
Explainable Knowledge Graph Embedding: Inference Reconciliation for
Knowledge Inferences Supporting Robot Actions

Angel Daruna1, Devleena Das1, and Sonia Chernova1

Abstract— Learned knowledge graph representations sup-
porting robots contain a wealth of domain knowledge that
drives robot behavior. However, there does not exist an inference
reconciliation framework that expresses how a knowledge graph
representation affects a robot’s sequential decision making.
We use a pedagogical approach to explain the inferences
of a learned, black-box knowledge graph representation, a
knowledge graph embedding. Our interpretable model, uses
a decision tree classifier to locally approximate the predic-
tions of the black-box model, and provides natural language
explanations interpretable by non-experts. Results from our
algorithmic evaluation affirm our model design choices, and
the results of our user studies with non-experts support the
need for the proposed inference reconciliation framework.
Critically, results from our simulated robot evaluation indicate
that our explanations enable non-experts to correct erratic
robot behaviors due to nonsensical beliefs within the black-box.

I. INTRODUCTION

Prior work has shown that complex knowledge inferences
afforded by learned knowledge graph representations can
be used to improve a robot’s robustness in ambiguous or
unforeseen scenarios. Some examples include tool substitu-
tion [1] and interpolating ambiguous end-user commands [2].
However, these learned knowledge graph representations are
usually black-boxes that are not interpretable to a non-expert
user, who would require an explanation when the robot has
erratic behavior due to an incorrect knowledge inference.

Explainable AI Planning (XAIP) seeks to explain an
AI’s reasoning to humans in sequential decision-making
procedures to promote collaboration. In XAIP, inference
reconciliation through dialogue with the AI is one method
of explaining an AI’s reasoning to a user [3]. The growing
variety of questions users may ask an AI addressed by prior
work include “Why is action a in plan π?”, “Why not this
other plan π′?”, “Why is this policy (action) optimal?”,
and others. Additionally, prior work has proposed inference
reconciliation frameworks that explain how plans, policies,
rationales, and scene-graphs can be leveraged to explain
an AI’s decision making. However, to the best of our
knowledge, no existing inference reconciliation framework
explains how a knowledge graph representation affects a
robot’s decision making.

When interacting with a user, a robot may need to
justify its action based on semantic knowledge inferences
independent of the robot’s plan, policy, or the scene. For
example, after asking the robot to fetch their coffee, the
user might ask the robot “Why are you looking in the

1Georgia Institute of Technology, Atlanta, GA. Email: {adaruna3,
ddas41, chernova}@gatech.edu

Fig. 1: Overview of our inference reconciliation framework which
introduces a novel explainable knowledge graph embedding method
(graph feature model), leveraging decision trees, to provide natural
language explanations to users.

refrigerator?”, to which the robot may reply “Food is stored
in the refrigerator, and coffee is a food”. Such an explanation
not only elucidates the robot’s reasoning, but also provides
a valuable opportunity for the user to correct the robot’s
knowledge (e.g., “coffee is stored in the pantry”). The aim
of our work is to develop such explanation capabilities, and
ultimately improve the robot’s reasoning, by introducing a
novel type of inference reconciliation of the form, “Why is
knowledge inference i, supporting action a, true?”.

We introduce an inference reconciliation framework that
answers a user’s questions about the knowledge inference
that supports a robot’s action, based on knowledge graphs,
XAI, and natural language (Figure 1). Our framework uses
a pedagogical XAI approach to provide explanations to non-
experts about the inferences made by a learned knowledge
graph representation. We develop a graph feature model as
the interpretable model, using subgraph feature extraction
and decision trees. We train the graph feature model to
locally approximate the predictions of the learned knowl-
edge graph representation and provide a grounded, natural
language explanation for each prediction.

We evaluate our framework across three dimensions: al-
gorithmic performance, user preference of explanations, and
robot task performance. In our algorithmic evaluation, we ob-
serve statistically significant improvements in classification
fidelity over baseline interpretable graph feature models, sub-
stantiating our design choices. In our user preference evalu-
ation, we observe that users prefer our explanations as robot
responses with statistically significant differences in 73.3%

ar
X

iv
:2

20
5.

01
83

6v
1

 [
cs

.A
I]

 4
 M

ay
 2

02
2

of analyzed interactions. These differences in preferences
validate the need for our inference reconciliation framework
as it answers “why questions” that are qualitatively different
from prior work. Most importantly, in our robot task evalu-
ation, we observe that non-expert feedback prompted by our
explanations can effectively improve robot task performance
(117% and 33.7% relative improvement in link-prediction
and task execution success rate, respectively). The novelties
of our work include the inference reconciliation framework
as a system, our interpretable graph feature model, and our
framework’s ability to generate explanations that help non-
experts improve robot task performance. Specifically:
1. We introduce an inference reconciliation framework that
answers a novel type of user questions of the form “Why
is knowledge inference i, supporting action a, true?” using
knowledge graphs;
2. We develop and evaluate a novel graph feature model that
outperforms prior work by statistically significant margins on
a household knowledge dataset;
3. We showcase a novel application of explanations within
XAIP: improving downstream task performance, namely,
robot behavior.

II. RELATED WORKS

Our work is motivated by prior research in three areas:
Knowledge Graphs in Robotics, Explainable AI Planning,
and Knowledge Base Completion.

Knowledge Graphs (KG) are a method to model the
properties and interrelations of world entities [4]. Prior works
that apply KGs to robotics have demonstrated improved
robustness in robot behavior by enabling robots to make
complex knowledge inferences. Examples include, substi-
tuting failed demonstration actions in plans for executable
actions [5], finding objects in alternate locations [6], using
alternative tools for tasks [1], inferring conditional object
properties [7], and interpolating ambiguous end-user com-
mands [2]. Most of the efforts in modeling KGs for robotics
have been focused on developing computational frameworks
capable of complex knowledge inferences (e.g., learning
KG structure for fact prediction). Such methods have been
extensively demonstrated for tasks in which robots are inter-
acting with non-expert users (e.g., households). These two
points together motivate our work, which seeks to make a
robot’s knowledge inferences understandable by non-experts
through explanations, such that non-experts can remedy
explanations of incorrect knowledge inferences, improving
a robot’s overall decision-making.

Explainable AI Planning (XAIP) is a focus area of
Explainable AI (XAI), with the goal of explaining an AI’s
reasoning to humans in complex decision-making procedures
to foster trust, long-term interaction, and collaboration [3].
Inference reconciliation through dialogue with the AI is one
method of explaining an AI’s reasoning, motivated by the
notion that users have less computational power than sequen-
tial decision making systems (e.g., planners). In inference
reconciliation through dialogue, user questions about the AI’s
decision making are answered using explanations [3].

There are a growing variety of questions user’s might
ask about an AI’s planning and representations affecting an
AI’s sequential decision making that need to be mapped
into explanations as question responses. In [8], [9], causal
link chains formed by action pre- and post-conditions within
plans are used to answer “Why is action a in plan π?”. In
[10], unmet properties of alternative plans (e.g., constraints)
are highlighted to answer “Why not this other plan π‘?”.
In [11], the frequencies with which the current action lead
to high-value future states or actions are used to answer
“Why is this policy (action) optimal?”. In [12], a mapping
between user ascribed rationales and world states are used
to answer “Why is action a taken in world state s?”. In
[13], the transformation (excuse) to make Π solvable is used
to answer “Why is the sequential decision making problem
Π not solvable?”. In [14], relevant scene-graph semantic
relationships causing plan failure are verbalized to answer
“Why did execution of plan π fail?”. To the best of our
knowledge, no prior work in XAIP has leveraged KGs as
part of the sequential decision making representations that
need to be mapped into explanations as question responses.

Knowledge Base (Graph) Completion (KBC) seeks to
infer missing facts from a knowledge graph using existing
facts [15]. In [15] two branches of KBC techniques that have
received much attention are surveyed: latent and graph fea-
ture models. Latent feature models infer missing facts based
on latent features of graph nodes (i.e., embeddings) and
graph feature models infer missing facts based on features
extracted from observed graph edges (e.g., paths). Latent
feature models tend to outperform graph feature models
[16]. However, inferences from latent feature models are
not interpretable because all embedding values are learned
relative to one another and, therefore, dimensions of latent
features have no inherent meaning [16]. However, there exist
applications where it is desirable to have accurate inferences
that are interpretable (e.g., product recommendation).

Prior works have focused on improving the interpretability
of embeddings for latent feature models and explainability
of inferences. In [17], [18] embedding interpretability for
expert users are provided through attention or importance
weights over node features with respect to relation features,
respectively. In [19], [20], the reasoning behind or reliability
of inferences was explained to non-experts in terms of the
observed short alternative paths or “crossover interactions”
between inferred and given facts, respectively. In [16], the
reasoning supporting inferences was explained by learning
the most highly correlated alternative paths. In [21], fully
grounded explanations about inferences were provided by
using expert labels to learn in a semi-supervised manner
which “template” explanation (similar to alternative paths)
is best suited to explain an inference. We develop a novel
graph feature model and compare our approach to each of
these prior works in our experiments.

III. METHODOLOGY

The problem of inference reconciliation is grounded in the
notion that users typically have less computational ability

compared to AI systems, making it difficult for users to
understand an AI’s solution. One solution entails providing
explanations that aid in the user’s inferential capabilities [3].
In our work, we consider robotic frameworks in which robot
behavior is driven by knowledge inference. In particular, we
assume the robot is making decisions based at least in part on
a learned knowledge graph representation. To aid user under-
standing of robot behavior, we introduce an inference recon-
ciliation framework 1 that answers user questions of the form:
“Why is knowledge inference i, supporting action a, true?”
(e.g. user asks a robot commanded to find a sponge, “Why do
you think you will find a sponge in the sink?”). We leverage
both knowledge graphs (KG) and interpretability techniques
from XAI to provide non-expert users with natural langauage
explanations about a robot’s knowledge inference supporting
an action. As shown in Figure 1, we first gather facts about
a robot’s task domain, forming a KG, G. We use the KG
G to learn a knowledge graph embedding (KGE), Θ, that
enables the robot to make complex knowledge inferences.
However KGEs are black-box, and lack a mechanism to
explain inferences to non-expert users (Section III-A). To
make KGEs more interpretable to non-experts, we follow
a pedagogical XAI approach [22] to provide explanations
about Θ’s inferences, using a graph feature model as the
interpretable model, Φ. Both G and Θ serve as inputs to
Φ, which performs subgraph feature extraction (SFE) and
trains a decision tree classifier to locally approximate the
predictions of Θ (Section III-B). Given a prediction from Θ,
we then use Φ and Θ to extract and ground the explanation
in natural language (Section III-C).

A. Knowledge Graph Representation

Knowledge graphs (KGs) are modeled as a graph G
composed of individual facts or triples (h, r, t); h and t are
the head and tail entities (respectively) for which the relation
r holds, e.g., (cup, hasAction, fill) [23], [24], [25]. KGs that
model real-world domains are large, sparse, and incomplete.
For example, a KG representing a household, while large,
only represents a subset of true facts, which are sparse in
a space of many potential facts. We adopt knowledge graph
embeddings (KGE) for our knowledge graph representation
because KGEs are designed for knowledge graphs that are
large-scale and sparse [15]. Additionally, KGEs excel at
learning the underlying structure of graphs to infer new facts
beyond known facts in a graph (i.e. latent feature models in
Section II). We build upon the framework in [25], which uses
a KGE to represent G.

KGEs are distributed representations that model G in
vector space [15], learning a continuous vector representation
from a dataset of triples D =

{
(h, r, t)i, yi|hi, ti ∈ E , ri ∈

R, yi∈{0, 1}
}

, with i∈{1...|D|}. Here yi denotes whether
relation ri ∈ R holds between hi, ti ∈ E . Each entity e∈E
is encoded as a vector ve ∈RdE , and each relation r∈R is
encoded as a mapping between vectors Wr ∈ RdR , where
dE and dR are the dimensions of vectors and mappings

1Supplementary materials: https://github.com/adaruna3/explainable-kge

respectively [15]. The embeddings for E and R are typically
learned using a scoring function f(h, r, t) that assigns higher
(lower) values to positive (negative) triples [15]. The learning
objective is thus to find a set of embeddings Θ =

{
{ve| e ∈

E}, {Wr| r ∈ R}
}

that minimizes the loss LD over D.
Loss LD can take many forms depending on the KGE
representation used, e.g., Negative Log-Likelihood Loss [26].

We make inferences (i.e. fact predictions) in KGEs by
completing a transformation in the embedding space. For
example, to infer tails {tj | tj ∈ E ∀j} that might complete
(h, r,), the scores f(h, r, tj) of all j triples are computed,
and triples with scores meeting some classification threshold
are classified true. Each score f(h, r, tj) is the resultant of
a sequence of high-dimensional geometric transformations
between the head entity vector {vh|h ∈ E}, relation mapping
{Wr| r ∈ R}, and tail entity vectors {vtj | t ∈ E}. Given
the complex and relative nature of KGEs, inferences are
not inherently interpretable, as discussed in Section II under
KBC. With the ultimate objective of providing transparent
explanations of KGE inferences to non-experts, we leverage
explainability techniques from XAI to explain an inference.

B. Interpretable Model

Our interpretable model Φ locally approximates the in-
ferences (i.e. fact predictions) of the KGE, denoted as Θ
such that Φ can provide explanations of Θ predictions. As
discussed in Section II, graph feature models use graph fea-
tures to infer missing facts. We develop a novel interpretable
graph feature model Φ that consists of two components:
interpretable features δ derived from G and Θ, and an
interpretable classifier λ trained on δ to approximate the
predictions of Θ. We begin by extracting the features δ
derived from a knowledge graph G as in [27], which is
formed from a dataset of triples D =

{
(h, r, t)i, yi|hi, ti ∈

E , ri ∈R, yi ∈ {0, 1}
}

, with i ∈ {1...|D|}. Here, yi denotes
whether relation ri ∈ R holds between hi, ti ∈ E . We
then train the interpretable classifier λ over the most relevant
subsets of these features to infer a triple (i.e. fact) missing
from G.

1) Interpretable Knowledge Graph Features: We use
Subgraph Feature Extraction (SFE) from [27] to extract
interpretable features, δ, from a graph G′, which represents a
set facts believed true the the KGE Θ. We begin by forming
G′ using the facts in G classified as true by Θ. We also add
to G′ any facts classified as true by Θ, which we form by
switching the head h or tail t for a fact (h, r, t) in G with the
top K nearest neighbor entities. Neighbors are determined
by cosine similarity in the embedding space. We then used
SFE to extract our interpretable features, δ, from G′ instead
of G to get a larger set of features classified as true by Θ.
SFE uses bi-directional breadth-first search to find all unique
relation paths connecting a pair of entities in G′. Relation
paths are formed from the sequence of relations that are
traversed when following a path in G′ from a head entity
h to a tail entity t, where h, t ∈ E . Therefore, for a relation
path P̂ composed of L relations, P̂` represents each relation
on a path where `∈{1...L}. We encode the unique relation

paths connecting entities h, t paired by a relation r as features
using one-hot encoding.

2) Explainable Model Training: We train a separate in-
terpretable model λ, a decision tree, for each knowledge
inference on a subset of available features that maximize λ’s
classification fidelity to Θ. The joint contributions of relation
path combinations extracted from G′ may not be modeled as
linear combinations of individual paths. Therefore, we use
a decision tree for our interpretable model, λ, given that
decision trees are able to model nonlinear decision bound-
aries, while remaining interpretable. Additionally, decision
trees have more explicit semantics about which relation
paths (i.e. features) contribute to a classification (i.e. features
along the decision path), excluding extraneous relation paths
that may be correlated with a class but are unnecessary
to make the classification. The set of features (i.e. relation
paths) selected to train a decision tree for each inference are
localized to those that maximize the classification fidelity
between the decision tree λ and embedding Θ. Given a fact
(h, r, t) to be inferred, in which h, t ∈ E and r ∈ R, we
implemented the locality by selecting the K nearest neighbor
facts (hk, r, tk), where k ∈ {1...K}, sharing a common
relation r such that the classification fidelity between Φ
and Θ is maximized. Neighbors are determined by cosine
similarity in the embedding space (e.g., cosine(vh, vhk

)).

C. Extracting and Grounding Explanations

Given a knowledge inference extracted from a user’s
“why question” during inference reconciliation, we use the
classifier λ in Φ to extract the relevant relation paths, the
embedding Θ to ground these relation paths to paths in G′,
and templates to convert the grounded paths into natural
language explanations. The knowledge inference takes the
form (h, r, t), where h, t ∈ E and r ∈ R. Assuming Θ and
Φ are in agreement about the classification of the query
knowledge inference, we extract N relevant relation paths
P̂n, where n ∈ {1...N}, between h and t that were present
on the decision path when the decision tree (i.e. λ) performed
classification. For each path P̂n, we perform bi-directional
breadth first search between h and t using relations from
P̂n in order to ground the relation paths using Θ. Therefore,
for a relation path P̂n composed of L relations P̂`

n, where
` ∈ {1...L}, the breadth first search at h begins with the
relation P̂0

n while the backward breath first search at t begins
with the relation P̂L−1

n . Both recursive searches repeatedly
perform inference using Θ by classifying the tails (heads)
that complete the previous head (tail) and relation in P̂n for
the current search step. When there is overlap between the
two searches, an inference is performed that simultaneously
classifies the connecting entity serving as a head and tail
using Θ to ensure the connecting entity exists for the path.
After completing the search, all grounded paths Pn made up
of relationships classified as true by the Θ have been found
and ranked in order of belief according to Θ, which can be
accumulated during the search. These grounded paths can
then be post-processed using templates for each relation type
r ∈R and automatically corrected for grammar to produce

natural-language explanations to users [28].

IV. EXPERIMENTAL EVALUATIONS

We evaluated our inference reconciliation framework with
respect to algorithmic performance, user preference, and
robot task performance. In our algorithmic evaluation, we
used a household robot dataset to compare our interpretable
graph feature model Φ with prior work and performed an
ablation study on the crucial components of our algorithm
design. In our user preference evaluation, we measured
whether there were significant differences in user’s prefer-
ences towards our explanations when a robot is asked “why
questions” during task execution. In our robot task evalu-
ation, we measured how non-expert feedback to the robot
elicited by our explanations affected robot task performance.

A. Evaluation of Interpretable Graph Feature Model

Our first evaluation qualitatively and quantitatively com-
pared our graph feature model with baseline graph feature
models. Qualitatively, we considered the different features
necessary for our use case that each baseline model lacked
compared with ours. Quantitatively, we measured the extent
to which the classifications of each considered graph feature
model Φ (i.e. ours and baselines) approximates Θ’s clas-
sifications (i.e. classification fidelity). Classification fidelity
is a proxy measure of whether explanations produced by Φ
explain Θ’s reasoning [22], [16]. For quantitative compar-
isons we used an evaluation procedure proposed in [16] for
the test split of a dataset D =

{
(h, r, t)i, yi|hi, ti ∈ E , ri ∈

R, yi∈{0, 1}
}

, with i∈{1...|D|} (see Section IV-A.2). Each
yi denotes whether relation ri ∈ R holds between entities
hi, ti ∈ E . We checked for significant differences in mean
classification fidelity using five-fold cross-validation over D.

1) Qualitative Comparison: We performed a qualitative
comparison between graph feature models Φ from Section II
to select appropriate baselines for quantitative evaluation.
The summary of our qualitative comparisons between all
graph feature models Φ is shown in Table I. We did not
include SimpleE and ITransF in the quantitative comparison
because relative attention weights between relations and
entities are not interpretable to non-experts. Additionally,
our graph feature model was designed to be embedding
agnostic, allowing robotics practitioners to use the current
SoTA KGE, eliminating CrossE as a baseline. Rule-Mining
(DistMult) was not considered because rule-support cannot
provide explanations in cases with no positively correlated
relation paths because support does not reason about negative
correlations between relation paths. We excluded OxKBC
because instead of KG correlations, it uses expert annotations
to determine which explanation is best suited for a classifica-
tion, which may not provide interpretability into the KGE’s
(i.e. robot’s) beliefs. Thus, the only prior method we quan-
titatively compared against is XKE, as it met all previously
mentioned considerations critical to our application.

2) Quantitative Comparison: We compared our approach
with XKE [16] quantitatively using an evaluation procedure
from [16]. We first generated the inputs held constant during

TABLE I: Comparison of Explainable KBC Methods

Method User? KGE
Agnostic?

Negative
Correlations?

Stand-
alone?

F1 Fidelity
(µ, σ)

SimplE [18] Expert 7 3 3 N/A
ITransF [17] Expert 7 3 3 N/A
CrossE [20] ¬Expert 7 3 3 N/A
DistMult [19] ¬Expert 3 7 3 N/A
OxKBC [21] ¬Expert 3 3 7 N/A
XKE [16] ¬Expert 3 3 3 (87.9, 3.4)
Ours ¬Expert 3 3 3 (98.9, 0.1)
Ours (∀, DT) ¬Expert 3 3 3 (95.2, 3.0)
Ours (∀, LR) ¬Expert 3 3 3 (87.9, 3.4))

TABLE II: Dataset gathered from VirtualHome to learn Θ
Relation |Ehead|† |Etail|† |DTr|† |DV a|†/|DTe|† |D|
HasEffect 31 16 25 3 31
InverseActionOf 12 12 12 1 14
InverseStateOf 16 16 14 1 16
LocInRoom 43 4 86 10 106
ObjCanBe 183 35 1,369 171 1,171
ObjInLoc 97 24 120 15 150
ObjInRoom 183 4 334 41 416
ObjOnLoc 170 33 292 36 364
ObjUsedTo 52 22 61 7 75
ObjHasState 183 20 1,065 133 1,331
OperatesOn 52 188 1,939 242 2,423

Example entities (291 total entities)
Rooms (4) kitchen, bedroom, bathroom, livingroom
Locations (43) fridge, table, sink, garbage, bed, desk, cabinet, drawer
Objects (189) chair, towel, bleach, tomato, rug, plant, fork, laptop
Actions (35) wipe, open, pick up, turn off, bake, unplug, disinfect
States (20) dirty, clean, on, off, cooked, broken, open, plugged in

†Values for an example fold of D

evaluation, the KGE Θ and dataset D. We gathered a
household robot dataset D of unique triples from a household
simulator, VirtualHome [29], containing train DTr, valid
DV a, and test DTe splits (Table II). We used the TuckER [26]
KGE, a recent SoTA KGE model based on the Tucker
decomposition, to represent KGE Θ learned from D. We
then generated a graph feature model Φ for our approach
and XKE using the same inputs, the KGE Θ and dataset D.
We then measured the classification fidelity of each Φ to Θ.
We measured classification fidelity as F1-Fidelity between
Φ and Θ classifications, in which the KGE’s classifications
served as labels [16]. We checked for significant differences
in mean F1-Fidelity across a five-fold cross-validation over
D using repeated-measures ANOVA and a post-hoc Tukey’s
test. Please visit the footnote in Section III for supplementary
materials detailing the implementation of Θ and each Φ, the
tuning of hyper-parameters, the evaluation dataset, results,
and statistical analyses that are omitted here for brevity. Our
results in Table I show that there is a statistically significant
(p=0.001) improvement in the mean F1-Fidelity between our
graph feature model and XKE’s.

3) Ablation Study: We further analyzed our approach
by performing an ablation study to understand how each
component of our graph feature model contributed to the
overall improvement in performance. We toggled two novel
parts of our graph feature model not present in XKE: the
use of decision trees as Φ and the locality of examples to
train Φ. We followed the same procedure as in the previous
experiment, the results of which are in Table I. The first
ablation, (∀, DT) in Table I, shows a significant (p=0.02) drop
in performance from including all available relation paths
to train Φ, which is still a decision tree. The fidelity of Φ
drops due to the challenge of making an interpretable model

Fig. 2: Preferences User Study GUI.

approximate the global decision boundary of a black box
model [22]. The second ablation, (∀, LR) in Table I, shows
a significant (p=0.001) drop in performance from modeling
Φ as a linear model instead of a decision tree, in addition
to including all available relation paths to train Φ. Here, the
fidelity of Φ drops due to the non-linear joint contributions
of relation paths, discussed in Section III-B.2.

B. Evaluation of Explanation Preferences

Next, we evaluated our inference reconciliation framework
from a non-expert’s perspective. We performed a user study
to characterize the relationship between different types of
“why questions” asked to a robot and a non-expert’s pre-
ferred types of explanations as responses from the robot.
The study evaluated two types of “why questions” asked to
discern a robot’s actions during cleaning tasks: causal and
knowledge inference. Our causal questions were those that
inquired about the causal need for an action (e.g. “Why will
you move to the sink?”). Our knowledge inference questions
were those that inquired about the underlying inferences
supporting an action (e.g. “Why do you think you will find
a sponge in the sink?) (see Table III). Prompted by the “why
question”, users selected their preferred explanation from a
list provided as possible robot responses. Our null hypothesis
was that the type of “why question” asked to a robot would
not have a significant affect on the type of explanation from
the robot preferred by a non-expert.

1) Study Design: We recruited 50 users from Amazon’s
Mechanical Turk (AMT) to perform the study, all whom
were 18 years or older (M=40.7, SD=10.3). The study was
between-subjects, given that each participant was randomly
assigned to evaluate only one of two types of “why ques-
tions” for each interaction. We counterbalanced for ordering
effects by randomizing the question order and robot response
type order. Of the 50 participants, 17 participants were
filtered out for incorrectly answering any of four filtering
questions (not included in results) scattered throughout the
study, each which had one sensical and nonsensical re-
sponse (i.e.“..take the scrubber to later slay a fire breath-
ing dragon..”). The remaining 33 participants were used to
evaluate 15 robot interactions.

In the study, users watched short videos of robot inter-

TABLE III: Preferences User Study Example Questions and Responses
Knowledge Inference Why Question Causal Why Question
Why do you think you will find a washing
sponge in a sink?

Why will you move to the sink?

Why do you think a scrubber is used to scrub? Why will you grab the scrubber?
Why do you think the act of scrubbing an
object will make it clean?

Why will you scrub the kitchen
table with the scrubber?

Knowledge-graph-based Robot Responses
I know that dusting can be done using a wash cloth, a wash cloth is usually used
on a stall, a stall can be mopped, and the act of mopping an object will make it
clean. Therefore, it is possible that the act of dusting an object will make it clean.
I know that a cleaning rag is often in a cabinet, a cabinet often can contain a
towel, and a towel is used to wipe. Therefore, it is possible that a cleaning rag is
used to wipe.

Causal-link-based Robot Responses
I will sponge the table to fulfill the goal of the table being clean.

I will move from the table to the sink to later grab the scrubber from the sink.
I will take the scrubber to later be able to scrub the table with the scrubber.

I will wipe the table to fulfill the goal of the table being clean.

TABLE IV: Results of Preferences User Study

Chi
P-val

Fisher
P-val Interrupted Robot Task

1 0.01 0.006 Find disinfectant brush on kitchen table
2 0.01 0.006 Grab disinfectant brush to disinfect
3 0.02 0.01 Grab scrubber to scrub
4 0.00001 0.00001 Find washing sponge in sink
5 0.58 0.44 Grab cleaning rag to wipe
6 0.23 0.19 Find scrubber in sink
7 0.001 0.0005 Disinfect table with disinfectant brush
8 0.004 0.002 Grab washing sponge to sponge
9 0.13 0.12 Find cleaning rag on kitchen counter

10 0.02 0.01 Grab feather duster to dust
11 0.0001 0.00001 Find feather duster in cabinet
12 0.15 0.15 Sponge table with washing sponge
13 0.002 0.001 Wipe table with cleaning rag
14 0.009 0.007 Scrub table with scrubber
15 0.003 0.001 Dust table with feather duster

actions within a household environment and were prompted
with “why questions” about each interaction. Specifically, in
each video, the robot interacted with the world and executed
one unique action towards a cleaning task before being inter-
rupted, and the user answered a designated “why question”
that was either a causal or knowledge inference question
(example provided in Figure 2). Users were then tasked with
selecting the “best robot response” to the “why question”.
Users were provided with two different explanation types
as robot responses: causal-link-based and knowledge-graph-
based. The causal-link-based explanations were generated
from a recent state-of-the-art plan verbalization and ex-
planation method based on causal-link-chaining [9]. The
knowledge-graph-based explanations were generated by our
inference reconciliation framework in Section III using the
dataset D from Table II. Example questions and responses
in the assessment are shown in Table III. Note, we do
not evaluate explanations using scene-graphs, policies, or
rationales (Section II), given that their assumptions do not
align with our robot cleaning task).

2) Study Results: We performed a Chi-square test of
independence followed by repeated Fisher’s exact method
measures to analyze user responses aggregated in an indi-
vidual contingency table for each robot interaction in the
assessment. We accounted for Type I error due to Fisher’s re-
peated measures using Simes’ alpha correction [30]. In Table
IV, we summarize the statistical analyses for each of the 15
robot interactions analyzed, excluding the filtering question
instances. We observed that when asked a knowledge infer-
ence “why question”, participants select a knowledge-graph-
based robot response more often than not in all questions
except 5, and that 73.3% of these selections were significant
(in bold). Similarly, when asked causal “why questions”,
participants select a causal-link-based robot response more
often than not in all questions, and 73.3% of these differences
are significant. Overall, our results indicate that non-experts
recognize the qualitative differences in the two types of “why
questions”, which tend to significantly effect their preferred
type of robot response. In other words, there is a need for
knowledge-based robot responses given they are better suited
for knowledge inference “why questions”.

C. Validation of Explanations for Downstream Tasks

In our final experiment we evaluated whether non-experts
could use our inference reconciliation framework to improve
robot task performance. The robot’s task was robust task
execution, wherein the robot is provided a demonstrated task-
plan recorded in a demonstration environment, and asked
to generalize the task-plan to new execution environments.
Given that robots cannot be assumed to be error-free, we
relaxed the assumption from prior experiments that the
robot had gathered a high-quality dataset by including robot
perception noise (i.e. the robot had a faulty object and
affordance detector). We incorporated robot perception noise
into a new dataset D̂ by randomly corrupting 30% of facts
for each relation in the dataset D from prior experiments
(Table II). As a consequence, the KGE Θ̂ learned from the
D̂ dataset often makes nonsensical knowledge inferences
(e.g., (sponge,ObjUsedTo,microwave)) that lead to erratic
robot behavior when executing tasks. We validated whether
nonsensical facts supporting inferences made by Θ̂ can be
revealed to non-experts using explanations generated by our
inference reconciliation framework. We hypothesized that if
non-experts can accurately recognize and correct nonsensical
facts in explanations, then that feedback can be used to
improve Θ̂, and in turn, improve robot behavior.

We performed a user study to measure how well non-
experts can correct nonsensical facts within natural language
explanations (i.e. correction accuracy). The explanations
were generated by our inference reconciliation framework.
Specifically, the interpretable model Φ was trained on D̂
for incorrect classifications of facts in DTe where Θ̂ and
Φ provided the same classification (see Section III). The
results of the user study informed a confidence interval for
the expected non-expert correction accuracy.

1) Study Design: We recruited 19 participants from AMT,
all of whom were 18 years or older (M=33.4, SD=5.9). Of
the 19 participants, 1 was filtered out for performing below
chance on the practice portion of the study. In the study, users
were tasked with identifying and correcting nonsensical facts
for a series of knowledge inferences and accompanied expla-
nations. Specifically users traversed through each supporting
fact of the explanation and selected the “most correct” fact

Fig. 3: Non-expert Feedback User Study GUI.
from a list of options, which included the supporting fact
from the explanation, three other facts classified as most true
by the KGE that could replace the supporting fact from the
explanation, and “None of the above” (example in Figure 3).

We formed a confidence interval for the expected non-
expert correction accuracy because exhaustively recruiting
users to evaluate all grounded explanations generated for
misclassified examples in D̂Te was impractical due to the
large number of grounded explanations (10,000+). Instead,
we randomly assigned each user 16 questions sampled from
the large set of grounded explanations. In total, 18 users an-
swered 96 sampled questions. We ensured that each sampled
question received three responses (randomly sampled), and
combined these responses using majority voting to create 6
meta-users. We determined the necessary population size of
meta-users to be 6, by forming a 95% confidence interval
with a 5% error margin using the sample standard-deviation
of meta-user correction accuracy.

2) Study Results: The mean non-expert correction accu-
racy was 86.6% with an error margin of 4.1%. We confirmed
non-expert correction accuracy samples were normally dis-
tributed using Shapiro-Wilk’s Test (p=0.83). Additionally, to
ensure no grouping bias, we performed a one-way ANOVA
to test that there were no significant differences in the mean
performances of users whose combined responses formed
each meta-user (p=0.72).

3) Improvement of KGE: We characterized the effect of
non-expert correction accuracy on improving the KGE by
measuring inference performance. Our initial KGE was Θ̂
learned from D̂. We corrected 86.6% of the corrupted facts
in D̂ to form a dataset D̄ and learned a new KGE, Θ̄, from D̄.
Finally, we measured the difference in inference performance
between Θ̂ and Θ̄ on our original dataset D (from Table II)
for the common KGE task, link-prediction [15].

In short, the link-prediction evaluation task is to rank
complete triples from incomplete ones in test splits, i.e.,
rank heads h given (r, t) or tails t given (h, r). To perform
link-prediction, each test triple (h, r, t) is first corrupted by
replacing the head (or tail) entity with every other possible
entity E . Then all corrupted triples that represent a valid
relationship between the corresponding entities are removed
to avoid underestimating the embedding performance, known
as “filtered setting” [15]. Last, scores are computed for each
test triplet and its (remaining) corrupted triplets using the
scoring function f(h, r, t), then ranked in order of belief. For
each test triple (h, r, t), the mean reciprocal rank of the test
triple is calculated as a measure of inference performance.

Fig. 4: Effect of Non-expert Correction Accuracy on MRR%.
We observed that the mean non-expert correction accuracy

provided a 117% relative improvement in MRR between Θ̂
and Θ̄ for the link-prediction task. Shown in Figure 4 is
the MRR of Θ̂ as a red dot (32.1%) and Θ̄ as a green dot
(69.9%). Figure 4 also includes interpolated results for the
range of possible non-expert correction accuracy.

4) Improvement of Robot Behavior: As a final result, we
characterized the effect of non-expert correction accuracy on
improving the robot’s behavior by measuring robot success
rate. We considered a real-world scenario in which a house-
hold robot performs robust execution of household cleaning
tasks, using the system and definitions in [5]. In robust task
execution, the robot is provided an execution environment
Ex and a demonstrated task plan Td that is recorded in a
demonstration environment Ed, and asked to find a modified
task plan Tx, executable in Ex, that accomplishes the goal(s)
of Td. Task plans are defined as a sequence of primitive
actions, where each primitive action may or may not be
parameterized by objects. Task plans are incrementally modi-
fied using knowledge inferences from a KGE with the system
defined in [5] to find an executable task plan. Execution
environments are sampled by perturbing the object used to
demonstrate the task; changing the object’s location, type,
or both. The perturbations are made in accordance with the
action-object-location distributions present in D, ensuring
that objects are not placed at implausible locations (e.g.,
broom inside the toilet) and that the intended generalization
is not unreasonable (e.g. cleaning a table with a washing-
machine). As a result, the demonstrated task plan often fails
due to unsatisfied pre-conditions of primitive actions, and
the robot must generalize the demonstrated task plan to
formulate the executable task plan.

We measured the improvement in robot success rate
provided by the mean non-expert correction accuracy by
deploying Θ̂ and Θ̄ on a simulated robot in a simula-
tion household environment performing robust execution of
cleaning tasks. We sampled 50 initial demonstrations with
10 executions environments in each, for a total of 500 robot
executions and measured the robot’s execution success rate
when using Θ̂ and Θ̄. Our experiment showed a 33.7%
relative improvement in the robot’s success rate due to the
non-expert feedback (i.e. the robot succeeded in 187 sampled
environments using Θ̂ and 250 using Θ̄). We measured
the success rate of a robot that only repeats the default
demonstration and a robot selecting random generalizations
of the task plan as reference points for the difficulty of the
task, which were 9 and 22 successes, respectively.

TABLE V: Corrected Robot Behaviors
Action Objects robot attempted to use to perform action

dust computer, radio
wipe crayon

disinfect toaster, television, candle, pillow

In addition to the quantitative improvement in success rate,
we observed qualitative changes in the robot’s generalization
behaviors during task execution. Examples are shown in
Table V. Each combination of action and object in Table V
is an instance of a robot behavior that was corrected by
the non-experts. For example, when using Θ̂, the robot
attempted to dust using a radio. However, by using Θ̄, which
incorporates the non-expert feedback, those nonsensical task
generalizations no longer are attempted.

V. CONCLUSIONS

In summary, we introduce an inference reconciliation
framework that answers a user’s questions about knowl-
edge inferences supporting robot actions using knowledge
graphs, XAI, and natural language. Our framework follows
a pedagogical XAI approach, by using an interpetable graph
feature model to locally approximate the classifications of
a black-box model, a KGE. Through a three-fold evalu-
ation, we demonstrate the importance of our framework
both with respect to interpretability as well as improved
task performance. Specifically, we show via an algorithmic
evaluation that leveraging a decision tree classifier as an
interpretable graph feature model in our framework leads
to higher F1-Fidelity compared to prior use of linear re-
gression models for explainable KGEs. Additionally, through
user evaluations, we demonstrate that our explanations are
highly preferred and accessible. Through a user preference
evaluation, we demonstrate a significant preference towards
our framework’s explanations for knowledge inference “why
questions.” Additionally, when relaxing the assumption that
robots are error-free, we showcase the effectiveness of our
explanations in helping users identify and correct nonsensical
beliefs in robots’ knowledge representations, consequently
improving robot task performance.

REFERENCES

[1] A. Boteanu, A. St. Clair, A. Mohseni-Kabir, C. Saldanha, and S. Cher-
nova, “Leveraging large-scale semantic networks for adaptive robot
task learning and execution,” Big data, vol. 4, no. 4, 2016.

[2] D. Nyga, S. Roy, R. Paul, D. Park, M. Pomarlan, M. Beetz, and
N. Roy, “Grounding robot plans from natural language instructions
with incomplete world knowledge,” in Conference on Robot Learning.
PMLR, 2018, pp. 714–723.

[3] T. Chakraborti, S. Sreedharan, and S. Kambhampati, “The emerging
landscape of explainable ai planning and decision making,” arXiv
preprint arXiv:2002.11697, 2020.

[4] H. Paulheim, “Knowledge graph refinement: A survey of approaches
and evaluation methods,” Semantic web, vol. 8, no. 3, 2017.

[5] A. Daruna, L. Nair, W. Liu, and S. Chernova, “Towards robust one-
shot task execution using knowledge graph embeddings,” in Int. Conf.
on Robotics and Automation. IEEE, 2021.

[6] M. Tenorth, L. Kunze, D. Jain, and M. Beetz, “Knowrob-map-
knowledge-linked semantic object maps,” in Int. Conf. on Humanoid
Robots. IEEE, 2010, pp. 430–435.

[7] W. Liu, D. Bansal, A. Daruna, and S. Chernova, “Learning Instance-
Level N-Ary Semantic Knowledge At Scale For Robots Operating
in Everyday Environments,” in Proceedings of Robotics: Science and
Systems, Virtual, July 2021.

[8] B. Seegebarth, F. Müller, B. Schattenberg, and S. Biundo, “Making
hybrid plans more clear to human users-a formal approach for gener-
ating sound explanations,” in Int. Conf. on Automated Planning and
Scheduling, 2012.

[9] G. Canal, S. Krivic, P. Luff, and A. Coles, “Task plan verbalizations
with causal justifications,” in ICAPS 2021 Workshop on Explainable
AI Planning (XAIP), 2021.

[10] B. Krarup, M. Cashmore, D. Magazzeni, and T. Miller, “Model-based
contrastive explanations for explainable planning,” 2019.

[11] O. Khan, P. Poupart, and J. Black, “Minimal sufficient explanations
for factored markov decision processes,” in Int. Conf. on Automated
Planning and Scheduling, vol. 19, 2009, pp. 194–200.

[12] U. Ehsan, P. Tambwekar, L. Chan, B. Harrison, and M. O. Riedl,
“Automated rationale generation: a technique for explainable ai and
its effects on human perceptions,” in Int. Conf. on Intelligent User
Interfaces, 2019, pp. 263–274.

[13] M. Göbelbecker, T. Keller, P. Eyerich, M. Brenner, and B. Nebel,
“Coming up with good excuses: What to do when no plan can be
found,” in Int. Conf. on Automated Planning and Scheduling, 2010.

[14] D. Das and S. Chernova, “Semantic-based explainable ai: Leveraging
semantic scene graphs and pairwise ranking to explain robot failures,”
in Int. Conf. on Intelligent Robots and Systems. IEEE, 2021.

[15] M. Nickel, K. Murphy, V. Tresp, and E. Gabrilovich, “A review of
relational machine learning for knowledge graphs,” Proceedings of
the IEEE, vol. 104, no. 1, pp. 11–33, 2015.

[16] A. Ruschel, A. C. Gusmão, G. P. Polleti, and F. G. Cozman, “Ex-
plaining completions produced by embeddings of knowledge graphs,”
in European Conference on Symbolic and Quantitative Approaches
with Uncertainty. Springer, 2019, pp. 324–335.

[17] Q. Xie, X. Ma, Z. Dai, and E. Hovy, “An interpretable knowledge
transfer model for knowledge base completion,” in Proceedings of the
55th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), 2017, pp. 950–962.

[18] S. M. Kazemi and D. Poole, “Simple embedding for link prediction
in knowledge graphs,” Advances in neural information processing
systems, vol. 31, 2018.

[19] B. Yang, S. W.-t. Yih, X. He, J. Gao, and L. Deng, “Embedding entities
and relations for learning and inference in knowledge bases,” in Int.
Conf. on Learning Representations, 2015.

[20] W. Zhang, B. Paudel, W. Zhang, A. Bernstein, and H. Chen, “Interac-
tion embeddings for prediction and explanation in knowledge graphs,”
in Int. Conf. on Web Search and Data Mining, 2019, pp. 96–104.

[21] Y. Nandwani, A. Gupta, A. Agrawal, M. S. Chauhan, P. Singla, et al.,
“Oxkbc: Outcome explanation for factorization based knowledge base
completion,” in Automated Knowledge Base Construction, 2020.

[22] M. T. Ribeiro, S. Singh, and C. Guestrin, “” why should i trust you?”
explaining the predictions of any classifier,” in Int. Conf. on knowledge
discovery and data mining, 2016, pp. 1135–1144.

[23] S. Chernova, V. Chu, A. Daruna, H. Garrison, M. Hahn, P. Khante,
W. Liu, and A. Thomaz, “Situated bayesian reasoning framework
for robots operating in diverse everyday environments,” International
Foundation of Robotics Research, 2017.

[24] Y. Zhu, A. Fathi, and L. Fei-Fei, “Reasoning about object affordances
in a knowledge base representation,” in European conference on
computer vision. Springer, 2014, pp. 408–424.

[25] A. Daruna, W. Liu, Z. Kira, and S. Chetnova, “Robocse: Robot
common sense embedding,” in Int. Conf. on Robotics and Automation
(ICRA). IEEE, 2019, pp. 9777–9783.

[26] I. Balažević, C. Allen, and T. M. Hospedales, “Tucker: Ten-
sor factorization for knowledge graph completion,” arXiv preprint
arXiv:1901.09590, 2019.

[27] M. Gardner and T. Mitchell, “Efficient and expressive knowledge
base completion using subgraph feature extraction,” in Proceedings
of the 2015 Conference on Empirical Methods in Natural Language
Processing, 2015, pp. 1488–1498.

[28] K. v. Deemter, M. Theune, and E. Krahmer, “Real versus template-
based natural language generation: A false opposition?” Computa-
tional linguistics, vol. 31, no. 1, pp. 15–24, 2005.

[29] X. Puig, K. Ra, M. Boben, J. Li, T. Wang, S. Fidler, and A. Torralba,
“Virtualhome: Simulating household activities via programs,” in Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2018, pp. 8494–8502.

[30] G. Shan and S. Gerstenberger, “Fisher’s exact approach for post hoc
analysis of a chi-squared test,” PloS one, vol. 12, no. 12, 2017.

	I INTRODUCTION
	II RELATED WORKS
	III METHODOLOGY
	III-A Knowledge Graph Representation
	III-B Interpretable Model
	III-B.1 Interpretable Knowledge Graph Features
	III-B.2 Explainable Model Training

	III-C Extracting and Grounding Explanations

	IV EXPERIMENTAL EVALUATIONS
	IV-A Evaluation of Interpretable Graph Feature Model
	IV-A.1 Qualitative Comparison
	IV-A.2 Quantitative Comparison
	IV-A.3 Ablation Study

	IV-B Evaluation of Explanation Preferences
	IV-B.1 Study Design
	IV-B.2 Study Results

	IV-C Validation of Explanations for Downstream Tasks
	IV-C.1 Study Design
	IV-C.2 Study Results
	IV-C.3 Improvement of KGE
	IV-C.4 Improvement of Robot Behavior

	V CONCLUSIONS
	References

