ltd. Webots™: professional mobile robot
simulation,” International Journal of Advanced Robotic Systems,
vol. 1, no. 1, pp. 39–42, 2004.

[31] Wikibooks, “Webots odor simulation — wikibooks, the free textbook
project,” https://en.wikibooks.org/w/index.php?title=Webots OdorSim-
ulation&oldid=1966420, 2010, accessed: 2021-09-01.

[32] J. A. Farrell, S. Pang, and W. Li, “Plume mapping via hidden Markov
methods,” IEEE Transactions on Systems, Man, and Cybernetics, Part
B, vol. 33, no. 6, pp. 850–863, 2003.


