2205.03929v2 [cs.RO] 30 Jun 2023

arxXiv

RobotCore: An Open Architecture for Hardware Acceleration in ROS 2

Victor Mayoral-Vilches!-23, Sabrina M. Neuman?, Brian Plancher®®, Vijay Janapa Reddi*

Abstract— Hardware acceleration can revolutionize robotics,
enabling new applications by speeding up robot response
times while remaining power-efficient. However, the diversity of
acceleration options makes it difficult for roboticists to easily
deploy accelerated systems without expertise in each specific
hardware platform. In this work, we address this challenge with
RobotCore, an architecture to integrate hardware acceleration
in the widely-used ROS 2 robotics software framework. This
architecture is target-agnostic (supports edge, workstation, data
center, or cloud targets) and accelerator-agnostic (supports both
FPGAs and GPUs). It builds on top of the common ROS 2 build
system and tools and is easily portable across different research
and commercial solutions through a new firmware layer. We
also leverage the Linux Tracing Toolkit next generation (LTTng)
to enable low-overhead real-time tracing and benchmarking of
accelerated ROS 2 systems. To demonstrate the acceleration
enabled by this architecture, we use it to deploy a ROS 2
perception computational graph on a CPU and FPGA.

We also employ our integrated tracing and benchmarking
to analyze bottlenecks, uncovering insights that guide us to
improve FPGA communication efficiency. In particular, we
design an intra-FPGA ROS 2 node communication queue
template and use it in conjunction with FPGA-accelerated nodes
to achieve a 24.42% speedup over a CPU.

I. INTRODUCTION

Recent work has seen an explosion of specialized robotics
acceleration on nontraditional computing platforms such as
GPUs, FPGAs, and ASICs [1], [2], [3], [4], [5], [6], [7], [8],
[91, [101, [11], [12], [13], [14], [15], [16], [17], [18], [19],
[20], [21]. This has been sparked by the decline of Moore’s
Law and Dennard Scaling, which limits the performance of
traditional CPU computing, positioning hardware accelera-
tion as an emerging solution to achieve high performance
and power efficiency in robotics applications.

However, this increased diversity of computing platforms
leads to a dramatic growth in design space complexity that

This material is based upon work funded by Xilinx and supported by
the National Science Foundation under Grant 2030859 to the Computing
Research Association for the CIFellows Project. Any opinions, findings,
conclusions, or recommendations expressed in this material are those of the
authors and may not reflect those of the funding organizations.

LVictor Mayoral-Vilches is with Acceleration Robotics, Ecuador 3, 1 I,
Vitoria, Alava, Spain victor@accelerationrobotics.com

2Victor Mayoral-Vilches is with the System Security Group, Uni-
versitit Klagenfurt, Universitétsstr. 65-67 9020 Klagenfurt, Austria
vlmayoralv@edu.aau.at

3Victor Mayoral-Vilches is with Alias Robotics, Venta de la Estrella 6,
pab 130, Vitoria 01006, Spain victor@aliasrobotics.com

4Sabrina M. Neuman, Brian Plancher, and Vijay Janapa Reddi are with
the John A. Paulson School of Engineering and Applied Sciences, Harvard
University, Cambridge, MA, USA. sneuman@seas.harvard.edu,
brian_plancher@g.harvard.edu, vj@eecs.harvard.edu

5Brian Plancher is with Barnard College, Columbia University, New
York, NY, USA. bplancher@barnard.edu

Robotics Applicatiol‘@_,

Common ROS 2 API

Original ROS 2 Open Architecture for Hardware Acceleration in ROS 2
System Stack 9N\
Option 1 _E
£
©
=
S
S
Option 2 =
2]
e i
+
‘?‘ Option 3 g
S
°
CPU Only =
°
]
e
oo
Option N %
3
AN J

Y
Deployment on Robot

Fig. 1. The open architecture for hardware acceleration in ROS 2 extends
the ROS 2 build system to support vendor and platform-agnostic deployment
of robotics applications on accelerator hardware. The integrated tracing and
benchmarking infrastructure enables users to analyze the system and make
strategic design improvements to optimize performance.

makes it difficult for users to easily deploy robotics applica-
tions on hardware accelerators without substantial expertise
in each specific accelerator platform. The Open Computing
Language (OpenCL) [22] is an effort to standardize hardware
acceleration under a common language, but its adoption
across silicon vendors has been uneven and support for it
varies. As a result, current hardware acceleration usage is
often tied to a particular vendor’s solutions and platforms.
This not only impedes interoperability and reuse of accelera-
tion kernels, but presents yet another layer of complexity that
users must overcome while implementing robotic systems
that use acceleration kernels. A key obstacle is that each
hardware acceleration vendor provides their own framework
for development, but these are often disconnected from the
common tools and libraries in robotics, and mostly aimed at
hardware engineers, not roboticists.

To address this challenge, we present RobotCore, an
open architecture for hardware acceleration that extends the
Robot Operating System (ROS) [23], the de facto standard
for robot application development. ROS is widely used by
academia and industry, and early work has demonstrated its
potential for hardware-accelerated robotics applications [2],
[3], [24]. We facilitate this emerging direction by imple-
menting a vendor and platform-agnostic abstraction layer for
hardware acceleration in robotics (Fig. [I). Starting with a
popular robotics API as the foundation, our ROS 2-based
acceleration architecture provides a common ground for both
academic researchers and silicon vendors alike to develop
specialized robotics acceleration kernels, and deploy them
for easy usage by a large, established user base.

Once roboticists can easily harness hardware accelera-
tion across multiple platforms, the next major challenge is
profiling and benchmarking the application. Benchmarking
is needed to determine the best mapping of the robotics
computational graph to the different hardware resources
available to optimize overall robot system performance. This
is a difficult task, however, since every application is different
and deployment scenarios are widespread. Full end-to-end
system analysis is required to understand how different
implementation tradeoffs impact overall performance. To
enable this analysis, we demonstrate how to leverage prior
work [25] to benchmark accelerated ROS 2 kernels with
a low-overhead framework for real-time tracing based on
the Linux Tracing Toolkit next generation (LTTng) [26]. We
demonstrate analysis of a case study deployment using CPU
and FPGA nodes for a simple perception pipeline.

Using our framework and benchmarking, we diagnose that
substantial latency bottlenecks in this computational graph
come from inter-node interactions across ROS 2 layers in
the CPU. We recognize this as an opportunity for design op-
timization in hardware accelerators, because interaction with
the CPU should not be necessary for dataflow between nodes
co-located on the same non-CPU platform (e.g., FPGA).

Based on the benchmarking analysis, we demonstrate
two novel separate paths toward hardware acceleration: (1)
kernel fusion, and (2) improved message passing. Kernel
fusion results in the highest speedup, an average of 26.96%,
but it requires manual redesign of the underlying kernels.
To avoid manual redesign entirely and improve design re-
use and portability, we alternatively develop an intra-FPGA
ROS 2 node communication queue template that leverages
AXI4-Stream interfaces [27] and transfers data in a sequen-
tial streaming manner directly between acceleration kernels.
Using this design pattern improves the overall inter-node
performance in our computational graph by 24.42 % on
average, while requiring no change in the accelerated kernels.
This template extends to applications beyond our case study,
since it can be reused for any ROS 2 inter- or intra-process
communication by adapting its data types.

In summary, key contributions of this work are that we:

o Create a new open infrastructure to increase the perfor-
mance of robotics applications by enabling integration
of hardware acceleration into ROS 2 that is flexible
across accelerator platforms (e.g., FPGAs, GPUs) and
system deployments (e.g., edge devices, workstations,
data centers, and cloud);

o Expose insights into how to optimize overall system-
wide performance by extending and providing a tem-
plate API for low-overhead tracing and benchmarking
framework to analyze application performance across
hardware accelerated ROS 2 computational graphs, lay-
ing foundation to analyze mixed-platform systems (e.g.,
combinations of CPU and FPGA-based nodes); and

e Increase ROS 2 node-to-node dataflow performance
to achieve an average overall accelerator speedup of
24.42% over CPU in our experiments by designing a
template for intra-FPGA ROS 2 node communication

queues, based on insights uncovered using our open ac-
celeration infrastructure and low-overhead benchmark-
ing on a case study of a simple perception graph.

The core components of our architecture are disclosed
under a commercially friendly open-source license and are
available and maintained at the ROS 2 Hardware Accel-
eration Working Group GitHub organization: https://
github.com/ros—-acceleration.

II. BACKGROUND AND RELATED WORK
A. ROS and ROS 2

The Robot Operating System (ROS) is an open-source col-
lection of software frameworks and tools designed to provide
a structured communications layer for robotics applications
running on heterogenous computer hardware [23].

ROS applications are designed around event driven graphs
of Nodes which communicate through Messages on various
Topics, Services, and Actions. Each Node can be thought of
as a software process which applies an algorithm to the input
message and then broadcasts the resulting output message.
By managing all inter-Node communications across abstrac-
tion layers (e.g., rclcpp, rcl, rmw), ROS simplifies the
robotic system deployment process and enables roboticists to
quickly develop and test new algorithms. ROS also provides
substantial infrastructure to facilitate the automatic building,
evaluation, and deployment of robotic systems, including
dependency managers, package managers, build systems and
tools, simulators, and visualizers.

ROS 2 is a re-design of ROS that modernizes and updates
all of its components while adhering to its core design prin-
ciples. ROS 2 provides a stronger partitioning of the commu-
nication middleware from the robotics logic, enabling more
flexibility, scalability, and reliability [2]. ROS 2 also provides
an updated build system, ament, and a new universal build
tool, colcon. This provides a single simple interface for
managing the building and deployment of complete robotics
applications. Leveraging these tools, roboticists can write
new algorithms and rely on ROS 2 to handle all lower level
operations and middleware management.

B. Hardware Acceleration for ROS and ROS 2

There has been previous work that has focused on ways
to accelerate robotics applications by developing tools and
methodologies to help roboticists leverage hardware accel-
eration for select ROS Nodes and to optimize the ROS
computational graph through adaptive computing [28], [29],
(301, [31], [32], [33], [34], [35], [36], [37], [38], [39],
[40], [41], [42], [24]. There has also been some work to
accelerate the scheduling and communication layers used by
ROS and ROS 2 [43], [44], [45], [46], [47], [48], [49], [50].
Unfortunately, the majority of these efforts assume an end-
user has substantial experience with embedded systems and
embedded hardware flows, or is customized to a specific
hardware acceleration board or deployment scenario.

Our proposed open architecture takes a ROS-centric ap-
proach to integrate the hardware and embedded flows directly
into the core ROS 2 ecosystem. This enables a separation

https://github.com/ros-acceleration
https://github.com/ros-acceleration

ROS 2 Stack

Applications (e.g., image_pipeline)

@ Integrated Tracing and Benchmarking
userland

Build System (ament)

@ ament_acceleration

Build Tools (colcon)

colcon-acceleration

Open Architecture for Hardware Acceleration

© Firmware

© acceleration_firmware

g
. E; @ @ Xilinx Nvidia © acceleration_ © acceleration_
tooling § ament vitis ament_jetpack . Vitis Jetpack firmware kv260 firmware_jetson
<
rclcpp §
g Extensions to ROS 2 are highlighted in green and include:
el 9 @ Extensions to the build system (ament);
- gb Extensions to the build tools (colcon);
@ A new firmware pillar for workspaces, simplifying the production and deployment of acceleration kernels;
adapter Low-overhead real-time tracing and benchmarking based on Linux Tracing Toolkit next generation (LTTng) [26],

extending prior work [51] with tracepoint insertion for hardware accelerated nodes.

middleware

Fig. 2.

between those who produce accelerated kernels and those
who use them by providing end-users with a build and
deployment experience for hardware accelerators similar to
the standard, non-accelerated ROS 2 experience.

III. AN OPEN ARCHITECTURE FOR HARDWARE
ACCELERATION IN ROS 2

Our open architecture (Fig. extends the core ROS 2
build system and tools to provide platform-agnostic (i.e.,
supports edge, workstation, data center, or cloud targets)
and technology-agnostic (i.e., supports FPGAs and GPUs),
hardware-accelerated ROS 2 capabilities for roboticists. We:
A) extend the ROS 2 build system, ament; B) extend the
ROS 2 meta build tool, colcon; and C) develop integrated
ROS 2 firmware extensions. We also D) integrate a low-
overhead tracing and benchmarking framework to enable
the analysis of holistic application performance across ROS
graphs. This section describes these extensions in detail.

A. Extending the ROS 2 Build System

The first pillar of our open architecture, Fig. @, allows
roboticists to generate acceleration kernels directly from the
ROS 2 build system (ament) in the same way they generate
CPU binaries. To do so, the ament_acceleration ROS 2
package and its extensions abstract the ROS build system
from vendor-specific accelerators (e.g. FPGAs or GPUs),
including their frameworks and software platforms. This al-
lows the build system to easily support hardware acceleration
across commercial solutions while using the same syntax,
simplifying the work of ROS 2 package maintainers.

Under the hood, each hardware-specific extension of
ament_acceleration abstracts away the corresponding
vendor-specific firmware. For example, ament,vitisﬂ re-
lies on the proprietary Xilinx Vitis [52] and on the Xilinx
Runtime (XRT) library [53]. This simplifies the creation

!github.com/ros-acceleration/ament_vitis

Overview of the components of the open architecture for hardware acceleration in ROS 2.

of acceleration kernels and separates firmware concerns
from algorithm development. This way, robotics engineers
can focus on improving their computational graphs with a
ROS-centric development flow. Separately, hardware experts,
potentially sponsored by silicon vendors, can improve accel-
eration kernels for a particular commercial solution. Overall,
these extensions help achieve the objective of simplifying the
creation and integration of acceleration kernels from different
vendors into ROS 2 computational graphs.

Fig. [2] depicts the build system extensions showing how
ament_acceleration abstracts the build system from
vendor-specific solutions. As an example of an alternative
acceleration technology supported, ament _jetpack is in-
cluded and illustrates the integration of Nvidia JetPack [54].

B. Extending the ROS 2 Build Tools

The second pillar of our open architecture, Fig. ,
extends the colcon ROS 2 meta build tool to integrate
hardware acceleration flows into the ROS 2 Command Line
Interface (CLI) commands. Examples of these extensions
include the selection of the target accelerator and build-
time through mixins, emulation capabilities to speed-up the
development process and facilitate design without access to
the real hardware, raw disk image production tools, and
simplified configuration of hypervisors. These extensions
are implemented by the colcon-acce leratio ROS 2
package. As in Section [[II-Al colcon_acceleration
further enables roboticists to leverage hardware accelerators
while using standard ROS 2 commands and flows.

C. Adding Firmware Extensions

Represented by the abstract acceleration_firmware
ROS package and its corresponding specializations (e.g.
acceleration_firmware_kv260P for the Xilinx Kria

2github.com/ros-acceleration/colcon-acceleration
3github.com/ros-acceleration/acceleration_firmware_kv260

raw_image
Rectified Image
(/rectify/ImageRect)

Resized Image
(/resize)

ResizeNode

camera_info RectifyNode

Input image Our Target Computational Graph

Fig. 3. Computational graph of our case study perception application,
image_pipeline, containing two ROS 2 nodes: (1) RectifyNode sub-
scribes to the /camera/image_raw and /camera/camera_info top-
ics from Gazebo [55] and publishes a rectified image to (2) ResizeNode,
which publishes the final resized image.

KV260 board), the third pillar of our open architecture,
Fig. @, firmware extensions, are meant to provide
firmware artifacts for each supported technology solution.
This again simplifies the process for ROS package consumers
and maintainers, and further aligns hardware acceleration
workflows with typical ROS development flows. Each ROS 2
workspace can leverage multiple firmware packages, but
can only use one at a time. As colcon_acceleration
supports the selection of the active firmware in the ROS
workspace, by separating the firmware out into their own
packages, our open architecture enables silicon vendors to
maintain an acceleration_firmware_<solution>
package that automatically integrates into standard ROS 2
workflows.

D. Low-Overhead Real-Time Tracing & Benchmarking

In the context of hardware acceleration in robotics, it
is fundamental to be able to inspect performance improve-
ments. To that end, it is important to benchmark and trace the
system. Benchmarking is the process of running a computer
program to assess its relative performance, whereas tracing is
a technique used to understand what is happening in a system
while it is running. Tracing helps determine which pieces of
a Node are consuming more compute cycles or generating
indeterminism, and are thereby good candidates for hard-
ware acceleration. Benchmarking instead helps investigate
the relative performance of an acceleration kernel versus
its CPU scalar computing baseline. Similarly, benchmarking
also helps with comparing acceleration kernels across dif-
ferent hardware acceleration technology solutions (e.g., Kria
KV260 vs. Jetson Nano) and across kernel implementations
within the same hardware acceleration technology solution.

In order to trace and evaluate the relative performance of
both ROS 2 individual Nodes and complete computational
graphs, we leverage Linux Tracing Toolkit next generation
(LTTng [26]) for tracing and benchmarking, Fig. @
Building upon prior work [51], LTTng provides a collection
of flexible tracing tools and multipurpose instrumentation for
ROS 2 that allow collecting runtime execution information in
real-time in distributed systems using low-overhead tracers.
For example, when enabling all ROS 2 instrumentation, end-
to-end message latency overhead is below 5.5us [51], making
it suitable for a wide variety of hardware acceleration use
cases. Building on top of this foundation, we developed a
tracing and benchmarking template that enables roboticists to

easily instrument both their accelerated and non-accelerated
code in a vendor-agnostic manner. This infrastructure also
lays a foundation for future integration with platform-specific
performance counters and tracing tools that can extend
analysis to more fine-grained introspection and profiling of
the kernels running onboard an accelerator device.

IV. CASE STUDY: ACCELERATING ROS 2 PERCEPTION

For our case study, we trace, benchmark, and accelerate a
subset of image_pipeline [56], one of the most popular
packages in the ROS 2 ecosystem, and a core piece of the
ROS perception stack. We compose a simple computational
graph consisting of two nodes, resize and rectify, as
shown in Fig. 3] We then leverage our open architecture
for hardware acceleration (Section |m1) to benchmark, trace
and accelerate our computational graph, comparing a CPU
to an FPGA implementation. In this section we describe the
methodology of our approach, and analyze our timing results,
presenting a case study for how our open architecture can
help enable hardware accelerated applications in ROS 2.

A. Methodology

We propose the following steps to analyze a ROS 2
application and design appropriate acceleration: (i) instru-
ment both the core components of ROS 2 and the target
kernels; (ii) trace and benchmark the kernels on the CPU
to establish a baseline; (iii) develop a hardware accelerated
implementation on alternate hardware (e.g., GPU, FPGA);
and (iv) trace, benchmark against the CPU baseline, and
improve the accelerated implementation.

Following this methodology, in our case study we begin
by instrumenting both ROS 2 and our target kernels with
LTTng probes. Reusing past work and probes [51] allows us
to easily get a grasp of the dataflow interactions within rmw,
rcl, and rclcpp ROS 2 layers. We then also instrument
the ResizeNode and RectifyNode components of the
image_pipeline package used in our case study. The
relevant tracepoints placed in our computational graph across
ROS 2 stack layers are listed in Fig.] and [3] (full list in Pull
Request 717 in the image_pipeline repository [56]). On
the CPU, these tracepoints enable us to isolate the latency
of computation within a node from the time it takes ROS 2
to package and pass information between nodes.

In the following sections we report timing results from
using a Xilinx Kria® KV260 Vision AI Starter Kit [57],
which has an onboard integrated Quad-core Arm® Cortex®-
A53 CPU and an FPGA containing 256K System Logic
Cells and 1.2K DSP Slices. All benchmark results report
the mean value obtained from a 60 second continuous run of
the computational graph. The FPGA kernels are synthesized,
placed and routed with a 250MHz clock.

B. CPU-Only Tracing Results

Fig. @] demonstrates the results of instrumenting and trac-
ing our target computational graph (Fig. [3) across multiple
ROS 2 stack layers on the CPU, and Fig. E] summarizes the
breakdown of timing results across operations, establishing

RectifyNode ResizeNode
A A
I 1 I 1
userland * ¢
rclcpp ¢ Rectify @ I * Output
Node Inter-Node Resize Message
rcl |itialization Compute Message . Node Passing
Message Passing ompute Overhead
rmw Passing Overhead
Overhead
0 10 20 30 40 50 60 70 80 90
Time (ms)
& callback start rmw_publish @ image proc resize fini

image proc rectify cb init
image proc rectify init

€ image proc rectify fini

& rclcpp publish

& rcl publish

Fig. 4. Tracepoints instrumented across ROS 2 abstraction layers on CPU

90 callback_end (2)
image_proc_resize_cb_fini
80 rmw_publish (2)
rcl_publish (2)
70 m rclepp_publish (2)
W image_proc_resize_fini
60 image_proc_resize_init
a i i b_init
> Output Message image_proc_resize_cb_|
£50 Passing Overhead callback_start (2)
E callback_end
= 40 image_proc_rectify_cb_fini
30 Resize Node Compute rmw_publish
m rcl_publish
20 Inter-Node Message mrclepp_publish
Passing Overhead Wimage_proc_rectify_fini
image_proc_rectify_init
10 Rectify Node Compute)) .
image_proc_rectify_cb_init
Initialization Message
0 Passing Overhead mcallback start

Fig. 5. Breakdown of CPU runtime derived from tracing and benchmarking.
Total computation time of our case study graph is dominated by message
passing overheads, a bottleneck consuming over 73.3% of total runtime.

the CPU baseline for our application. The breakdown in
Fig. [5] shows the time taken to do the computations within
each node, as well as the time taken by the ROS 2 lower-
level message-passing system across the various abstraction
layers. We find that the message-passing overhead in our
application consumes more than 73.3% of the total time and
is therefore a large bottleneck in the total computation time of
the full graph. We next explore FPGA hardware acceleration
options, comparing performance to the CPU baseline.

C. Accelerating and Benchmarking CPU & FPGA

In this section, we explore hardware acceleration options
for an FPGA for our case study application (Fig. [3). In
Section we first explore hardware acceleration ker-
nels for the core logic of each of the Nodes (rectify and
resize), harnessing our open architecture for implementation.
In Section [V-C2] we then explore two different FPGA
designs to accelerate the computational graph by optimizing
dataflow interactions between FPGA-based nodes, address-
ing the ROS 2 communication infrastructure performance
bottleneck revealed by the CPU baseline in Section [[V-B]

image proc rectify cb fini 4 rclcpp publish(2)
callback
callback
image proc resize cb init
image proc resize init

end
start (2)

rcl publish(2)
rmv_publish (2)

image proc resize cb fini
callback end(2)

for case study computational graph (Fig. EI) Breakdown summary in Fig. EI

1) Accelerating Nodes & Components on an FPGA: We
first accelerate the computations at each one of the graph
nodes. The RectifyNode and ResizeNode Components
of Fig. E] are accelerated using Xilinx’s HLS, XRT, and
OpenCL targeting the Kria KV26Gﬂ Each ROS 2 Component
has an associated acceleration kerneﬂ that leverages the
Vitis Vision Library, a computer vision library optimized for
Xilinx silicon solutions and based on OpenCV APIs. These
accelerated Components and their kernels easily integrate
with the rest of the ROS meta-package through our open
architecture (Fig. [2), and are openly available to the public.
Building the accelerators is abstracted away from roboticist
end-users, and takes no significant additional effort than the
standard build of the image_pipeline.

After benchmarking the accelerated Components using the
trace points of Section we observe an average 6.22%
speedup in the total computation time of the perception
pipeline when offloading tasks to the FPGA (see Fig. [6). For
this case study example, it is not surprising that accelerating
the computational nodes and components alone only gives
a modest performance increase because, as we saw in Sec-
tion [[V-B] the performance bottleneck in the baseline CPU
system was communication overhead, not computation.

2) Accelerating the Computational Graph on an FPGA:
In our case study application, message-passing overheads
across the ROS 2 abstraction layers far outweigh other
operations, so in this section we focus on optimizing these
dataflows. Addressing performance bottlenecks in our system
leads to overall lower computational graph latency, and to
faster robots. To seize this acceleration opportunity in our
case study example, we optimize the dataflow within the
computational graph and across ROS 2 Nodes and Com-
ponents through two different design approaches: (a) kernel
fusion, and (b) dedicated streaming queues.

4github.com/ros-acceleration/image_pipeline/blob/ros2/image _proc/src/
{rectify,resize } _fpga.cpp

5 github.com/ros-acceleration/image _pipeline/tree/ros2/image_proc/src/
image_proc

Total Runtime

100.00
80.00 I 26.96% l 24.42%
‘E— 60.00
g
£ 40.00
20.00
000 FPGA FPGA
CPU FPGA
Integrated Streams
91.48 85.80 66.82 70.13
Fig. 6. Total runtime of CPU baseline and FPGA, FPGA-Integrated,

and FPGA-Streaming hardware-accelerated implementations of case study
application. Acceleration enables up to 26.96% speedup over CPU.

The speedup obtained by integrating both ROS Compo-
nents on the FPGA into a single unified kernel is shown
in Fig. [f] The benefits of doing this are two-fold. First, we
avoid any message-passing between the Rectify and Resize
Nodes’ Components. Second, we avoid the compute cycles
wasted while memory is mapped back and forth between
the host CPU and the FPGA. This results in an overall
latency speedup of 26.96% over the CPU. In addition to
speeding up the perception stage, another added benefit of
this improvement is that such speedups make room for other
robot tasks in a complete end-to-end system. Note, however,
that this improvement required the construction of an entirely
new ROS Node and unified acceleration kernel on the FPGA.

We then develop a template for an accelerated ROS 2
message passing interface on the FPGA. This interface is
Node and Component-agnostic and can be leveraged by
roboticists to accelerate the communication channels of any
computational graph on an FPGA. This is done by leveraging
an AXI4-Stream interface to create an intra-FPGA ROS 2
communication queue template which is then used to pass
data across Nodes in the FPGA without sending messages
to the CPLﬁ This allows us to completely bypass the
original CPU-centric ROS 2 message-passing system and op-
timizes dataflow, achieving an overall latency improvement
of 24.42% over the CPU in our application (see Fig. |§|)

Based on these results, for this case study, we show
that implementing FPGA-accelerated versions of key ROS 2
Components is easily feasible, and that addressing the right
bottleneck is key to improving performance. Tracing and
benchmarking the CPU baseline suggested that communi-
cation is the bottleneck in our case study. In fact, inde-
pendent examination of, e.g., a single run of the fused-
kernel accelerator using the Xilinx Vitis Analyzer, confirms
that this is also the case on the FPGA—we note that inte-
grating device-specific profiling tools into our foundational
tracing infrastructure in future work can further automate

6 AXI4-Stream interfaces are data-type specific and as such our template
may require type adaptations for other use cases depending on the Node-
to-Node data interactions.

this type of fine-grained introspection of kernels onboard
accelerator devices. We can achieve overall performance
improvements by either combining Nodes or streamlining
intra-FPGA communication. While combining nodes may
result in slightly higher performance, it is a much more labor-
intensive design effort. By contrast, our accelerated intra-
FPGA-Node communication queue template can be applied
by any roboticist, to any computational graph.

V. CONCLUSION AND FUTURE WORK

In this work we present a new open infrastructure to
introduce hardware acceleration in ROS 2 in a scalable and
technology-agnostic manner. Our architecture allows us to
increase the performance of robotics applications through
the integration of hardware acceleration with ROS 2 APIs
and its conventional flows. We do so by extending ROS 2
in a way that is portable across accelerator platforms (e.g.,
FPGAs, GPUs) and system deployments (e.g., edge devices,
workstations, data centers, and cloud). We also present a
template for low-overhead tracing and benchmarking to
analyze performance across both hardware accelerated and
standard ROS 2 computational graphs.

We use our open architecture and our tracing and bench-
marking infrastructure to demonstrate a principled design
methodology for ROS 2 hardware acceleration, exposing in-
sights into how to optimize overall system-wide performance
by analyzing a CPU baseline, and comparing accelerator
design iterations to that original baseline. We examine a case
study using the Xilinx Kria KV260 platform to demonstrate
FPGA acceleration of one of the most popular packages in
the ROS perception pipeline: image_pipeline. We first
demonstrate a modest performance speedup of 6.22% from
offloading perception tasks to the FPGA, and then increased
speedup by additionally addressing the communication over-
heads that we identified as bottlenecks by analyzing our
CPU baseline. We achieved a speedup of 26.96% from re-
architecting the graph to combine nodes and avoid inter-
FPGA-node communication delays inflicted by interactions
with the CPU, but this approach requires substantial effort
from users to re-architect their graphs. Instead, to avoid this
overhead and stay in alignment with the ROS 2 programming
model, we then design a novel template for intra-FPGA
ROS 2 Node communication queues that allows ROS Nodes
and Components to deliver faster dataflows, achieving a
24.42% speedup over a CPU without excessive manual per-
kernel design effort.

We contribute our open architecture to the ROS com-
munity, so that future work can use our infrastructure and
extend to new applications beyond our case study example.
Promising directions for future work include: benchmarking
computational graphs with other hardware solutions (e.g.,
GPUs) to establish consistent cross-accelerator comparisons;
extending our tracing and benchmarking approach to include
additional tracing information (e.g., profiling within FPGA
or GPU devices) for more fine-grained introspection of
kernels running onboard accelerators; and applying our open
architecture and analysis to other ROS 2 packages.

Our code is disclosed under a commercially friendly open-
source license and is available and maintained at the ROS 2
Hardware Acceleration Working Group GitHub organi-
zation: https://github.com/ros—-acceleration.
This work is being further integrated into the ROS ecosystem
through a community standardization effort, REP-2008 [58].

REFERENCES

[1] Z. Wan, B. Yu, T. Y. Li, J. Tang, Y. Zhu, Y. Wang, A. Raychowdhury,
and S. Liu, “A survey of fpga-based robotic computing,” IEEE Circuits
and Systems Magazine, vol. 21, no. 2, pp. 48-74, 2021.

[2] V. Mayoral-Vilches and G. Corradi, “Adaptive computing in robotics,
towards ros 2 software-defined hardware,” Xilinx, WP537, 2021.

[3] V. Mayoral-Vilches, “Kria robotics stack, a ros 2-centric approach for
hardware acceleration in robotics,” Xilinx, WP540, 2021.

[4] S. Murray, W. Floyd-Jones, Y. Qi, D. J. Sorin, and G. D. Konidaris,
“Robot motion planning on a chip.” in Robotics: Science and Systems,
2016.

[51 S. Murray, W. Floyd-Jones, Y. Qi, G. Konidaris, and D. J. Sorin, “The
microarchitecture of a real-time robot motion planning accelerator,” in
IEEE/ACM International Symposium on Microarchitecture (MICRO),
2016, pp. 1-12.

[6] S. Murray, W. Floyd-Jones, G. Konidaris, and D. J. Sorin, “A
programmable architecture for robot motion planning acceleration,”
in IEEE International Conference on Application-specific Systems,
Architectures and Processors (ASAP), vol. 2160, 2019, pp. 185-188.

[7]1 B. Plancher, S. M. Neuman, T. Bourgeat, S. Kuindersma, S. Devadas,
and V. J. Reddi, “Accelerating robot dynamics gradients on a cpu, gpu,
and fpga,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp.
2335-2342, 2021.

[8] S. M. Neuman, B. Plancher, T. Bourgeat, T. Tambe, S. Devadas,
and V. J. Reddi, “Robomorphic computing: a design methodology
for domain-specific accelerators parameterized by robot morphology,”
in ACM International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS), 2021, pp.
674-686.

[9] B. Plancher, S. M. Neuman, R. Ghosal, S. Kuindersma, and V. J.
Reddi, “Grid: Gpu-accelerated rigid body dynamics with analytical
gradients,” in /EEE International Conference on Robotics and Au-
tomation (ICRA), 2022.

[10] J. Austin, R. Corrales-Fatou, S. Wyetzner, and H. Lipson, “Titan: A
parallel asynchronous library for multi-agent and soft-body robotics
using nvidia cuda,” in IEEE International Conference on Robotics and
Automation (ICRA), 2020, pp. 7754-7760.

[11] C. D. Freeman, E. Frey, A. Raichuk, S. Girgin, I. Mordatch, and
0. Bachem, “Brax—a differentiable physics engine for large scale rigid
body simulation,” arXiv preprint arXiv:2106.13281, 2021.

[12] A. Suleiman, Z. Zhang, L. Carlone, S. Karaman, and V. Sze, “Navion:
A 2-mw fully integrated real-time visual-inertial odometry accelerator
for autonomous navigation of nano drones,” IEEE Journal of Solid-
State Circuits, vol. 54, no. 4, pp. 1106-1119, 2019.

[13] Y. Liu, C. E. Derman, G. Calderoni, and R. I. Bahar, “Hardware
acceleration of robot scene perception algorithms,” in IEEE/ACM
International Conference On Computer Aided Design (ICCAD), 2020,
pp. 1-8.

[14] B. Asgari, R. Hadidi, N. S. Ghaleshahi, and H. Kim, “Pisces: power-
aware implementation of slam by customizing efficient sparse algebra,”
in ACM/IEEE Design Automation Conference (DAC), 2020, pp. 1-6.

[15] W. Liu, B. Yu, Y. Gan, Q. Liu, J. Tang, S. Liu, and Y. Zhu, “Archytas:
A framework for synthesizing and dynamically optimizing accelerators
for robotic localization,” in IEEE/ACM International Symposium on
Microarchitecture, 2021, pp. 479—493.

[16] V. Mayoral-Vilches, A. Herndndez, R. Kojcev, I. Muguruza, I. Zamal-
loa, A. Bilbao, and L. Usategi, “The shift in the robotics paradigm:
The hardware robot operating system (h-ros); an infrastructure to
create interoperable robot components,” in NASA/ESA Conference on
Adaptive Hardware and Systems (AHS), July 2017, pp. 229-236.

[17] G. Williams, A. Aldrich, and E. A. Theodorou, “Model predictive
path integral control: From theory to parallel computation,” Journal
of Guidance, Control, and Dynamics, vol. 40, no. 2, pp. 344-357,
2017.

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

J. Sacks, D. Mahajan, R. C. Lawson, and H. Esmaeilzadeh, “Robox:
an end-to-end solution to accelerate autonomous control in robotics,”
in ACM/IEEE International Symposium on Computer Architecture
(ISCA), 2018, pp. 479-490.

B. Plancher and S. Kuindersma, “A performance analysis of parallel
differential dynamic programming on a gpu,” in International Work-
shop on the Algorithmic Foundations of Robotics (WAFR). Merida,
Mexico: Springer, Dec. 2018, pp. 656-672.

——, “Realtime model predictive control using parallel ddp on a gpu,”
in Toward Online Optimal Control of Dynamic Robots Workshop at
the International Conference on Robotics and Automation (ICRA),
Montreal, Canada, May. 2019.

K. Gupta, P. Z. X. Li, S. Karaman, and V. Sze, “Efficient computation
of map-scale continuous mutual information on chip in real time,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2021, pp. 6464-6470.

A. Munshi, “The opencl specification,” in IEEE Hot Chips Symposium
(HCS), 2009, pp. 1-314.

M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating
system,” in ICRA workshop on open source software, vol. 3, no. 3.2.
Kobe, Japan, 2009, p. 5.

NVIDIA, “NVIDIA Isaac ROS,” Accessed 2022, |github.com/
NVIDIA-ISAAC-ROS!.

C. Bedard, I. Lutkebohle, and M. Dagenais, “ros2_tracing: Multipur-
pose low-overhead framework for real-time tracing of ROS 2,” IEEE
Robotics and Automation Letters, vol. 7, no. 3, pp. 6511-6518, 2022.
M. Desnoyers and M. R. Dagenais, “The lttng tracer: A low impact
performance and behavior monitor for gnu/linux,” in OLS (Ottawa
Linux Symposium), vol. 2006. Citeseer, 2006, pp. 209-224.

A. AMBA, “Axi4-stream protocol specification,” Volume IHI A,
vol. 51, p. 4, 4.

K. Yamashina, T. Ohkawa, K. Ootsu, and T. Yokota, “Proposal of ros-
compliant fpga component for low-power robotic systems: case study
on image processing application,” International Workshop on FPGAs

for Software Programmers (FSP), 2015.

K. Yamashina, H. Kimura, T. Ohkawa, K. Ootsu, and T. Yokota,
“crecomp: Automated design tool for ros-compliant fpga component,”
in IEEE International Symposium on Embedded Multicore/Many-core
Systems-on-Chip (MCSOC), 2016, pp. 138-145.

A. Podlubne and D. Gohringer, “Fpga-ros: Methodology to augment
the robot operating system with fpga designs,” in /EEE International
Conference on ReConFigurable Computing and FPGAs (ReConFig),
2019, pp. 1-5.

M. Eisoldt, S. Hinderink, M. Tassemeier, M. Flottmann, J. Vana,
T. Wiemann, J. Gaal, M. Rothmann, and M. Porrmann, “Reconfros:
Running ros on reconfigurable socs,” in Drone Systems Engineering
and Rapid Simulation and Performance Evaluation: Methods and
Tools, 2021, pp. 16-21.

C. Lienen, M. Platzner, and B. Rinner, “Reconros: Flexible hardware
acceleration for ros2 applications,” in International Conference on
Field-Programmable Technology (ICFPT), 2020, pp. 268-276.

D. P. Leal, M. Sugaya, H. Amano, and T. Ohkawa, “Automated inte-
gration of high-level synthesis fpga modules with ros2 systems,” in In-
ternational Conference on Field-Programmable Technology (ICFPT),
2020, pp. 292-293.

T. Ohkawa, K. Yamashina, T. Matsumoto, K. Ootsu, and T. Yokota,
“Architecture exploration of intelligent robot system using ros-
compliant fpga component,” in IEEE International Symposium on
Rapid System Prototyping (RSP), 2016, pp. 1-7.

S. Panadda, J. Nattha, P. L. Daniel, and O. Takeshi, “Low-power high-
performance intelligent camera framework ros-fpga node,” in Asia
Pacific Conference on Robot 10T System Development and Platform,
no. 2020, 2021, pp. 73-74.

J. P. Queralta, F. Yuhong, L. Salomaa, L. Qingqging, T. N. Gia, Z. Zou,
H. Tenhunen, and T. Westerlund, “Fpga-based architecture for a low-
cost 3d lidar design and implementation from multiple rotating 2d
lidars with ros,” in IEEE SENSORS, 2019, pp. 1-4.

T. K. Maiti, “Ros on arm processor embedded with fpga for improve-
ment of robotic computing,” in International Symposium on Devices,
Circuits and Systems (ISDCS), 2021, pp. 1-4.

T. Ohkawa, K. Yamashina, H. Kimura, K. Ootsu, and T. Yokota,
“Fpga components for integrating fpgas into robot systems,” IEICE
Transactions on Information and Systems, vol. 101, no. 2, pp. 363—
375, 2018.

https://github.com/ros-acceleration
github.com/NVIDIA-ISAAC-ROS
github.com/NVIDIA-ISAAC-ROS

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

(471

D. P. Leal, M. Sugaya, H. Amano, and T. Ohkawa, “Fpga acceleration
of ros2-based reinforcement learning agents,” in International Sympo-
sium on Computing and Networking Workshops (CANDARW), 2020,
pp. 106-112.

H. Amano, H. Mori, A. Mizutani, T. Ono, Y. Yoshimoto, T. Ohkawa,
and H. Tamukoh, “A dataset generation for object recognition and a
tool for generating ros2 fpga node,” in /EEE International Conference
on Field-Programmable Technology (ICFPT), 2021, pp. 1-4.

Y. Nitta, S. Tamura, and H. Takase, “A study on introducing fpga to ros
based autonomous driving system,” in /EEE International Conference
on Field-Programmable Technology (FPT), 2018, pp. 421-424.

K. E. Chen, Y. Liang, N. Jha, J. Ichnowski, M. Danielczuk, J. Gonza-
lez, J. Kubiatowicz, and K. Goldberg, “Fogros: An adaptive framework
for automating fog robotics deployment,” in IEEE International Con-
ference on Automation Science and Engineering (CASE), 2021, pp.
2035-2042.

Y. Sugata, T. Ohkawa, K. Ootsu, and T. Yokota, “Acceleration of
publish/subscribe messaging in ros-compliant fpga component,” in
International Symposium on Highly Efficient Accelerators and Recon-
figurable Technologies, 2017, pp. 1-6.

T. Ohkawa, Y. Sugata, H. Watanabe, N. Ogura, K. Ootsu, and
T. Yokota, “High level synthesis of ros protocol interpretation and
communication circuit for fpga,” in IEEE/ACM International Work-
shop on Robotics Software Engineering (RoSE), 2019, pp. 33-36.

H. Choi, Y. Xiang, and H. Kim, “Picas: New design of priority-driven
chain-aware scheduling for ros2,” in IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2021, pp. 251-263.
Y. Suzuki, T. Azumi, S. Kato, and N. Nishio, “Real-time ros extension
on transparent cpu/gpu coordination mechanism,” in IEEE Interna-
tional Symposium on Real-Time Distributed Computing (ISORC),
2018, pp. 184-192.

C. S. V. Gutiérrez, L. U. S. Juan, I. Z. Ugarte, and V. Mayoral-

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]
[57]

[58]

Vilches, “Time-sensitive networking for robotics,” arXiv preprint
arXiv:1804.07643, 2018.

——, “Real-time linux communications: an evaluation of the linux
communication stack for real-time robotic applications,” arXiv preprint
arXiv:1808.10821, 2018.

——, “Towards a distributed and real-time framework for robots: Eval-
uation of ros 2.0 communications for real-time robotic applications,”
arXiv preprint arXiv:1809.02595, 2018.

C. S. V. Gutiérrez, L. U. S. Juan, I. Z. Ugarte, I. M. Goenaga,
L. A. Kirschgens, and V. Mayoral-Vilches, “Time synchronization in
modular collaborative robots,” arXiv preprint arXiv:1809.07295, 2018.
C. Bédard, I. Liitkebohle, and M. Dagenais, “ros2_tracing: Multipur-
pose low-overhead framework for real-time tracing of ros 2,” Accessed
2022, |gitlab.com/ros-tracing/ros2_tracing,

Xilinx, “Vitis unified software platform,” Accessed 2022,
xilinx.com/support/download/index.html/content/xilinx/en/
downloadNav/vitis.html.

——, “Xilinx runtime (xrt),” Accessed 2022, github.com/Xilinx/XRT.
NVIDIA, “Nvidia jetpack sdk,” Accessed 2022, developer.nvidia.com/
embedded/jetpack.

N. Koenig and A. Howard, “Design and use paradigms for gazebo,
an open-source multi-robot simulator,” in [EEE/RSJ International
Conference on Intelligent Robots and Systems, vol. 3, 2004, pp. 2149—
2154.

P. Mihelich and J. Bowman, “image_pipeline ros metapackage,” Ac-
cessed 2022, \github.com/ros-perception/image_pipeline.

Xilinx, “Kria® kv260 vision ai starter,” Accessed 2022, xilinx.com/
products/som/kria/kv260- vision-starter-kit.html.

ROS 2 Hardware Acceleration Working Group (HAWG), “Ros
enhancement proposal (rep): Rep-2008 - ros 2 hardware accel-
eration architecture and conventions,” Accessed 2022, github.com/
ros-infrastructure/rep/pull/324,

gitlab.com/ros-tracing/ros2_tracing
xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vitis.html
xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vitis.html
github.com/Xilinx/XRT
developer.nvidia.com/embedded/jetpack
developer.nvidia.com/embedded/jetpack
github.com/ros-perception/image_pipeline
xilinx.com/products/som/kria/kv260-vision-starter-kit.html
xilinx.com/products/som/kria/kv260-vision-starter-kit.html
github.com/ros-infrastructure/rep/pull/324
github.com/ros-infrastructure/rep/pull/324

	Introduction
	Background and Related Work
	ROS and ROS 2
	Hardware Acceleration for ROS and ROS 2

	An Open Architecture for Hardware Acceleration in ROS 2
	Extending the ROS 2 Build System
	Extending the ROS 2 Build Tools
	 Adding Firmware Extensions
	Low-Overhead Real-Time Tracing & Benchmarking

	Case Study: Accelerating ROS 2 Perception
	Methodology
	CPU-Only Tracing Results
	Accelerating and Benchmarking CPU & FPGA
	Accelerating Nodes & Components on an FPGA
	Accelerating the Computational Graph on an FPGA

	Conclusion and Future Work
	References

