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Abstract— In this paper, we describe a robust multi-drone
planning framework for high-speed trajectories in large scenes.
It uses a free-space-oriented map to free the optimization from
cumbersome environment data. A capsule-like safety constraint
is designed to avoid reciprocal collisions when vehicles deviate
from their nominal flight progress under disturbance. We
further show the minimum-singularity differential flatness of
our drone dynamics with nonlinear drag effects involved. Lever-
aging the flatness map, trajectory optimization is efficiently
conducted on the flat outputs while still subject to physical limits
considering drag forces at high speeds. The robustness and
effectiveness of our framework are both validated in large-scale
simulations. It can compute collision-free trajectories satisfying
high-fidelity vehicle constraints for hundreds of drones in a few
minutes.

I. INTRODUCTION

Multi-drone coordination is receiving increasing attention
as a fundamental problem in various applications such as
urban delivery, exploration, and inspection. It often requires
robust planning for concurrent long-distance flights in vast
spaces. The coordination should also be tolerant of realistic
factors from both the environment and vehicles. The high
problem dimension and the huge environment data further
prevent existing algorithms from being applicable to large
scenes. Most of them consider over-simplified safety criteria
and system dynamics in relatively short-range flights.

Several practical problems exist in multi-drone planning.
Firstly, planning algorithms frequently need accessing map
data for obstacle information [1]. In large scenes, an obstacle-
oriented map can become quite cumbersome, making itself
a computational bottleneck. Secondly, robust planning for
multi-drone should exploit the flexibility in both space and
time aspects while the latter is often ignored in the literature.
Thirdly, unexpected disturbances can make vehicles deviate a
lot from nominal trajectories. In this case, potential reciprocal
collisions pose threats to the whole system. Therefore, mis-
matches between actual flight progress and the planned one
easily invalidate distance-based safety criteria ensured in the
planning phase. Fourthly, high-speed flights admittedly im-
prove task efficiency in large scenes. However, aerodynamic
drag effects cannot be ignored when ensuring the physical
limits of vehicles. These also make oversimplified feasibility
criteria insufficient here.

In this paper, we propose a robust framework for multi-
drone planning in large scenes. The framework is built upon
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Fig. 1. These are 20 drones flying through a narrow gap in opposite direc-
tions concurrently. The blue “capsules” indicate the space-time uncertainty
of vehicles. Each vehicle can deviate from the timestamp and position of
its nominal trajectory. Our robustness is guaranteed by collision avoidance
between capsules via spatial-temporal planning.

three criteria for flight coordination. An obstacle avoidance
criterion ensures that no collision occurs between vehicles
and environments. We use a free-space-oriented map instead
where a union of polyhedra tightly approximates all free
configurations. The MINCO [2] trajectory is then adopted
for online spatial-temporal optimization within polyhedron-
shaped corridors. We also design a reciprocal safety criterion
via a space-time “capsule” constraint. It makes large flight
errors tolerable in time and position. Therefore, our planning
results are robust against reasonable perturbations. To ensure
a dynamic feasibility criterion, we show the differential flat-
ness for our drones subject to nonlinear drags. The flatness
map makes it possible to enforce user-defined physical limits
via penalty functionals supported by MINCO.

Summarizing our contributions in this work:
• A map polyhedronization scheme with corridor gener-

ation is proposed for online free space query;
• A space-time capsule constraint is designed for robust

reciprocal safety against large flight errors;
• Minimum-singularity differential flatness is shown for

our drones subject to nonlinear drag effects;
• A systematic way to robust trajectory planning is pro-

vided for multi-drone coordination with physical limits.

II. RELATED WORK

Planning for multi-drone coordination is inherently a high-
dimensional problem even if safety is the only requirement.
To reduce difficulty, reciprocal collision avoidance [3] com-
putes the feasible velocity in a decentralized way. Conflict-
based search [4] conducts centralized graph search instead,
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with complexity dominated by the number of conflicts rather
than agents. Their nonsmooth results do not suit high-order
dynamics. Some methods formulate the joint planning into a
Mixed Integer Quadratic Program (MIQP) [5] or a Sequential
Convex Program (SCP) [6] to generate smooth trajectories in
a centralized way, while they are not easily scaled to a large
vehicle number. In [7], separating hyperplanes are applied to
convex hulls of trajectories, forming a decoupled QP for each
individual in every refinement iteration. A drawback is that
obstacle-free environments are assumed. In [8], separating
planes also form the safe flight corridor for a vehicle, which
excludes all other dynamic and static obstacles. The planning
is done by iterative refinement based on guaranteed safe re-
sults from [4]. To reduce conservativeness, these hyperplanes
are treated as decision variables of a Nonlinear Program
(NLP) for planning [9]. However, all these methods do not
consider real physical limits and temporal optimization. To
assure higher-fidelity dynamics, the learned aerodynamic in-
teractions are incorporated into full quadrotor dynamics [10],
showing the high stability in close-proximity coordination
flights. Optimization-based temporal scheduling is performed
in [11] while it incorporates integer variables and assumes
obstacle-free environments. Different from existing work, our
work accomplishes spatial-temporal coordination for multi-
drone in an incremental way. It further handles state-input
limits and nonlinear drag effects during high-speed flights.

III. PRELIMINARIES

A. Map Polyhedronization

Safe flight corridors are convenient to encode free-space
information into trajectory planning while conquering non-
smoothness in discrete environment data. Instead of online
construction, we propose map polyhedronization as a pre-
processing step for corridor-based trajectory planning. The
process is done in advance for any large-scale fixed scene,
such as occupancy grids, point clouds, or triangle meshes of
digital maps.

Let F denote the free configuration in a given map. By
map polyhedronization we mean finding a set of polyhedra
Pi ⊆ F such that their union approximates F at a satisfac-
tory filling rate, i.e.,

vol

(
MP⋃
i=1

Pi

)
> (1− ε) vol (F) , (1)

where vol (·) means the volume and

Pi =
{
x ∈ R3

∣∣∣ Aix � bi} . (2)

There are many algorithms [12]–[15] able to generate a
free polyhedron wrapping a given seed. To accomplish the
map polyhedronization, we first select a random position x ∈
F\
⋃j
i=1 Pi by rejection sampling. Any algorithm mentioned

is applied to generate a Pj+1. This procedure repeats for
j ← j + 1 until its rejection rate exceeds 1−ε. Two examples
are also provided in Figure 2. Axis-aligned bounding boxes
of these polyhedra are managed by a multi-level segment tree
for three-dimensional stabbing queries [16]. Consequently,

for any position x in the covered free space, it becomes
efficient to obtain an outer polyhedron, denoted by P(x).

Fig. 2. The top figures show two kinds of obstacle environments. The
bottom figures show polyhedronization of these maps. All free spaces are
tightly filled by unions of convex polyhedra, colored in dark blue.

B. Problem Statement

Consider a set of drones conducting concurrent flights in
one scene F . The i-th vehicle’s position is ri(t) : R 7→ R3

at an absolute timestamp t. A new flight mission from po
to pf is to start at to, while its trajectory r(t) should not
conflict with early existed missions. Therefore, it must follow
some criteria for obstacle avoidance, reciprocal safety, and
dynamic feasibility.

The obstacle avoidance criterion requires the vehicle to fly
in the covered free configuration F̃ =

⋃MP
i=1 Pi, i.e.,

r(t) ∈ F̃ , ∀t ∈ [to, tf ], (3)

where TΣ ∈ R>0 is the total duration and tf = to + TΣ.
The reciprocal safety criterion requires the robustness against
unexpected disturbance. Thus we consider the space-time
capsule constraint, ensuring safety margins in space and time
aspects are both considered. Specifically,

‖r(α)− ri(β)‖W ≥ 2Mr, (4a)
∀α ∈ [t−Md, t+Md] ∩ [to, tf ], (4b)
∀β ∈ [t−Md, t+Md], (4c)
∀t ∈ [to, tf ], (4d)

where W = diag{1, 1, w} enlarges the margin vertically to
prevent downwash interference if w < 1. The scalars Mr

and Md are spatial and temporal margins for individuals, re-
spectively. The dynamic feasibility criterion requires vehicle
states and inputs such as the collective thrust and body rate
to fulfill physical limits when the drone tracks r(t) even with
significant air drag at a high speed.

IV. METHOD

A. Just-In-Time Corridor Generation

Safe flight corridors are essentially sequences of polyhe-
dra. Corridors ensure collision-free flights by excluding static
obstacles while keeping parameters as compact as possible.



Fig. 3. Every waypoint qi is sequentially assigned in to the intersection
of consecutive polyhedra Pi ∩ Pi+1. This assignment forms a convex
constraint for each piece, instead of the nonconvex constraint S. The
trajectory is only parameterized by waypoints and durations Ti.

Thus, it is well-suited for large-scale maps with redundant
data for navigation. We conduct just-in-time corridor gen-
eration for a newly occurred flight mission based on the
interface P(x) of a previously polyhedronized map.

Firstly, we apply the Informed RRT* [17] to obtain an
approximately shortest path from po to pf in F̃ . Our main
concern here is that in large-scale scenes, energy consump-
tion is more relevant to the distance covered. Denote by
r̄(l) : [0, L] 7→ R3 a arc-length-parameterized path. Based
on the collision-free path, the generation of a homotopic
safe flight corridor S is given by the algorithm below, also
visualized in Figure 6.

Algorithm 1: Homotopic Corridor Generation
Input: Path r̄(l) and Polyhedronized Map P(x)
Output: Safe Flight Corridor S
begin
S ← {} , l← 0;
while l ≤ L do

x← r̄(l);
P̄ ← P(x);
S.append

(
P̄
)
;

l← maxθ∈[l,L] θ, s.t. r̄(ϑ) ∈ P̄, ∀ϑ ∈ [l, θ];
return S;

Algorithm 1 actually finds a convex cover of the guiding
path as soon as a new flight mission occurs. All polyhedra
have been precomputed and can be online accessed directly.
Thus the corridor construction is just-in-time and efficient.
S provides a large room for consequent trajectory planning
subject to various constraints. For convenience, we denote S
by a polyhedron sequence {P1,P2, . . . ,PM} hereafter.

B. Spatial-Temporal Planning in Flight Corridors

For efficiency, we conduct optimization in the flat-output
space of multicopters such that all differential constraints
from dynamics are fulfilled by default. We adopt the MINCO
representation [2] to conduct spatial-temporal deformation of
the flat-output trajectory.

An s-order MINCO trajectory is indeed a 2s-order poly-
nomial spline with constant boundary conditions. It provides
a linear-complexity smooth map from intermediate points q
and a time allocation T to the coefficients of splines, which
is denoted as M(q, T ) : R3×(M−1) × RM>0 7→ R2Ms×3. A
spline with c =M(q, T ) is exactly the unique control effort

Fig. 4. The function ψµ has continuous first and second derivatives for
µ > 0. As µ approaches 0, the function also approaches the exact penalty
max(x, 0). By iteratively shrinking µ, constraints are enforced within any
desired precision while keeping a bounded weight and the C2-smoothness.

minimizer of an s-integrator that passes q. Moreover, given
with any function K(c, T ), MINCO can also serve as a linear-
complexity differentiable layer W(q, T ) := K(M(q, T ), T ),
such that ∂W/∂q and ∂W/∂T can be efficiently computed
from any ∂K/∂c and ∂K/∂T .

The corridor S provides natural constraints for the obstacle
avoidance criterion in (3). We sequentially assign trajectory
pieces into S as is shown in Figure 3. For the case where a
polyhedron Pi has only one piece, we have:

qi ∈ Pi ∩ Pi+1, ∀1 ≤ i ≤M, (5)

where qi is the i-th column in q. Unconstrained coordinates
q(ξ) and T (τ) are adopted such that (5) and the positiveness
of time are both satisfied by default [2]. The continuous-time
safety is enforced via the penalty functional below.

I1(c, T ) =

M∑
i=1

∫ Ti

0

1Tφµ
[
Aic

T
i β(t)− bi

]
dt, (6)

where β(t) = (1, t, t2, . . . , t2s−1)T is the power basis, φµ[·]
an entry-wise operator for φµ, and φµ : R 7→ R≥0 an C2-
smoothing of the exact penalty. φµ is defined as

φµ(x) =


0 if x ≤ 0,

(µ− x/2) (x/µ)
3

if 0 < x < µ,

x− µ/2 if x ≥ µ.
(7)

Figure (4) shows that function φµ approximates max(x, 0) as
µ approaches 0, thus a finite weight for penalty can enforce
the constraint at any specified precision.

The obstacle avoidance has been ensured by (5) and (6),
Now that they are defined via either {q, T} or {c, T}, we
can utilize the property of MINCO to formulate them on
unconstrained coordinates ξ and τ . Note that there is no need
for heuristic time allocation as done in traditional corridor-
based methods. Optimization of decoupled time parameters
are directly supported by MINCO.



Fig. 5. The top figure shows two vehicles fly in the opposite direction. The bottom figures show snapshots of their meeting. The red and blue capsules
represent their spatial and temporal uncertainties. A robust planner should guarantee the condition (4), i.e., no intersection occurs between them. In these
figures, all trajectories are generated using the equivalent condition (8) instead.

C. Robust Reciprocal Safety via Space-Time Capsules

The reciprocal safety criterion (4) ensures robustness in
accidents that vehicles may fail to accurate trajectory track-
ing under wind disturbance or so on. Large errors can occur
relative to the nominal position-stamp tuple. In this case, only
considering the safe distance margin is insufficient because
high-speed flights are common in large scenes.

The condition (4) views vehicles as space-time capsules
instead. Representing all uncertainties of a stamped position,
a capsule is a sphere-swept volume of the trajectory segment
on [t−Md, t+Md] with sphere radius Mr. Robust reciprocal
safety requires that all pairs of capsules be collision-free at
any t. This condition is difficult to enforce since two time-
varying nonconvex volumes are required to be collision-free
all the time. Fortunately, an equivalent but more convenient
condition exists:

‖r(t)− ri(γ)‖W ≥ 2Mr, (8a)
∀γ ∈ [t− 2Md, t+ 2Md], (8b)
∀t ∈ [to, tf ]. (8c)

Here we give a proof of the equivalence between (4) and
(8). For a given ri(t), if (4) holds while there is a ζ ∈ [to, tf ]
and a γ ∈ [ζ−2Md, ζ+2Md] such that ‖r(ζ)− ri(γ)‖W <
2Mr, then letting α = ζ, β = γ, and t = (ζ + γ)/2 in
(4) gives a contradiction. If (8) holds while there is an α ∈
[ζ−Md, ζ+Md]∩ [to, tf ] and a β ∈ [ζ−Md, ζ+Md] such
that ‖r(α)− ri(β)‖W < 2Mr, then letting t = α and γ = β
in (8) gives a contradiction.

It now becomes tractable to incorporate the robust recip-
rocal safety into our planning problem. Because (8) only for-
bids collisions between a single volume and a dimensionless
point at each timestamp. We enforce the space-time capsule
constraint via the following penalty functional,

I2(c, T ) = (9)
N∑
i=1

∫ tf

to

∫ 2Md

−2Md

φµ

(
4M2

r − ‖r(t)− ri(t+ v)‖2W
)

dvdt,

where tf and r(·) are only determined by {c, T}. A planning
result is given in Figure 5, showing the effectiveness of (9).

D. Physical Limits on Vehicle Dynamics with Drag Effects

High-speed flights in large-scale scenes put forward higher
requirements on dynamic feasibility. Unlike existing flatness-
based methods using oversimplified dynamics, we enforce
physical limits under nonlinear drag effects while still con-
ducting optimization in the flat-output space.

Consider the vehicle state x = {r, ṙ, R} where r ∈ R3

and R ∈ SO(3) are its translation and rotation, respectively.
The input is u = {f, ω} where f ∈ R≥0 is the thrust and
ω ∈ R3 the body rates. The vehicle dynamics are defined as{

mr̈ = −mge3 −RDRTσ(‖ṙ‖)ṙ +Rfe3,

Ṙ = Rω̂,

(10a)

(10b)

where m is the vehicle mass, g the gravitational acceleration,
e3 = (0, 0, 1)T, D = diag{dh, dh, dv} a horizontally sym-
metric drag coefficient matrix, σ : R≥0 7→ R≥0 a nonlinear
term, and ω̂ a skew-symmetric matrix. Note we assume the
vehicle to be horizontally symmetric. This decouples the yaw
heading from drag effects and is common for multicopters as
assumed in [18] and [19]. According to the analysis in [20],
we adopt σ(x) = 1+Cpx in our lumped parameter model to
incorporate both the linear drag [21] and the parasitic drag.

The physical limits G(x, u) � 0 for (10) are defined as

G(x, u) =


‖ṙ‖2 − v2

max

‖ω‖2 − ω2
max

arccos(eT
3 Re3)− θmax

(f − fm)2 − f2
r

 � 0, (11)

where fm = (fmax + fmin)/2 and fr = (fmax − fmin)/2
are intermediate constants. Maximum flight speed, body rate,
tilt angle, and thrust are specified by vmax, ωmax, θmax, and
fmax, respectively. Besides, restricting the tilt angle prevents
excessively aggressive maneuvers. Lower bounding the thrust
by fmin benefits attitude stabilization under disturbance.

The basic idea to incorporate physical limits on x and u
into a flat trajectory is to utilize the algebraic transformation
of differential flatness together with its differentiation. We
denote by r[s] the stack of finite derivatives (r, ṙ, . . . , r(s)),
and by ψ the yaw. The flatness transformation is given by

(x, u) = Ψ(r[s], ψ[s]). (12)



All physical limits are enforced by the penalty functional,

I3(c, T ) =

∫ tf

to

1Tφµ

[
G ◦Ψ

(
r[s](t), ψ[s](t)

)]
dt, (13)

where ψ(·) is any given planning of yaw. An energy func-
tional is also incorporated to ensure a smooth flight,

I0(c, T ) =

∫ tf

to

(
‖r(s)(t)‖22 + ρ

)
dt, (14)

where both tf and r(·) are still determined by {c, T}.
Now we give all details about the algebraic function Ψ for

the concerned vehicle dynamics (10). We left multiply (10a)
by body axes xb = Re1 and yb = Re2, then

(Rei)
T

(r̈ +
dh
m
σ(‖ṙ‖)ṙ + ge3) = 0, ∀i ∈ {1, 2} . (15)

The consistency of zb = Re3 as dh vanishes implies

zb = N (r̈ +
dh
m
σ(‖ṙ‖)ṙ + ge3), (16)

where N (x) = x/‖x‖2. Multiplying (10a) by zb gives

f = zT
b (mr̈ + dvσ(‖ṙ‖)ṙ +mge3) . (17)

We use Hopf fibration [22] to decompose the yaw quaternion
qψ and the tilt quaternion qz without involving Euler angles,

qψ = (cos(ψ/2), 0, 0, sin(ψ/2))
T
, (18)

qz = (1 + zb(3),−zb(2), zb(1), 0))
T
/
√

2(1 + zb(3)). (19)

Thus the rotation and body rates are given by

R = Rquat(qz ⊗ qψ), (20)

ω = 2(qz ⊗ qψ)−1 ⊗ (q̇z ⊗ qψ + qz ⊗ q̇ψ) , (21)

where ⊗ and the conversion Rquat(·) are both given in [23],
q̇z and q̇ψ are both evident from (18) and (19), respectively.

Algebraic procedures (16)-(21) exactly define the function
Ψ in (12), whose gradient is as cheap as Ψ itself [24]. Also,
we know that s = 3 is needed by the system (10) thus
r(t) should at least be jerk-controlled. There are only two
intrinsic singularities in Ψ, which can be easily avoided by
setting θmax < π and fmin > (dv − dh)σ(vmax)vmax. Our
flatness map with nonlinear drag effects does not produce
extra unnecessary singularities which occur in [21].

E. Incremental Planning for Multi-Drone Coordination

As for a newly occurred flight mission, we conduct the
optimization below to accomplish trajectory planning subject
to three concerned criteria in previous sections.

min
ξ,τ

3∑
ν=0

wν · Iν (M(q(ξ), T (τ)), T (τ)) , (22)

where w0 = 1, w1, w2, w3 are all finite weights for (7),
variables {ξ, τ} are unconstrained coordinates for {q, T}
in a fixed corridor. This unconstrained NLP can be solved
efficiently and reliably by quasi-Newton methods. Due to
the fact that optimization usually focuses on high-quality
local solutions, the initial values for points q and the time
allocation T need to be further specified.

Fig. 6. The red path is generated by Informed RRT* [17]. The blue path
is generated by distance-minimization (23) with σ = 10−2. The blue one
is a high-quality homotopic refinement computed within 0.025ms.

As for q, we take the waypoints from a shortest path as
its initial value. Denote x0 = po and xM = pf . The path is
given by a lightweight distance minimization, i.e.,

min
ξ

M∑
i=1

√
‖xi − xi−1‖22 + δ, (23a)

s.t. xi = qi(ξi), 1 ≤ i < M. (23b)

Here we use
√
‖·‖22 + δ as a δ-smooth approximation [25] to

the Euclidean distance, where δ takes the desired precision.
Note that coordinates ξ preserve local minima of the original
convex problem for q. This minimization efficiently refines
the rough solution as depicted in Figure 6.

As for T , we set the initial guess using trapezoidal velocity
profiles [26] for the obtained q. A p(t) : [0, T̄ ] 7→ R3 is then
generated by (22) with w2 = 0, i.e., reciprocal safety is
not considered. If p(t) happens to be safe by checking (8),
the planning is completed. Otherwise, temporal scheduling
should be done for the length-parameterized curve of p(t).
We conduct kinodynamic RRT* [27] for a one-dimensional
double integrator along the curve length, with limited speed
and acceleration. Its cost and steering function are all deter-
mined by a 1-dimensional time-optimal curve whose closed-
form solution is trivial for a double integrator. Note that the
time scheduling never fails since a feasible solution always
exists if the vehicle waits for a long enough time. The result
provides a feasible time allocation T . Along with waypoints
of p(t), we finally obtain an initial feasible guess for (22).

V. RESULTS

A. Implementation Details

We conduct multi-drone trajectory planning in an 2000×
2000×200m3 space where obstacles are randomly generated
by [28]. The occupancy map is firstly polyhedronized with
ε = 10−5, implying the filling rate to be 99.999%. In safety
criteria, we use Md = 4 s and Mr = 15 m. In vehicle
dynamics, we use m = 1.9 kg, dh = dv = 0.475 s−1, Cp =
0.01 m−1 s. We set physical limits as vmax = 13 m s−1,
ωmax = 2π/3 rad s−1, θmax = π/9 rad, fmin = 9.5 N, and
fmax = 28.5 N. This implies the thrust-to-weight ratio to be
only 1.53. Besides, I1, I2, and I3 are evaluated via equally-
spaced quadrature with fixed node numbers. In optimization,
we use ρ = 10−3 for time regularization, µ = 10−2 as the
initial smooth factor, and w1 = w2 = w3 = 105 as weights,



(a) Multi-drone planning for 80 and 160 vehicles in a 4 km2 dense-obstacle environment. Two left figures use distance-based safety constraints.
Two right figrues use space-time capsule constraints instead. All trajectories fulfill the physical limits under drag effects.

(b) The dynamic profile of a vehicle in the fourth figrue above. Dashed lines indicate physical limits. The mass normalized thrust, speed, tilt
angle, and the magnitude of body rate are all provided. The mass-normalized magnitude of the drag force is also given in the light-blue curve.

Fig. 7. Two subfigures give both the planning results in a large scene and the dynamic profile of a selected vehicle.

which ensure a high precision for constraints. Based on these
settings, we plan for every newly-generated pair of start and
goal in the map.

B. Multi-Drone Planning - Physical Limits

We enforce both the distance-based constraints and our
space-time capsule constraints in (4). The results are shown
in Figure 7. All trajectories are generated in several minutes.
In Figure 7(a), our scheme ensures the safety of concurrent
flights for up to 160 vehicles. Moreover, physical limits under
drag effects are considered even if most vehicles have to
cover about a kilometer. We give profiles of physical limits
in Figure 7(b) for one of the vehicles, implying that all
constraints (11) are satisfied during the entire 3 min flight.

According to Figure 7(b), our planner differs from tradi-
tional ones in that it does not assume a point-mass model.
For example, some multi-drone delivery missions require a
maximum tilt angle of fragile payloads. In this case, our
planning directly meets these requirements as the actual tilt
angle θ is always below θmax. Moreover, it outperforms
traditional ones that assume a drag-free rigid body. For exam-
ple, whenever a vehicle flies as a large constant velocity, its
acceleration becomes zero, and its thrust is exactly the weight
if no drag is considered. Actually, the vehicle produces more
thrust f and a nonzero tilt angle θ to cancel drag forces fdrag
as shown in our figure. Therefore, multi-drone flights in large
schemes indeed involve more realistic factors.

C. Multi-Drone Planning - Robustness

To validate the robustness of our scheme. We consider a
case where 20 vehicles concurrently fly through a narrow
gap, as shown in Figure 1. We use both the distance-based
safety constraints and our capsule constraints to solve this
planning. Moreover, we add disturbance to the vehicle such
that tracking error occurs during their high-speed flight.

Fig. 8. Average minimum distances among all vehicle pairs for different
safety criteria and temporal tracking error.

Denote by ∆tmax the maximum temporal error for nom-
inal trajectory tracking. For different ∆tmax, we compute
the minimum distance among all vehicle pairs. The entire
multi-drone planning is repeated for 20 times. The average
minimum distance is counted for both constraints in Figure 8.
As ∆tmax becomes positive, distance-based safety is quickly
broken since the red curve goes below the safe distance
2Mr = 30 m. Our capsule constraints guarantees the safety
when ∆tmax ≤ Md. Moreover, the safe distance is still
maintained even if 4 s < ∆tmax < 5 s.

VI. CONCLUSION

In this paper, we propose a systematic scheme for robust
multi-drone planning at high speeds. The free-space-oriented
map much eases our planner from the burden of high-volume
data accessing. The space-time capsule constraint ensures re-
ciprocal safety even if any vehicle is significantly behind the
predefined flight progress. The minimum-singularity flatness
of our drone dynamics subject to nonlinear drags plays an
essential role in ensuring realistic physical limits at high
speeds. We believe this is a practical framework towards
robust multi-drone trajectory planning in large scenes.
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