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Abstract— The 3D Bin Packing Problem (3D-BPP) is one of
the most demanded yet challenging problems in industry, where
an agent must pack variable size items delivered in sequence
into a finite bin with the aim to maximize the space utilization. It
represents a strongly NP-Hard optimization problem such that
no solution has been offered to date with high performance in
space utilization. In this paper, we present a new reinforcement
learning (RL) framework for a 3D-BPP solution for improving
performance. First, a buffer is introduced to allow multi-item
action selection. By increasing the degree of freedom in action
selection, a more complex policy that results in better packing
performance can be derived. Second, we propose an agnostic
data augmentation strategy that exploits both bin item symme-
tries for improving sample efficiency. Third, we implement a
model-based RL method adapted from the popular algorithm
AlphaGo, which has shown superhuman performance in zero-
sum games. Our adaptation is capable of working in single-
player and score based environments. In spite of the fact that
AlphaGo versions are known to be computationally heavy, we
manage to train the proposed framework with a single thread
and GPU, while obtaining a solution that outperforms the state-
of-the-art results in space utilization.

I. INTRODUCTION

The 3D Bin Packing Problem (3D-BPP) [1] is the 3D
extension of the 1D-BPP and 2D-BPP versions (both versions
widely studied). Bin Packing is one of the most demanded
problems in the industry due to the wide applicability in
logistics and manufacturing industries. Computationally, the
problem is known to be strongly NP-Hard due to the huge
search space. The problem mainly consist on packing a set
of variable size 3D cuboid items in a sequence I into a
finite bin, optimizing the space utilization, where W, L, H
are the bin dimensions and di = [wi, li, hi]

ᵀ are the ith item
dimensions. Typically, the size of the item is constrained to
the bin size as follows; wi ≤ W , li ≤ L and hi ≤ H . For
simplicity, the bin and items are discretized in voxels, so that
wi, li, hi,W,L,H ∈ Z+ are positive integers.

There are multiple variations of the problem definition.
For instance, the problem can be formulated as a perfect
information game where all items are known at any point in
time; other settings may allow the relocation of items that
have already been packed. In our work, we opt for a more
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practical definition based on [2], where the decisions are
irreversible and items are delivered in sequence one by one
(online), such that we give special attention to the immediate
items B ⊂ I. In practice, a conveyor belt carries the item
sequence to a robotic arm located at the head of the line. This
setup disallows the selection of items late in the sequence or
having knowledge about the entire sequence. In the simple
case scenario, only the most instant item in the sequence is
considered b = |B| = 1, we refer to this task as a single-item.

A buffer located at the end of the conveyor belt can be
placed to allow item selection of a small subset of immediate
items, we define b > 1 as the multi-item selection task
(Fig 1 a)). The buffer idea is inspired by human packers, as
they can freely move around and select the most promising
surrounding item. In addition, robotic arms are generally
capable of rotating items (z coordinate), we denominate k
as the number of reorientations, being k = 0 when no re-
orientation is allowed. By enlarging both state representation
and the action space, the algorithm can build more complex
strategies, which can potentially lead to higher performance.

In this work, we adapt the well-known AlphaGo algorithm,
to tackle various definitions of the online 3D-BPP with
limited computation resources. In our adaptation, we focus
on extending the algorithm to operate in single-player and
score-based environments with known dynamic’s model,
rather than two player zero-sum games as it was originally
defined. Likewise, we rely on Monte-Carlo Tree Search
(MCTS) with rollouts to selectively explore the huge search
space and provide approximations to the optimal policy. The
experience collected by the algorithm is then augmented
and inserted in a priority experience replay. Our experiments
reveal that our adaptation surpasses the previous state-of-the-
art results for single-item selection and item reorientation
tasks across multiple datasets. Finally, when considering a
buffer, the performance is observed to increase with respect
to the single-item selection policy.

The contributions of our work are summarized as follows:
• A new 3D-BPP framework based on a buffer to allow

multi-item selection located at the end of the conveyor
belt. The buffer benefits the agent in the following two
ways: (1) building a more complex policy by expanding
both action and state representations, (2) the episode
can be continued even when one item does not fit in
the current bin configuration.

• A model-agnostic data augmentation strategy that ex-
ploits the symmetries of the problem in order to improve
in sampling efficiency and generalization.

• We empirically demonstrate that model-based methods,
more concretely an adaptation of AlphaGo, can outper-
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Fig. 1. Overall training example diagram of a 3 × 3 × 3 bin. a) shows a simplified version of a conveyor belt with 4 items and buffer size of 1 item.
b) depicts the state space exploration via MCTS for the first step with a single-item as node definition. A node is represented by the height map and the
available items. Once the episode is terminated, the policies, states and returns of every step are stored in a prioritized replay storage. c) represents the
update of the parameters θ and ψ by sampling batches with priority from the experience storage.

form the best so far presented model-free method in the
bin packing problem with limited resources.

II. BACKGROUND

Traditional Bin Packing methods have been extensively
studied for solving 1D, 2D and 3D BPP. Due to the complex-
ity of the problem (strongly NP-Hard), brute force algorithms
are commonly discarded, instead heuristics models have been
the principal option for many years. In particular to the
1D version, the algorithm must place items (represented
by an integer) in available bins, however, if no feasible
placement is found, a new bin must be initialized. Some
popular algorithms are, Next-fit [3], First-fit [4] and Best-
fit [5]. The more generalized versions, 2D and 3D BPP, add
extra complexity as the placement is constrained to the space
and stability. The first heuristic 3D-BPP was presented in [1],
leading to the development of other successful algorithm like
Tabu-Search [6], guided local search [7] and a combination
of both Best and First fit in 3D [8]. Yet, machine learning
algorithms are not the most popular option in the literature
for many combinatorial problems.

Deep RL is constituted by two entities, the agent and the
environment, where the agent makes decisions within the
environment, aiming to change the environment’s state in
such a way that the notion of cumulative reward is maxi-
mized throughout the agent’s life (episode). More concretely,
Deep RL consists of an agent whose learning algorithm
mainly relies on deep neural networks. RL algorithms are
typically subdivided into two categories, i.e. model-free and
model-based methods. The first has no assumptions about the
environment’s dynamics and as a consequence, the algorithm
focuses solely on learning the optimal behavior or policy.
model-free methods are further subdivided into value-based
and policy optimization approaches. While value-based opts

to estimate the value (discounted future reward) associated
to a given state or state-action pair [9], policy optimization
method explicitly learns the optimal state-action mapping
[10], [11]. In addition, a method can be categorized as
on-policy or off-policy, where the main difference relies
on whether the policy can learn from experience collected
by other policies. This is the case of off-policy, which is
considered more sampling efficient than on-policy. Regarding
model-based methods, the algorithm can either assume the
model of the environment is given [12], [13] or either
can be learnt [14], [15]. The main advantage of model-
based methods is that it allows the agent to plan ahead by
virtually contemplating future scenarios. AlphaGo and later
generalizations propose a deep RL model combined with
MCTS for planning. These models have achieved super-
human performance in board games where the state space
is huge. Although the applicability is restricted to zero-sum
games with two players, the most recent version MuZero
[16], is able to master single-player games with unbounded
and intermediate rewards in environments where the model is
not given. In our work, we focus on a model-based approach
with a given deterministic model. However, 3D-BPP has
some fundamental differences from board games that we
mention and address during this work.

Deep RL for combinatorial optimization has been recently
motivated by the introduction of sequence-to-sequence mod-
els [17] and attention mechanisms. [18] proposed a frame-
work to tackle NP combinatorial optimization problems, such
as Travel Salesman Problem (TSP) or Knapsack with neural
RL. Pointer Net was introduced by [19], a supervised model
that leans on attention to solve TSP. Speaking of the research
advancement in 3D-BPP with DRL is still in its early stages
and to our knowledge, no model-based method has been
attempted. [20], inspired from previously mentioned works,



Fig. 2. Screenshot of the simulator UI. The left-hand side displays an
interactive user panel, which is disabled during model training and inference.
The bin and packed items are displayed on the right-hand side.

presented a solution for the 3D-BPP relying on Pointer Net.
Another relevant work is presented in [2], the authors intro-
duced an on-policy model-free DRL agent composed of an
actor, a critic and a predictor, to predict action probabilities,
value and feasibility mask respectively. Multiple on-policy
and off-policy algorithms were trained, being the on-policy
method [10] the one with the highest performance. Not only
they proposed a method but also they defined a realistic
online 3D-BPP framework matching the specification of the
real environment; due to this fact, we base our work on their
framework. Furthermore, we make use of their datasets and
method as the baseline for comparison in the experiment’s
section, since they claim state-of-the-art results.

III. SIMULATORS

The development of a realistic 3D Bin Packing simulator
is somehow complex. The complexity resides primarily in
the physics simulation, i.e. gravity. The bin distribution,
the weight of each loaded item along with the gravity
determines whether the packed items collapse. One way to
detect instabilities a posteriori, i.e. once an item has already
been packed, is by keeping track of undesired motion in
the bin. This strategy can be utilized to effectively react to
instabilities by penalizing via reward and early terminating
the episode. Yet, the action mask is still required to avoid
overlapping with walls and ceiling. An alternative strategy
would be to design a preventive simulator, namely a simula-
tor that assures a secure placement for each item by defining
a more restrictive action mask according to a set of stability
rules; as a result, no physics engine would be required.

We introduce two different simulators, a physics-based
and a preventive-based simulator. The first is developed
with Unity3D game engine and the machine learning agents
(ML agents) extension [21]. By default, Unity3D simulates
gravity, collisions and even permits tracking object properties
like the velocity. Another advantage of using Unity3D is that
we can easily render the episode, which can be helpful for
detecting bugs or abnormal agent behaviors during training
and inference. The latter simulator is developed in Python.
It consists of an multi-dimensional array representing bin

distribution and the basic logic to carry out placements.
Episode rendering is still not available for the preventive
environment. Both simulators allow reorientation, item selec-
tion, lookahead, MCTS simulation and custom action mask
definition. Finally, the sequences can be loaded from local
files or generated on-the-fly.

IV. DATASETS

In real applications, items are delivered in random fashion
and no assumptions about the sequence can be made, thus
100% space utilization cannot be guaranteed. However, it
would be convenient to know the maximum score for eval-
uation purposes. For this reason, [2] constructs three types
of sequences, CUT-1, CUT-2 and Random Sequence (RS).
CUT-1 and CUT-2 items are first generated via cutting-stock,
that is to say, a bin sized cuboid is randomly and recursively
’cut’ until the sliced items match the size constraints. The
difference between CUT-1 and CUT-2 relies on the sorting,
while CUT-1 sorts the items by the Z coordinate in ascendant
manner, CUT-2 sorts by stacking dependency: an item can
be added if the supporting items are located earlier in the
sequence. When two or more items have the same sorting
priority, the next item is chosen at random. Both cutting-
stock and sorting satisfy 100% space utilization conditions.
On the other hand, RS does not assume any conditions as the
items are simply randomly generated, representing a more
realistic dataset to train and test on.

All these three datasets consist of 2000 and 100 sequences
for training and testing respectively. The item dimensions
vary in the range between [2, 5] in all three dimensions,
forming a set of 64 different items, while the bin resolution
is 10× 10× 10.

V. METHOD

In this section, we describe the AlphaGo adaptation, the
first model-based approach applied to the 3D-BPP to our
knowledge. The method is trained to solve three online tasks,
i.e. single-item, item reorientation and multi-item selection
with buffer. For simplicity, Fig. 1 shows a single-item train-
ing example of a sequence of 5 items. The figure is composed
of three sections, a representation of the real environment, a
single step of experience collection with MCTS and lastly,
the policy update. To understand how Fig. 1 would look like
with buffer and reorientation, the children of each node in
the tree must be expanded with all new available actions
(Cartesian product between locations, orientation and items)
as well as adding multiple items in the state definition.

A. Problem Setting

More formally, the 3D-BPP is typically formulated as a
Constrained Markov Decision Process (CMDP) due to the
action constraints [22]. A Markov decision process is often
defined with the tuple (S,A,R,P), where S is the set of
states, A is the set of actions,R is the set of rewards and P is
the model of the environment. P is the transition probability
function P (s′|s, a) where the next state s′ is conditioned to
the current state s and the action a. In our setup, we assume



the transition model is given and is deterministic, meaning
that a particular (s, a) always leads to the same state s′.

To represent the bin state, we appeal to the height map
representation Ht ∈ ZW×L, a matrix where each element
indicates the height at the corresponding loading position
(LP) in the bin. The action feature at ∈ RW×L provides with
the placement probabilities, where each location represents
the front-left-bottom of the input item (FLB). For example,
given an item i with dimensions (wi, li, hi) and the LP
at = (xt, yt), the intended region covers the following area
ht = (Hi,j) [xt ≤ i < xt+wi, yt ≤ j < yt+ li] . The region
ht is then updated ht+1 = hmax + hi where hmax is the
highest point in ht. Also, the FLB must be readjusted when
reorientation is applied, see Fig. 3. In addition, depending on
the buffer configuration, we consider two different scenarios,
the conventional online single item b = 1 and the multiple
item b > 1 selection. For both cases and after the placement
of each item, the next available item in the sequence is
immediately added until the sequence is empty, in which case
zero dimension item is included. For the sake of reducing
item displacements, the next item takes the spot left by the
last packed item, as a results, the robotic arm only requires
one extra item displacement regardless of the buffer size.

The reward is in many cases the key to induce the agent
to learn the correct behavior. In Atari games, the reward is
matched with the game score. In particular to the BPP, the
score is equivalent to the space utilization which is updated
every time an item is placed. Therefore a non-zero reward
is provided to the agent at every step. We reuse the reward
definition of [2], in which the reward is formulated to be
proportional to the space utilization: ri = 10×Vi/VB , where
Vi is the volume of the ith item and VB is the volume of
the bin. Once no available items or actions are found, a zero
reward is provided and the episode is terminated.

At each time step, the environment provides the action
mask, a binary mask responsible for ensuring a safer place-
ment. In order to compare our results with [2], we reuse their
proposed set of feasibility rules. Nevertheless, these rules are
not unique and also a physics-based simulator can relax the
constraints as the instabilities can be detected a posteriori.
The disjunctive rules for a particular FLB are as follows: 1)
over 60% of the area is supported including four corners,
or 2) over 80% of the area is supported including three or
more corners, or 3) over 95% of the item area is supported.
Moreover, it is important to always make sure there is enough
room w.r.t to the walls and ceiling of the bin.

B. Neural Architecture

We train a policy pθ(at|st) with parameters θ, built with
a neural network architecture, to find the optimal mapping
from states to actions. The input is represented as the feature
combination of the height map Ht and the 3 dimensions
per available item. Each item dimension is stretched out
forming a plane with the same shape as Ht. Finally, all
features are stacked along the channel axis and normalized
by the bin height H. If the remaining number of items in
the buffer B is smaller than the buffer size b, the input

feature is padded with zeros. The output tensor size is
W ×L×b×(k+1) covering every Cartesian combination of
location, item and orientation. Once the input is forwarded
through the policy net, the output feature is element-wise
multiplied with the action mask to remove infeasible LPs.
Optionally, we train an independent value network vψ(st)
with parameters ψ, to predict the cumulative discounted
reward J(π) = Eτvπ

∑∞
t=0 γ

tR(st, at), where γ → [0, 1]
is the discounted factor and τ is a state-action trajectory.
Despite our method does not need the value function, it can
be helpful combined with search algorithms during inference.

Both policy and value networks are constructed with a
stack of 6 convolutional neural layers with 128 planes and
ReLU activation functions. The value network has a final
linear layer with tanh function to reduce and rescale the
feature shape to a single dimension in vψ(st) ∈ R→ [−1, 1].

C. Algorithm

The method’s training process is divided into two phases,
the data generation (Fig.1 b)) and the parameter update (Fig.1
c)) phases. In the first phase, we consider the Monte-Carlo
Tree Search strategy, which was recently introduced in [12]
for mastering the game of Go. The main goal of MCTS
is to efficiently explore the huge search space looking for
an approximation to the optimal policy π for a given state.
The search algorithm virtually executes a constant number
of simulations from a starting state while keeping track of
relevant statistics about the nodes, i.e. states. In contrast with
the inference stage, during the training we assume MCTS
is executed having perfect knowledge of the item sequence
(known sequence), although the information accessible to
pθ and vψ at each node is partial and it depends on the
pre-defined buffer size. The expansion or selection of new
nodes at each simulation is governed by the UCT Eq. 1,
composed by exploitation and exploration terms. While the
exploitation term Q(s, a) highlights the nodes with higher
return, the exploration emphasizes nodes that have not often
been visited N(s, a). There are two main ways of evaluating
a new expanded node in the tree, via rollout or via value
network. Although value estimation has been proposed in
later generalizations of AlphaGo, in our work we opt for
rollout evaluation with action sampling, since we observed
that rollouts are empirically more accurate than the value
network for this problem (see subsection VI-C).

U(s, a) = Q(s, a) + cpuct pθ(a|s)
√∑

bN(s, b)

1 +N(s, a)
(1)

One fundamental difference between 3D-BPP and Go is
that Go is a zero-sum game with two players, whereas 3D-
BPP is score-based with intermediate rewards and single-
player. In Go, the reward is given at the end of the episode,
being 1 for a win, 0 for a draw and −1 for a loss. To convert
the reward to a score style environment, First, before starting
the MCTS simulations of a new sequence, the sequence is
evaluated with a baseline policy. For simplicity, we reuse
the policy pθ(at|st), yet instead of sampling actions, the



Fig. 3. A symmetry augmentation example of a 5x5 bin, placing a 3x2
item with 90º, 180º, 270º and horizontal flip augmentations. As depicted
with the red and green circles, the FLB and the item orientation must be
adjusted depending on the transformation applied.

actions are deterministically selected according to the highest
probability argmaxat pθ(at|st). The return of a rollout is
then computed by subtracting the baseline return from the
rollout cumulative reward (from start to end of the episode).
Intuitively speaking, the resulting score is positive if the
explored trajectory ends up packing more items than the
baseline and negative vice-versa. Rather than seeking trajec-
tories that lead to 100% utilization space (quite a hard task),
we focus on finding a policy that incrementally improves the
performance with respect to the baseline policy. Finally, once
all simulations have been completed for a concrete step, the
normalized visit count for every root action is calculated to
generate the policy π(at|st); in such a way that the more a
node is visited, the higher is its probability.

A prioritized experience replay [23] stores the experience
collected in tuples (st, πt, zt), where st is the state, πt is the
MCTS policies and zt is the rescaled episode ground truth
discounted return [−1, 1]. We set the γ parameter to 1 in
our experiments. Optionally, the samples can be augmented
as described in Section V-D. Moreover, we can discard the
episode samples depending on whether the MCTS policy
outperforms the baseline score.

L =
∑
t

(vψ(st)− zt)2 − πt(at|st) log(pθ(at|st))

+ λp||θ||2 + λv||ψ||2
(2)

The second phase of the training proceeds right after a
fixed number of data collection episodes. As depicted in
Fig.1 c), both ψ and θ are optimized by minimizing the
objective described in Eq. 2, with batches sampled from the
experience replay. Moreover, we set the learning-rate at the
beginning of the training to 1·10−3 for avoiding local minima
and it is decreased as the training progresses.

TABLE I
SIMULATOR STEP DELAY

Unity3DBP Py3DBP

Single step 2.4± 0.2 ms 0.13 ± 0.02 ms
100 MCTS simulations 21.91± 13.1 s 0.80 ± 0.51 s

D. Data augmentation

Symmetries of the bin and items can be utilized to further
expand the collected experience, similarly to Go or Othello
[12], [13]. We propose rotation and flip transformations of
the height map, items and action probabilities obtaining up
to 8 times augmentation. The height map transformation and
item features can be applied directly to the 2D matrix rep-
resentation, however, the transformation of the action is not
trivial. Go differs from 3D-BPP in that each stone occupies
a single cell whereas items occupy a variable size. Fig 3
shows an example of how a particular action FLB (marked
in red) is shifted (marked in green) once a transformation
is carried out. This is due to the fact that the FLB, which
is the item’s origin of coordinates, is relocated after the
operation. This relocation depends on the item dimensions
and the transformation. The following list summarizes all
additional operations on the action probabilities and items,
where the item dimensions are d = [w, l, h]ᵀ:
• The action probabilities after 90° rotation is readjusted

by shifting left l units. Also the item must be rotated
w.r.t. the z coordinate.

• The action probabilities after 180° rotation is readjusted
by shifting left w units and down l units. The item does
not need to be rotated since items are assumed to have
1 line of symmetry.

• The action probabilities after 270° rotation is readjusted
by shifting down w units. The item must be rotated w.r.t.
the z coordinate.

• The action probabilities after a horizontal flip is read-
justed by shifting left w units and there is no need to
rotate the item.

As a result of shifting the action feature left and/or down,
the right and/or top empty cells are then set to zero to avoid
overlap with the walls. Furthermore, the combination of flip
and rotation transformations can be easily implemented by
composition. In case the bin has a rectangular shape, i.e.
W 6= L, 90º and 270º rotations may or may not be considered
depending on whether the neural architecture can learn from
different input tensor shapes.

VI. EXPERIMENTAL RESULTS

We train the models with a single Intel i5 CPU at 3.70GHz
× 6, 16 GiB of RAM and a single GPU Titan V. The training
process takes about 1 day to reach the optimal policy for a
single item task with 100 simulations per step. The training
time complexity is sensitive to multiple factors, e.g. the
number of masks to compute (1 per each item or orientation),
the simulations per step and the duration of the episode.



TABLE II
AVERAGE # PACKED ITEMS / SPACE UTIL. (%) COMPARISON

PERFORMANCE OF SINGLE-ITEM POLICIES WITH AND WITHOUT

REORIENTATION FOR A 10× 10× 10 BIN.

k=0, b=1 CUT-1 CUT-2 RS

Heuristics [8] 15.15/59.8% 17.3/61.19% 13.8/54.3%
Model-free [2] 19.1/73.4% 17.5/66.9% 12.2/50.5%
Ours 21.3/83.4% 18.0/69.9% 13.1/53.1%

k=1, b=1

Heuristics [8] 15.99/61.5% 17.62/62.5% 13.82/56.9%
Model-free [2] 19.4/76.2% 18.1/70.2% 15.2/62.1%
Ours 22.1/85.6% 20.2/73.9% 15.7/64.2%

TABLE III
AVERAGE # PACKED ITEMS / SPACE UTIL. (%) PERFORMANCE OF OUR

APPROACH WITH MULTI-ITEM SELECTION: k = 0 , b > 1.

CUT-1 CUT-2 RS

b=1 21.3/83.4% 18.0/69.9% 13.1/53.1%
b=2 22.0/84.0% 20.2/71.5% 14.6/57.6%
b=3 22.5/85.7% 21.8/77.1% 15.8/62.1%

Table I compares the step delay for the mentioned sim-
ulators for two cases, a single step and 100 simulations.
In spite of the fact that both environments reach identical
performance under the same stability rules definition, it is
straightforward to understand that the preventive simulator
developed in Python is much faster than the physics-based,
as it is much more simplistic, requiring no physics simulation
nor rendering. The difference is negligible for a single step
case, since the training bottleneck is the backward propaga-
tion phase rather than the experience collection phase. On
the other hand, when utilizing MCTS, there is a drastic dif-
ference and the Unity3D simulator becomes impractical. For
this reason, we use the preventive-environment for training
our model-based approach. Nevertheless, the physics-based
environment can still be useful, for example: simulating
in inference mode, exploring new feasibility rules, training
model-free models, training model-based combined with
the preventive-based simulator for virtual steps and finally,
simulating items with different weights.

A. Single-item selection, b = 1

In the single-item task, i.e. buffer size b = 1, only the
next item in the sequence is known and can be selected.
Once the item is placed, the next item in the sequence is
considered. The episode terminates when the current item
cannot be placed any longer, or the bin is perfectly packed.
In addition, we allow reorientation in the z-coordinate of the
item k = 1, increasing the output size by a factor of two.

Table II compares our model with the model-free baseline
[2] and the heuristics method [8] for k = 0 and k = 1
cases, across 3 datasets consisting of 100 episodes each.

Fig. 4. Evolution of cumulative reward during the training progress for
buffer size b = 1 and all three datasets, where — is with and — is without
data augmentation.

TABLE IV
COMPARING MULTIPLE ALPHAGO ADAPTATIONS TO THE 3D-BPP.

CUT-1 CUT-2 RS

Rollout with known sequences 83.4% 69.9% 53.1%
Value with known sequences 64.7% 65.9% 53.1%
Rollout with stochastic sequences 67.8% 66.0% 52.8%

The performance is depicted with two metrics, the average
number of packed items and the space utilization. Our
method presents a superior performance for all datasets in
both modalities. Our solution tends to pack from 0.5 up to
2.7 more packages on average than [2], where the maximum
difference is shown in CUT-1 with approximately 2 packages
and 10% of improvement for k = 0 and k = 1. Moreover,
the performance of both approaches increases when the
reorientation is allowed, specially in random sequence (RS),
with more than 10% improvement. In spite of the fact that
the datasets CUT-1 and CUT-2 are designed to be perfectly
packed without reorientation, the performance grows also in
both datasets.

B. Multi-item selection, b > 1

For buffer size b > 1, the policy is trained to provide
a placement probability for all buffered items. One of the
advantages of including a buffer is that, even though the
next available item in the sequence does not fit, the agent
can still continue packing alternative items and potentially
prepare the bin distribution to accommodate larger items. In
practice, this reserved space cannot infinitely grow due to the
lack of accessible space around the robotic arm, as a result
we only consider small buffer sizes b = 2 and b = 3.

Table III summarizes the performance of our trained policy
for the cases b = 2, b = 3. The performance is observed to
increase when the buffer size is expanded, being the policy
b = 3, the one with the best score for CUT-1, CUT-2 and RS.
In particular to RS, the performance appears to be similar to
reorientation k = 1, b = 1 case. Moreover, the buffer format
and reorientation can be easily combined to develop more
sophisticated policies by increasing the action space at the
cost of more computational time complexity.



C. Ablation study

Fig. 4 depicts the training evolution of the cumulative
reward per episode for two cases: with and without data aug-
mentation. It is easy to notice that data augmentation speeds
up the training for all three datasets. Not only accelerates
but more importantly, achieves a higher performance for all
cases and more notably when RS dataset is selected.

Table IV compares the performance of 3 different Al-
phaGo variations in the 3D-BPP. As mentioned earlier,
rollout estimation leads to better performance than value
estimation yet with a little more overhead during training.
One potential explanation could be the fact that the value
network cannot accurately predict the future discounted
reward with limited state definition. Finally, since the com-
plete sequence is unknown during inference, we attempt to
train the algorithm assuming stochastic item arrival modeled
with pre-trained sequence models for CUT-1 and CUT-2
and uniform sampling for RS. The results show that using
the actual sequence during training excels the stochastic
sequence approach. There are two main reasons why we
think stochastic sequences do not work well: first, a small
perturbation or change in the sequence can drastically change
the value estimation for a particular state. This brings us
to the second issue, in order to somehow approximate the
optimal policy under a very noisy environment, a very large
number of simulations would be required (too expensive for
our setup). To solve these issues, we simply use the cor-
responding sequence during training (not inference) despite
adding little bias. We observe that the algorithm is capable
of generalizing well to the unseen sequences

VII. DISCUSSION

The proposed method has shown improvement in per-
formance in three different datasets by slightly increasing
the training time with limited resources. The algorithm
learns the optimal policy with fewer simulations per step in
comparison with AlphaZero for the given problem. Although
the scalability issue of the proposed method for much higher
bin resolutions is best left for future works, we may consider
a potential way to tackle the issue, besides a simple scale-up
of the hardware resources. That is, we can adopt the strategy
proposed for the game of Go and Reversi in [24], in which
the 2D board is represented into a graph structure and trained
by a GNN-style model with the AlphaZero algorithm, such
that the board size can be tractable and extended during
inference while keeping the performance.

The previous point brings us to the next point; there is a
lack of standardized benchmarks for the 3D Bin Packing
Problem. In order to compare our work, we selected a
publicly available dataset [2], however, we believe it would
be necessary to build open-source datasets similarly to the
computer vision domain. These tasks can be divided into
multiple categories according to, for instance, bin resolutions,
item ratios and modalities such as multi-bin, buffer and so
on.

VIII. CONCLUSIONS & FUTURE WORK

In this work we have proposed a new 3D bin packing
framework enhanced with an item buffer. We have shown that
by adding the buffer the agent reaches considerably higher
packing performance while remaining compatible with real
applications. In addition, we introduced a data augmentation
strategy to improve the sampling efficiency and training
speedup, benefiting setups with limited hardware resources.
Also, we have demonstrated that the proposed AlphaGo
adaptation is more accurate than model-free approaches for
several online tasks. In discussion, the case of k = 0, b = 1
in Table II shows the effectiveness of the proposed data
augmentation and the model-based rollout with adapted
AlphGo in improving performance, especially, for the case
with a lesser degree of variability in sequence such as CUT-
1. On the other hand, Table III and the k = 1, b = 1 case
of Table II indicate that both buffer and reorientation are
also effective for improving performance. It is interesting
to observe that the buffer and reorientation strategy tend to
impact more on the case with a larger degree of variability
in sequence such as CUT-2 and RS. We conjecture that
provision of a higher degree of freedom in action selection
incurs a more positive impact on the performance of RL,
especially for dealing with larger environmental variations.

For the future work, we aim to increase the computational
power as well as testing our implementation in real industrial
environments with larger bin sizes, wider variety of item
sizes and higher space resolution in order to explore the full
potential of the algorithm. As mentioned in the discussion
section, we aim to propose standardized benchmarks for
the 3D-BPP to more fairly compare algorithms for multiple
sub-tasks and settings. Finally, we would like to adapt the
proposed framework to a continuous action space setting.
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