
Learning Time-optimized Path Tracking
with or without Sensory Feedback

Jonas C. Kiemel1 and Torsten Kröger

Abstract— In this paper, we present a learning-based ap-
proach that allows a robot to quickly follow a reference path
defined in joint space without exceeding limits on the position,
velocity, acceleration and jerk of each robot joint. Contrary
to offline methods for time-optimal path parameterization,
the reference path can be changed during motion execution.
In addition, our approach can utilize sensory feedback, for
instance, to follow a reference path with a bipedal robot without
losing balance. With our method, the robot is controlled by a
neural network that is trained via reinforcement learning using
data generated by a physics simulator. From a mathematical
perspective, the problem of tracking a reference path in a
time-optimized manner is formalized as a Markov decision
process. Each state includes a fixed number of waypoints
specifying the next part of the reference path. The action
space is designed in such a way that all resulting motions
comply with the specified kinematic joint limits. The reward
function finally reflects the trade-off between the execution time,
the deviation from the desired reference path and optional
additional objectives like balancing. We evaluate our approach
with and without additional objectives and show that time-
optimized path tracking can be successfully learned for both
industrial and humanoid robots. In addition, we demonstrate
that networks trained in simulation can be successfully trans-
ferred to a real robot. A video presentation is available at
https://youtu.be/hBukfMs6We8.

I. INTRODUCTION

Finding a time-optimal way to follow a reference path
while respecting kinematic joint limits is one of the most
prevalent tasks in industrial robotics. However, just like a
race driver needs to know the exact course of the race track
to achieve an optimal lap time, time-optimal path parameter-
ization (TOPP) requires the desired reference path to be fully
known in advance. For that reason, existing offline methods
for time-optimal path parameterization are not applicable to
reactive online scenarios in which the reference path needs
to be adjustable during motion execution. The same is true
if sensory feedback is needed to successfully perform the
path tracking task. As shown in Fig. 1, this applies, for
example, to the bipedal humanoid robot ARMAR-4, which
can lose its balance when its arms are moved or to an
industrial robot that balances a ball on a plate while following
a reference path. In this work, we address the problem
of time-optimized path tracking for online scenarios like
those shown in Fig. 1 by learning a well-performing trade-
off between the execution speed, the deviation from the
reference path and additional objectives like ball balancing
via model-free reinforcement learning (RL). For this purpose,

1Institute for Anthropomatics and Robotics – Intelligent Process Automa-
tion and Robotics (IAR-IPR), Karlsruhe Institute of Technology (KIT),
jonas.kiemel@kit.edu 2Code: www.github.com/translearn/
pathTracking 3Video: https://youtu.be/gCPN8mqPVHg

Without sensory feedback With sensory feedback

(a) KUKA iiwa (b) KUKA with balance board

(c) ARMAR-6 (d) ARMAR-4

Fig. 1: Our evaluation environments for learning time-
optimized path tracking. Using sensory feedback, our method
can incorporate additional goals such as ball balancing or
maintaining balance with the bipedal robot ARMAR-4.

a neural network is trained in a simulation environment
using thousands of different reference paths. At each time
step, only the directly following part of the reference path
is made available to the neural network as an input signal.
Once the training process is finished, the neural network can
generate optimized trajectories even for paths not included in
the training set. Our action space ensures that all generated
trajectories comply with predefined kinematic joint limits.
Additional optimization objectives like ball balancing can
be easily added to the reward function as they do not have
to be differentiable with respect to the selected action.
Our main contributions can be summarized as follows:
• We introduce an online method to track reference paths

based on reinforcement learning that ensures compli-
ance with kinematic joint limits at all times.

• We show that our approach can incorporate sensory
feedback to account for additional objectives such as
maintaining the balance of a bipedal humanoid robot.

• We evaluate our method using robots with up to 30
degrees of freedom and demonstrate successful sim-2-
real transfer for a time-optimized ball-on-plate task.

Our source code is publicly available.2

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

ar
X

iv
:2

20
3.

01
96

8v
2 

 [
cs

.R
O

] 
 2

0 
O

ct
 2

02
2

https://youtu.be/hBukfMs6We8
www.github.com/translearn/pathTracking
www.github.com/translearn/pathTracking
https://youtu.be/gCPN8mqPVHg
https://www.github.com/translearn/pathTracking


State st

N waypoints

Kinematic state
pt, vt, at

Ball position

State st+1

N waypoints

Kinematic state
pt+1, vt+1, at+1

Ball position

st

Neural network

t t+ 1
∆tN

at+1

at

at
at

Trajectory generation and execution

Training via
reinforcement

learning

Path length l Path deviation d Ball balancing

Reference path Generated path

Reward calculation

Fig. 2: The principle of online trajectory generation with our approach illustrated for a single time step t of a ball-on-plate task.

II. RELATED WORK

A. Time-optimal path parameterization (TOPP)

The problem of finding a time-optimal path parameteriza-
tion subject to kinematic joint constraints has been studied
for decades with methods proposed based on dynamic pro-
gramming [1], numerical integration [2], convex optimization
[3] and reachability analysis [4]. Widely used implementa-
tions that can consider velocity and acceleration constraints
include [5] for paths consisting of line segments and circular
blends and [4] for paths defined as cubic splines. While
our approach additionally supports jerk limits, TOPP subject
to jerk constraints is still an open research problem [6].
Methods related to TOPP have also been used for ball
balancing [7] or to keep bipedal humanoid robots in balance
e.g. by defining multi-contact friction constraints [4], [8] or
by imposing constraints on the zero moment point (ZMP) [9].
However, as time-optimal path parameterization requires the
desired path to be known in advance, all calculations have to
be performed offline. As a consequence, it is not possible to
consider sensory feedback to compensate for external distur-
bances or model errors. The latter is particularly problematic
as existing methods often require simplified contact models.

B. Online trajectory generation (OTG)

Time-optimal point-to-point motions subject to kinematic
joint constraints can be computed online, for instance using
the Reflexxes motion library [10]. This is done by specifying
a desired kinematic target state at each control time step. In
contrast to our work, this method does not allow to specify
a desired reference path. An online method for computing
a feasible and jerk-limited path-accurate robot trajectory is
presented in [11]. However, unlike our work, the method
does not put focus on generating time-optimized trajectories.
Another line of research aims at finding optimized robot

trajectories based on model-predictive control (MPC) [12]–
[14]. Compared to MPC, model-free RL offers the advantage
that no differentiable dynamics model is required and that the
reward function does not have to be differentiable with re-
spect to the selected action. In addition, generating optimized
motions with neural networks trained via RL is very fast,
which allows real-time execution even for systems with many
degrees of freedom. As a consequence, model-free RL can
be used for a wide range of applications and has attracted in-
creasing attention from the research community over the past
few years. Exemplary learning tasks presented in the past
include in-hand manipulation [15], locomotion with bipedal
robots [16] or collision-free target point reaching [17], to
name just a few. Model-free RL has also been used to adjust
reference trajectories in order to meet additional objectives
[18], [19]. Compared to these approaches, we consider
reference paths instead of reference trajectories, meaning
that the velocity profile of the resulting trajectory is part
of the optimization rather than being specified in advance.
Considering that additional objectives like balancing become
more difficult the faster the reference path is traversed,
optimizing the traversing speed during the training process is
an important factor for learning well-performing trajectories.

III. APPROACH

A. Overview

Fig. 2 illustrates the basic principle of our method based
on a ball-on-plate task with sensory feedback. The goal of the
task is to quickly follow a reference path (shown in green)
while avoiding a ball to fall from a balance board attached
to the last link of the robot. The position of the ball on
the board is measured and provided as sensory feedback.
Using the mathematical framework of a Markov decision
process, we formalize the online generation of optimized



robot trajectories as a discrete-time control problem with a
constant time ∆tN between decision steps. At each decision
step t, a state description st containing information on the
reference path, the kinematic state of the robot and the ball
position is given as input to a neural network. The neural
network outputs an action at that is used to compute a
continuous trajectory from the current time step t to the
subsequent time step t + 1. During training, the trajectory
is executed in a physics simulator and a scalar reward
is computed to evaluate the performance of the generated
action at. As part of the reward computation, the path
resulting from the trajectory execution (shown in red) is
assessed based on its length and its deviation to the reference
path. In addition, the balancing performance is rated based
on the distance between the ball and the center of the board.
Using model-free RL, the neural network is trained to output
actions that maximize the sum of rewards received over time.
This way, the network learns to generate robot trajectories
that are optimized with respect to the execution time, the
path deviation and the balancing performance. The following
subsection provides further details on the Markov decision
process. Subsequently, we explain how the reference paths
used to train the neural network are generated.

B. Details on the Markov decision process

The problem of generating optimized robot trajectories
is formalized as a Markov decision process (S,A, Pa, Ra),
with S being the state space, A being the action space,
Pa representing (unknown) transition probabilities and
Ra being the reward resulting from action a. In the following,
details on the state space, the action space, the reward
calculation and the termination of episodes are provided.

1) Composition of states s ∈ S: A state s contains
information on the following part of the reference path and
on the kinematic state of the robot. For tasks that require
sensory feedback, the sensor signals are included in the state
as well. In our work, the reference paths are described as
cubic splines. A spline is a mathematical representation that
can be used to define a piecewise polynomial path between
specified waypoints, called knots. To provide the neural
network with information about the reference path, N of
these knots are included in the state. Note that the reference
path is defined in joint space, meaning that each knot is a
vector of joint positions. For illustration purposes, however,
we apply forward kinematics to visualize the reference path

Path length
lState

Reference
path

Knot 1 Knot N

Current
path position

Fig. 3: The figure illustrates how the following part of the
reference path is included in the state using N = 5 knots.

Reference path Waypoints in state Generated path

(a) Initial reference path (b) Adjusted reference path

Fig. 4: Adjusting the reference path during motion execution.

in Cartesian space. Fig. 3 illustrates how the knots are
selected. The red cross indicates the current position on the
reference path. At the beginning of an episode, this position
is set to the start of the reference path. During an episode,
each action causes the robot to move along a certain path.
After each action, the current position on the reference path is
shifted forward according to the length of the path generated
by the action. As shown in Fig. 3, the state contains the
knot preceding the current path position and N−1 following
knots. In addition, the path length labeled lState and the path
length between the first knot and the current path position are
included in the state. If the remaining part of the reference
path consists of less than N−1 knots, the last knot is inserted
into the state multiple times. In this case, the decreasing path
length lState indicates to the network that the robot must be
slowed down. As illustrated in Fig. 4, the reference path
can be adjusted during motion execution. We note that the
reference path can be traversed faster if more knots are
included in the state. In return, however, a larger part of
the reference path needs to be known in advance.

The kinematic state of the robot is described by the
position p, velocity v and acceleration a of each robot joint.

As sensory feedback, the position of the ball on the plate
is included in the state of the ball-on-plate task. To maintain
balance with the humanoid robot ARMAR-4, the position
and the rotation of the robot’s pelvis relative to its initial
upright pose are included in the state. While we extract the
data from simulation, it could also be provided by an inertia
measurement unit (IMU).

2) Trajectory generation based on actions a ∈ A:
Each action a defines a trajectory with a duration of ∆tN .
To avoid damage to the robot joints, the following kinematic
constraints must be satisfied for each joint at all times:

pmin ≤ θ ≤ pmax (1)

vmin ≤ θ̇ ≤ vmax (2)

amin ≤ θ̈ ≤ amax (3)
jmin ≤

...
θ ≤ jmax, (4)

where θ is the joint position and p, v, a and j stand for
position, velocity, acceleration and jerk, respectively. Each
action a ∈ A is a vector consisting of a scalar ∈ [−1, 1] per
robot joint controlled by the neural network.



Generated trajectory Kinematically feasible acceleration setpoints
a

t t+ 1 t+ 2 t+ 3

∆tN

atmax

atmin

at = 0.0 at+1 = −0.5 at+2 = 1.0

at+1

at

at+2
at+1

at+2

at

amin

amax

Fig. 5: The figure illustrates for a single joint how actions a
are mapped to kinematically feasible accelerations.

At time step t, the action at specifies the joint acceleration
at+1. Compliance with the specified joint limits is ensured
by mapping the action at along the range of kinematically
feasible acceleration setpoints [at+1min

, at+1max
]:

at+1 = at+1min
+

1 + at
2
· (at+1max

− at+1min
) (5)

The method to compute the range [at+1min
, at+1max

] is
explained in [20]. Fig. 5 demonstrates how the acceleration
of a single joint is controlled using three exemplary actions
at, at+1 and at+2. To generate a continuous trajectory, the
acceleration is linearly interpolated between the discrete time
steps. Once the course of the joint acceleration is known,
velocity and position setpoints for a trajectory controller can
be calculated by integration.

3) Calculation of rewards Ra: We consider the tracking
of reference paths as a multi-objective optimization problem.
The reward function formalizes the trade-off between the
time to traverse the reference path, the deviation from the
reference path and additional task-specific objectives:

Ra = α ·Rl + β ·Rd + γ ·Rs1 + . . .+ δ ·Rsn , (6)

where Rl is the path length reward, Rd is the path deviation
reward and Rs1 to Rsn represent task-specific objectives.
The reward components Rl, Rd, Rs1 . . . Rsn are defined to
be in the range [0.0, 1.0]. Non-negative weighting factors
α, β, γ . . . δ control the influence of each objective.

To determine the path length reward Rl and the path
deviation reward Rd, we calculate the path traversed as a
result of action a. In the reward calculation box of Fig. 2,
this path is shown in red. We then compute the length of the
path l and its average deviation from the reference path d.

0.0 l

Rl

1.0

lState lEnd

0.0 d

Rd

1.0

dmax

Fig. 6: Path length reward Rl and path deviation reward Rd.

To calculate d, the Euclidian distance between waypoints
on the generated path and waypoints on the reference path
is averaged. The first waypoint of the generated path is
compared with the waypoint of the reference path that is
marked with a red cross in Fig. 3. Further comparison points
are shifted by the same arc length on each of the two paths.
Fig. 6 illustrates how l and d are mapped to Rl and Rd. The
path length reward Rl controls the speed of traversing the
reference path. Under normal conditions, a fast traversal is
preferred. For that reason, larger path lengths receive higher
rewards. However, towards the end of the reference path, the
robot should slow down and finally come to a standstill. To
achieve this behavior, the reward is reduced if the path length
exceeds lState, the length of the path included in the state.
Once the end of the reference spline is reached, lState is zero
and the constant length lEnd controls how much the robot is
penalized for further movements. The path deviation reward
Rd encourages the robot to stay close to the reference path. It
is defined as a decreasing quadratic function yielding a value
of zero if the deviation d exceeds a predefined threshold dmax.

For the ball-on-plate task, an additional reward component
Rs1 is determined based on the distance between the ball
and the center of the plate, using a decreasing quadratic
function like the one shown for Rd. To maintain balance with
the bipedal humanoid ARMAR-4, we reward small angles
between the robot’s pelvis and an upward pointing z-axis.
This angle is 0° when the robot is upright and 90° when the
robot is lying on the ground. If the legs of the robot are not
fixed, we additionally reward a small positional displacement
of the pelvis to prevent the robot from moving around.

4) Termination of episodes: In case of a successful task
execution, an episode is terminated after a specified number
of time steps. However, during training we define additional
conditions that lead to an early termination of an episode.
For path tracking without sensory feedback, an episode is
terminated if the deviation d between the generated path
and the reference path exceeds a predefined threshold. The
ball-on-plate task is additionally terminated if the ball falls
from the plate. In case of the bipedal humanoid ARMAR-4,
an episode is terminated if the robot falls over. Note that
the reward assigned to an action is never negative. For that
reason, early termination leads to a lower sum of rewards and
the neural network learns to avoid early termination during
the training process.

C. Generation of reference paths

1) Datasets used for the training process: When using
model-free RL, the aim of the training process is to find
a policy that optimizes the sum of future rewards. Trans-
ferred to our specific problem, this means that the learning
algorithm tries to find an optimized tracking strategy for
the entire reference path, although only a part of it is
known. The best optimization results can be achieved if the
reference paths used within the training process are similar to
those encountered during deployment. For our evaluation, we
use three datasets with different path characteristics. Fig. 7
visualizes some of the reference paths for each dataset.



(a) Random (b) Target point (c) Ball balancing

Fig. 7: Visualization of the datasets used for our evaluation.

The random dataset is generated by selecting random
actions at each decision step and storing the paths resulting
from the random robot motions. We use a method described
in [17] to ensure that only collision-free paths are generated.
As can be seen in Fig. 7a, the reference paths cover the entire
working space of the robot. In typical industrial applications,
however, robots do not move randomly. Instead, they often
move between Cartesian target points. To recreate such a
situation, we train a neural network to generate collision-free
trajectories between randomly sampled target points using
the method from [17]. The target point dataset shown in
Fig. 7b is composed of paths produced by this network. For
the ball-on-plate task, the reference paths are computed in
such a way that the plate is always aligned horizontally. The
corresponding dataset is visualized in Fig. 7c. We note that
the datasets used for training and testing are created in the
same way, but do not contain the same paths.

Original path Spline knots Resulting reference path

(a) Distance-based sampling (b) Curvature-based sampling

x(s) y(s) Curvature κ(s) =
√
x′′(s)2 + y′′(s)2

0

Sa
m

pl
in

g
(a

)

Arc length s
0

C
ur

va
tu

re

0

Sa
m

pl
in

g
(b

)

Arc length s
0

C
ur

va
tu

re

0

Sa
m

pl
in

g
(a

)

Arc length s
0

C
ur

va
tu

re

(c) Knot position over arc length for both sampling strategies.

Fig. 8: Strategies for the sampling of spline knots.

2) Spline knots included in the state: The desired ref-
erence path is defined based on a fixed number of spline
knots included in the state. Different strategies can be used
to place the knots along a given path. Fig. 8 illustrates two of
them using a two-dimensional path shaped like a lemniscate.
With distance-based sampling, the knots are placed so that
the arc length between them is equal. When using curvature-
based sampling, the curvature of the path is computed and
integrated. The knots are selected such that the integrated
curvature between the knots is equal. With distance-based
sampling, the length of the path included in the state is
always the same, except at the end of the reference path.
When using curvature-based sampling, however, the included
path length depends on the curvature of the reference path.
Sections of low curvature that can be traversed more quickly
lead to a longer path being described by the state.

IV. EVALUATION

We evaluate our method by learning to track reference
paths with and without additional objectives. Our evaluation
environments are shown in Fig. 1. The KUKA iiwa is an
industrial lightweight robot with 7 joints. The humanoid
robot ARMAR-6, shown in Figure 1c, is controlled by
17 joints. The bipedal humanoid ARMAR-4 has 30 joints,
with 18 used for the upper body and 12 used for the legs. In
the case of ARMAR-4, the reference path specifies the joint
positions of the upper body only. For the other two robots,
the positions of all joints are defined by the reference path.

Our neural networks are trained using proximal policy
optimization (PPO) [21] based on data generated by the
physics engine PyBullet [22]. We use networks with two
hidden layers, the first one consisting of 256 neurons and
the second one consisting of 128 neurons. The time between
decision steps is set to ∆tN = 0.1 s. The results shown in
the following tables were obtained by averaging data from
1200 episodes, with reference paths taken from separate test
datasets. For the random dataset and the target point dataset,
we use curvature-based sampling with N = 9 knots included
in the state. In the case of the ball balancing dataset, distance-
based sampling with N = 5 knots is used.

A. Path tracking without additional objectives

When tracking paths without additional targets, the net-
works are trained to minimize the duration of the trajectory
and the average deviation from the reference path.

Reference path Generated path

(a) KUKA iiwa (b) ARMAR-6

Fig. 9: Path tracking without additional objectives.



TABLE I: Training results for time-optimized path tracking without additional objectives obtained based on 1200 episodes.

Configuration Duration [s] Joint position deviation [rad] Cart. position deviation [cm] Cart. orientation deviation [°]
(robot stopped) mean max final mean max final mean max final

KUKA iiwa
• Random dataset 4.28 0.11 0.19 0.09 3.3 7.5 2.7 5.8 11.8 5.1

• Target point dataset 4.99 0.12 0.21 0.12 3.7 8.1 3.8 6.7 13.5 6.3

• Ball balancing dataset 2.44 0.04 0.08 0.03 1.4 3.0 1.4 1.7 3.9 1.5

ARMAR-6
• Random dataset 4.98 0.14 0.20 0.16 5.5 13.6 6.2 5.3 11.5 6.0

ARMAR-4 (fixed base)
• Random dataset 5.09 0.14 0.20 0.14 3.3 7.8 3.5 5.6 11.7 5.7

• Target point dataset 5.48 0.14 0.21 0.15 3.6 8.8 3.8 5.6 12.4 6.2

TABLE II: Trade-off traversing time vs. path deviation.

KUKA iiwa with Duration [s] Cart. position deviation [cm]
random dataset (robot stopped) mean max final
• Length < deviation 4.76 2.7 6.4 2.3

• Length ≈ deviation 4.28 3.3 7.5 2.7

• Length > deviation 4.08 3.6 8.0 3.1

TABLE I shows the training results obtained for the differ-
ent robots and datasets. Note that the learning algorithm tries
to minimize the average joint position deviation, given in the
second column. However, to give a better idea of the results,
we also specify deviations with respect to the position and
orientation in Cartesian space. For this purpose, the reference
path and the generated path are converted to Cartesian space
using forward kinematics. The tool center point (TCP) is
used as the reference point for the KUKA iiwa, whereas the
fingertips are used for the humanoid robots. Renderings of
two exemplary episodes can be seen in Fig. 9. To compute
the deviations, points on the reference path are compared
with points on the generated path. The comparison points
are selected such that they are equally far away from the
beginning of the respective path. To specify a trajectory
duration and a final position deviation, the robot joints
are decelerated as soon as the end of the reference path
is reached. Using the ball balancing dataset, an average
Cartesian deviation of 1.4 cm and 1.7° is obtained. The paths
in the random and the target point dataset show a larger
variance, resulting in a Cartesian deviation of approximately
4 cm and 6°. In the following, we evaluate how the trajectory
duration and the position deviation can be influenced.

1) Trade-off traversing time vs. path deviaton: Our reward
function (6) allows us to assign different weights to the
path length reward Rl and to the path deviation reward Rd.
TABLE II shows how the weighting affects the traversing
time and the path deviation. If the weighting of the deviation
reward is increased, the path deviation decreases whereas
the trajectory duration increases. Likewise, faster trajectories
with a higher path deviation are learned when the weighting
of the path length reward is increased.

2) Number of knots included in the state: TABLE III
shows how the training results are affected by the number of
knots N used to describe the following part of the reference
path. If more knots are included in the state, the reference
path can be traversed faster. In return, however, a larger part

TABLE III: Impact of the knots included in the state.

KUKA iiwa with Duration [s] Cart. position deviation [cm]
random dataset (robot stopped) mean max final
• 5 knots 5.20 2.5 5.6 2.8

• 7 knots 4.52 3.4 7.5 3.0

• 9 knots 4.28 3.3 7.5 2.7

of the reference path has to be known in advance.
3) Generalization ability between datasets: To analyze

the generalization ability with respect to different path char-
acteristics, we evaluate networks trained using the random
dataset with reference paths from the target point dataset.
TABLE IV shows the results for the KUKA iiwa and the
humanoid ARMAR-4. Compared to the networks trained
directly with the target point dataset, the resulting trajectories
are slightly faster but also a little less accurate in tracking the
reference path. Overall, however, the differences are small,
indicating that networks trained on random paths can also
be used to track paths with different path characteristics.

In the accompanying video3, we additionally show how
a network trained on random paths performs on reference
paths that resemble geometric shapes in Cartesian space.

4) Comparison with time-optimal path parameterization:
We benchmark our approach with TOPP-RA [4], a state-of-
the-art offline method for time-optimal path parameteriza-
tion. TABLE V compares the features of both methods.

TABLE IV: Generalization ability between datasets.

Duration [s] Cart. position deviation [cm]
(robot stopped) mean max final

KUKA iiwa
• Random dataset to

target point dataset
4.87 3.9 9.2 2.7

ARMAR-4 (fixed base)
• Random dataset to

target point dataset
5.40 3.8 9.2 4.1

TABLE V: Feature comparison with TOPP-RA [4]

TOPP-RA Ours
Supports velocity limits 3 3

Supports acceleration limits 3 3

Supports jerk limits 7 3

Supports path adjustments 7 3

Supports sensory feedback 7 3

https://youtu.be/gCPN8mqPVHg


N
o

ba
la

nc
in

g
re

w
ar

d
B

al
an

ci
ng

re
w

ar
d

0.0 s 1.3 s 2.6 s 3.9 s 5.2 s t

Start position Final position reached

Fig. 10: The ball-on-plate task performed by a real KUKA iiwa. When the balancing performance is rewarded (bottom), the
reference path is traversed less quickly, but the ball is kept close to the center of the plate.

While our method additionally supports jerk limits and
online adjustments of the reference path, the offline method
TOPP-RA generates faster trajectories that track the refer-
ence path almost perfectly. A quantitative analysis is shown
in TABLE VI. Trajectories for the KUKA iiwa generated
with TOPP-RA require around 78 % of the time needed by
our method. For the humanoid ARMAR-4, around 65 % of
the time is needed. In return, the reference paths need to be
known in advance and it is not possible to consider additional
objectives that require sensory feedback.

B. Path tracking with objectives based on sensory feedback

1) Ball-on-plate task: The goal of the ball-on-plate task
is to traverse a reference path while balancing a ball. During
the motion execution, the position of the ball on the plate is
provided as sensory feedback. TABLE VII shows the training
results with and without an additional reward component
based on the balancing performance. Without the balancing
reward, the ball falls off the plate in all evaluated episodes.
However, when the balancing performance is rewarded, the
ball falls down in only 0.3 % of the episodes. In return, the
reference path is traversed less quickly and less precisely.
Fig. 10 visualizes the results based on an exemplary reference
path traversed by a real KUKA iiwa. The robot is controlled
using the networks trained in simulation and the ball position
is provided by a resistive touch panel.

TABLE VI: Comparison with the offline method TOPP-RA.

Duration [s] Relative Max. joint pos.
(robot stopped) duration [%] deviation [rad]

KUKA iiwa
• Random 3.36 78.5 0.00

• Target point 3.79 76.0 0.00

• Ball balancing 1.91 78.3 0.00

ARMAR-4 (fixed base)
• Random 3.31 65.0 0.00

• Target point 3.68 67.2 0.00

TABLE VII: Training results for the ball-on-plate task.

Ball balancing Duration [s] Balancing Cart. pos. deviation [cm]
dataset (end of path) error [%] mean max
KUKA iiwa
• No balancing

reward
2.24 100.0 1.4 3.0

• Balancing
reward

2.99 0.3 2.3 4.9

2) Maintaining balance with ARMAR-4: The additional
objective of this task is to prevent a bipedal robot from falling
over. For that purpose, the pose of the robot’s pelvis is pro-
vided as sensory feedback. TABLE VIII shows the training
results for three different experimental configurations. In the
first two experiments, the legs of the robot are fixed in an
outstretched position. Without an additional balancing term
in the reward function, the robot falls over in 26 % of the
episodes. With an additional reward for standing upright, the
robot loses balance in approximately 5 % of the episodes.
In the third experiment, the 12 joints of the legs are also
controlled by the neural network. Thus, the network can use
the legs to stabilize the motions of the upper body. As a
result, the robot falls over in less than 1 % of the episodes.
An exemplary episode of the first and the third experiment
is shown in Fig. 11 and also in the accompanying video3.

TABLE VIII: Maintaining balance with ARMAR-4.

Target point Duration [s] Balancing Cart. pos. deviation [cm]
dataset (end of path) error [%] mean max
ARMAR-4 with
fixed legs
• No balancing

reward
5.28 26.1 3.6 8.8

• Balancing
reward

5.63 5.3 4.1 9.6

ARMAR-4 with
controlled legs
• Balancing

reward
5.59 0.8 4.2 9.8

https://youtu.be/gCPN8mqPVHg


N
o

ba
la

nc
in

g
re

w
ar

d
B

al
an

ci
ng

re
w

ar
d

0.0 s 3.5 s 7.0 s t

Reference path Generated path

Fig. 11: Top: Without a balancing reward, the robot falls
over. Bottom: With a reward for standing upright, the legs
of the robot are used to keep the robot in balance.

C. Real-time capability

As shown in Fig. 10 and in the accompanying video3,
we successfully applied our method to a real KUKA iiwa
robot using networks trained in simulation. The transfer is
performed by sending the trajectory setpoints specified by
each action to a real trajectory controller instead of a virtual
one simulated by PyBullet. To analyze the computational
requirements of our method, we calculate 1200 episodes
for each of the three robots shown in this paper using an
Intel i7-8700K CPU. We then calculate the quotient of the
computation time and the trajectory duration and provide
the highest value of all episodes in TABLE IX. The results
show that the computation time is significantly smaller than
the trajectory duration, making our method well-suited for
real-time trajectory generation.

TABLE IX: Evaluation of the computational effort.

KUKA iiwa ARMAR-4 with legs ARMAR-6
Computation time
Trajectory duration 7.50% 34.97% 10.59%

V. CONCLUSION AND FUTURE WORK

This paper presented a learning-based approach to follow
reference paths that can be changed during motion execu-
tion. Trajectories are generated by a neural network trained
to maximize the traversing speed while minimizing the
deviation from the reference path. Additional task-specific
objectives can be considered by including sensory feedback
into the state. The mapping of network actions to joint
accelerations ensures that no kinematic joint limits are vio-
lated. We evaluated our method with and without additional
objectives on robotic systems with up to 30 degrees of
freedom showing that well-performing trajectories can be
learned for reference paths with different path characteristics.
We also demonstrated successful sim-2-real transfer for a
ball-on-plate task performed by an industrial robot.

In future work, we would like to investigate ways to addi-
tionally control the traversing speed during motion execution.

ACKNOWLEDGMENT
This research was supported by the German Federal

Ministry of Education and Research (BMBF) and the Indo-
German Science & Technology Centre (IGSTC) as part of
the project TransLearn (01DQ19007A). We would like to
thank Tamim Asfour for his valuable feedback and advice.

REFERENCES

[1] K. Shin and N. McKay, “Minimum-time control of robotic manipula-
tors with geometric path constraints,” IEEE Transactions on Automatic
Control, vol. 30, no. 6, pp. 531–541, 1985.

[2] J. E. Bobrow, S. Dubowsky, and J. S. Gibson, “Time-optimal control of
robotic manipulators along specified paths,” The international journal
of robotics research, vol. 4, no. 3, pp. 3–17, 1985.

[3] D. Verscheure, B. Demeulenaere, J. Swevers, J. De Schutter, and
M. Diehl, “Time-optimal path tracking for robots: A convex optimiza-
tion approach,” IEEE Transactions on Automatic Control, 2009.

[4] H. Pham and Q.-C. Pham, “A new approach to time-optimal path
parameterization based on reachability analysis,” IEEE Transactions
on Robotics, vol. 34, no. 3, pp. 645–659, 2018.

[5] T. Kunz and M. Stilman, “Time-optimal trajectory generation for path
following with bounded acceleration and velocity,” Robotics: Science
and Systems VIII, pp. 1–8, 2012.

[6] H. Pham and Q.-C. Pham, “On the structure of the time-optimal path
parameterization problem with third-order constraints,” in 2017 IEEE
International Conference on Robotics and Automation (ICRA). IEEE.

[7] J. C. Kiemel, P. Meißner, and T. Kröger, “TrueRMA: Learning fast
and smooth robot trajectories with recursive midpoint adaptations in
cartesian space,” in 2020 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2020, pp. 4225–4231.

[8] K. Hauser, “Fast interpolation and time-optimization with contact,”
The International Journal of Robotics Research, vol. 33, 2014.

[9] Q.-C. Pham and Y. Nakamura, “Time-optimal path parameterization
for critically dynamic motions of humanoid robots,” in 2012 12th
IEEE-RAS International Conference on Humanoid Robots, 2012.

[10] T. Kröger, “Opening the door to new sensor-based robot applica-
tions—the reflexxes motion libraries,” in 2011 IEEE International
Conference on Robotics and Automation. IEEE, 2011, pp. 1–4.

[11] F. Lange and A. Albu-Schäffer, “Path-accurate online trajectory gen-
eration for jerk-limited industrial robots,” IEEE Robotics and Automa-
tion Letters, vol. 1, no. 1, pp. 82–89, 2015.

[12] T. Faulwasser, T. Weber, P. Zometa, and R. Findeisen, “Implementation
of nonlinear model predictive path-following control for an industrial
robot,” IEEE Transactions on Control Systems Technology, 2016.

[13] A. Carron, E. Arcari, M. Wermelinger, L. Hewing, M. Hutter, and
M. N. Zeilinger, “Data-driven model predictive control for trajectory
tracking with a robotic arm,” IEEE Robotics and Automation Letters,
vol. 4, no. 4, pp. 3758–3765, 2019.

[14] J. Nubert, J. Köhler, V. Berenz, F. Allgöwer, and S. Trimpe, “Safe and
fast tracking on a robot manipulator: Robust mpc and neural network
control,” IEEE Robotics and Automation Letters, 2020.

[15] M. Andrychowicz, B. Baker, et al., “Learning dexterous in-hand
manipulation,” The International Journal of Robotics Research, 2020.

[16] J. Siekmann, Y. Godse, A. Fern, and J. Hurst, “Sim-to-real learning of
all common bipedal gaits via periodic reward composition,” in 2021
IEEE International Conference on Robotics and Automation (ICRA).

[17] J. C. Kiemel and T. Kröger, “Learning collision-free and torque-limited
robot trajectories based on alternative safe behaviors,” arXiv preprint
arXiv:2103.03793, 2021.

[18] X. B. Peng, P. Abbeel, S. Levine, and M. van de Panne, “Deepmimic:
Example-guided deep reinforcement learning of physics-based char-
acter skills,” ACM Transactions on Graphics (TOG), 2018.

[19] J. C. Kiemel, R. Weitemeyer, P. Meißner, and T. Kröger, “TrueÆdapt:
Learning smooth online trajectory adaptation with bounded jerk, ac-
celeration and velocity in joint space,” in 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2020.

[20] J. C. Kiemel and T. Kröger, “Learning robot trajectories subject to
kinematic joint constraints,” in 2021 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2021.

[21] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv:1707.06347, 2017.

[22] E. Coumans and Y. Bai, “Pybullet, a python module for physics
simulation for games, robotics and machine learning,” 2016.

https://youtu.be/gCPN8mqPVHg

	I INTRODUCTION
	II Related work
	II-A Time-optimal path parameterization (TOPP)
	II-B Online trajectory generation (OTG)

	III Approach
	III-A Overview
	III-B Details on the Markov decision process
	III-B.1 Composition of states s S
	III-B.2 Trajectory generation based on actions a A
	III-B.3 Calculation of rewards Ra
	III-B.4 Termination of episodes

	III-C Generation of reference paths
	III-C.1 Datasets used for the training process
	III-C.2 Spline knots included in the state


	IV Evaluation
	IV-A Path tracking without additional objectives
	IV-A.1 Trade-off traversing time vs. path deviaton
	IV-A.2 Number of knots included in the state
	IV-A.3 Generalization ability between datasets
	IV-A.4 Comparison with time-optimal path parameterization

	IV-B Path tracking with objectives based on sensory feedback
	IV-B.1 Ball-on-plate task
	IV-B.2 Maintaining balance with ARMAR-4

	IV-C Real-time capability

	V Conclusion and future work
	References

