
AssembleRL: Learning to Assemble Furniture
from Their Point Clouds

Ozgur Aslan1, Burak Bolat1, Batuhan Bal1, Tugba Tumer1, Erol Sahin1, Sinan Kalkan1

Abstract— The rise of simulation environments has enabled
learning-based approaches for assembly planning, which is
otherwise a labor-intensive and daunting task. Assembling
furniture is especially interesting since furniture are intricate
and pose challenges for learning-based approaches. Surpris-
ingly, humans can solve furniture assembly mostly given a 2D
snapshot of the assembled product. Although recent years have
witnessed promising learning-based approaches for furniture
assembly, they assume the availability of correct connection
labels for each assembly step, which are expensive to obtain in
practice. In this paper, we alleviate this assumption and aim
to solve furniture assembly with as little human expertise and
supervision as possible. To be specific, we assume the availability
of the assembled point cloud, and comparing the point cloud
of the current assembly and the point cloud of the target
product, obtain a novel reward signal based on two measures:
Incorrectness and incompleteness. We show that our novel
reward signal can train a deep network to successfully assemble
different types of furniture. Code and networks available here:
https://github.com/METU-KALFA/AssembleRL

I. INTRODUCTION

Final Product
Point Cloud

Partial
Product

Point Cloud

Part
Point Cloud

Action Action

Reward

Furniture Part
Connection Site
Connection

Reward

…

…

…

Reward

Fig. 1. We propose learning to assemble a product given only its assembled
form, unlike prior work that requires precise supervision for each assembly
step. Our novel reward formulation uses two measures; one for measuring
the incorrectness of the assembly so far, and another for the incompleteness
of the assembly with respect to the target (see Fig. 4).

Assembling a product from its parts is a challenging
task that fascinates kids as well as adults who prefer to
build their toys/furniture from parts provided in LEGO/IKEA
boxes. Although a sequence of line drawings is provided
as the assembly plan of these products, the final view of
the assembled product often serves as the ultimate guide,
enabling humans to fill in the gaps in the assembly plans

*Partially supported by TUBITAK with projects 120E269 and 117E002.
1All authors are with KOVAN Research Lab; METU-ROMER, Cen-

ter for Robotics and Artificial Intelligence; and Dept. of Computer En-
gineering, Middle East Technical University, Ankara, Turkey. E-mail:
aslan.ozgur@metu.edu.tr

by comparing the partially assembled product with the final
version. Such an assembly capability is desirable for robots
to be deployed in low-volume assembly tasks, where the
overhead of specifying a detailed assembly plan takes away
the benefits of automation. In this sense, we are motivated
by the vision of a “Assembly Robot” that you would rent to
build your boxed furniture on your behalf.

In this paper, we propose a Deep Reinforcement Learning
(DRL) based method, AssembleRL, to learn assembly plans
using the final view of the assembled furniture as a guide,
along with the specifications and view of its parts (Fig. 1).
Our work, along with prior studies [1], [2] on learning-based
furniture assembly, are motivated by the availability of the
IKEA furniture assembly simulation environment [3] which
also includes a library of furniture models.

In this paper, in contrast to prior work [1], we propose to
use only the fully assembled point cloud of the furniture
and the mesh models of its parts, to learn the assembly
plan. Specifically, we introduce a novel reward function that
evaluates the match between the point cloud of the partially
assembled furniture against its fully assembled view using
two measures that evaluate the incorrectness and incomplete-
ness. We train a graph-convolutional neural network with
our novel reward signal, combining the incorrectness and
incompleteness measures, to learn the assembly plan as a
policy that predicts which part pairs need to be connected
via which of their connections. The method is successfully
tested on 11 IKEA furniture models.

Our main contributions are: (1) We only use the target
point cloud to learn assembly plans. (2) We introduce a novel
reward function that quantifies incorrectness and incomplete-
ness of the current assembly with respect to the target model.
(3) We apply our solution to learning assembly plans for
different furniture.

II. RELATED WORK AND BACKGROUND

Assembling with robots requires solving three main tasks
[4], [5]: Modelling, planning and execution. Modelling per-
tains to obtaining a representation of the assembly process
and includes representing parts, tools, actions etc. A common
approach for assembly modelling is using graphs (e.g. [6],
[2], [7], [8]), as they are naturally suitable for representing
entities and the relations among them.

Assembly planning is finding a sequence of assembly
actions that, once executed, lead to the assembled product
is an NP-complete problem [9]. Although various backward
or forward planners can be used for finding assembly plans,
they generally require constraints about the task (provided by

ar
X

iv
:2

20
9.

07
26

8v
1

 [
cs

.R
O

]
 1

5
Se

p
20

22

a human expert) and the resulting plan can be sub-optimal
[10], [11], [12]. Therefore, in practice, human experts are
needed either for creating the whole assembly plan or for
collaborative assembly planning/execution [10], [13]. Auto-
matic discovery of such plans, with little supervision, would
benefit the development of “Assembly Robots”.

A. Learning to Assemble Furniture

The rise of learning-based approaches, especially DRL,
has led to unprecedented success in programming and con-
trolling robots (see e.g. [14] for a review), which have
motivated such approaches for solving assembly tasks as
well. As learning an assembly with a real robot can be costly,
generally simulation environments are used by learning-
based assembly approaches [1], [3], [15].

It has been shown that rotation and translation between
object parts can be learned to assemble objects. For this
purpose, deep networks such as Convolutional Neural Net-
works (CNN) [16] or Graph Convolutional Networks (GCN)
[17] can be used. Such networks are trained using supervised
learning with Chamfer Distance between the target and the
assembled parts, L2 loss of the part translations and Chamfer
Distance between whole assembled product with the target
assembly as the supervision signal [17] or RL using correct
connection labels as the supervision signal [1].

The introduction of furniture assembly simulation envi-
ronments [1], [3], [15] has enabled the use of learning-based
approaches. For example, Huang et al. [17] used supervised
learning to train a graph neural network to estimate 6D pose
for each part to assemble chairs, lamps and tables. Yu et al.
[1] employed DRL for chair assembly, though they assumed
the availability of strong supervision (correct vs. incorrect
labels for connections) for each assembly action.

B. Comparative Summary

Although there are promising learning-based approaches
for furniture assembly, as listed in Table I, we see that
they assume the availability of strong supervision (correct
vs. incorrect connection labels) for each assembly step. In
contrast, in this work, we only assume the availability of
point cloud of the fully assembled furniture to provide weak
supervision (reward) signal to train a DRL network.

TABLE I
LEARNING-BASED APPROACHES FOR FURNITURE ASSEMBLY.

Study Method Weak-supervision Output

Huang et al.
[17]

GNN,
Supervised 7

6D pose for
each part

Yu et al.
[1] RL 7

Pair,
Connection Site,

Rotation

AssembleRL GNN, RL 3
Pair,

Connection Site

III. METHODOLOGY

A. Problem Definition

We define the problem as the discovery of an assembly
plan using the fully assembled point cloud view of the

furniture, along with the connection specifications and the
mesh models of its parts, which are sampled to obtain point
cloud representations. Specifically, let us use PT to denote
the point cloud of the fully assembled furniture, and P 0 &
P t to denote respectively the point cloud of the ‘seed’ part
at the beginning of the assembly, and the partially assembled
furniture at step t of the assembly.

We assume that the assembly process starts with a single
‘seed’ part, which is grown through the attachment of other
parts towards the final product. Furniture that require the
assembly of separate parts, such as assembly of drawers in
a separate plan, which are then attached to the body of a
chest, are not addressed.

PointNet++
(pre-trained, frozen)

𝒳𝑃

𝒳𝑐

𝒜

Point Cloud

(partial assembly 𝑃𝑡)

Graph Conv.

Layers

Multi-layer

Perceptron

flatten action

reward
backpropagate

Point Cloud

(target 𝑃𝑇)

Point Cloud

(partial assembly 𝑃𝑡+1)

Fig. 2. An overview of the proposed system. Point cloud of the current
assembly (P t) is processed by a graph neural network. The selected action
is rewarded by comparing the updated assembly (P t+1) with the target PT .

B. Overview

We use DRL (Proximal Policy Optimization [18] to be
specific) to find a policy π for successful assembly of
furniture. Following similar studies [2], [16], [17], we use
graphs to encode the state of the environment (Sect. III-C)
and devise a GNN to obtain a probability distribution over
the actions for successful assembly (Fig. 2 and Sect. III-D).
To train the network, we propose a novel reward function
(Sect. III-E) that consists of two measures: Incorrectness and
Incompleteness, which are computed by matching P t and
PT . See Fig. 2 for an overview.

C. Graph Representation of Assembly State

The state of the assembly is represented as a graph.
Initially, each of the N parts to be assembled is represented
as a separate undirected graph. Specifically, the ith part is
represented as a graph Gi = (pi, c

1
i , c

2
i , .., c

6
i) consisting of

a part node (pi) attached to 6 connection nodes (c1i , .., c
6
i),

shown as red and blue nodes respectively in Fig. 3. The
representation of a part node pi, denoted by φ(pi), is the
point cloud representation for the part, whereas a connection
node cki is represented by a one-hot vector, denoted by φ(cki).

Assembly actions are represented as a tuple
(Gi,Gj , cki , clj), where Gi,Gj represent the parts, and
cki , c

l
j represent the connection sites on these parts. An

assembly action would merge Gi,Gj by adding an edge,

𝑝𝑖

𝑐𝑖
𝑘

𝑐𝑗
𝑙

𝑒𝑖𝑘,𝑗𝑙

𝑝𝑗

𝒢𝑖 (part 𝑖)

𝒢𝑗 (part 𝑗) 𝒢𝑡
𝑃𝑡

Mesh to point cloud

transformation

Fig. 3. Each part is represented by a graph (G·), consisting of a part
node (p· – red circle) and 6 connection nodes (c· – blue circle). Parts are
attached by drawing edges (e·) between connection nodes. P t is obtained
by sampling the connected parts.

eik,jl, connecting the kth connection site of part i with the
lth connection site of part j.

One of the parts, say Gi, is picked as the ‘seed’ and is
used to initialize the partial assembly graph denoted with
G0 = Gi. The state of the partial assembly at step t, denoted
as Gt, is updated at every assembly step by merging the
graph representations of other parts through edges formed
by connections.

At step t, an action tuple (Gi,Gj , cki , clj) is considered valid
if (i) one of Gi, Gj is a subset of Gt, the partial assembly,
while the other is not a subset of Gt, and (ii) eik,jl 6∈ Gt. All
other actions are considered invalid.

The state of the assembly Gt is then converted into a
representation suitable to be fed to neural networks, as shown
in Fig. 2. Specifically, a feature matrix, X ∈ R(N+6N)×256,
is used to store a processed representation of the N parts
and the 6N connections sites. For each part node pi, its
point cloud φ(pi) is fed into PointNet++ [19] pretrained on
ModelNet [20] to compute a feature vector Xi ∈ R256. The
6N connection sites of all N parts are represented as one-hot
vectors. For example, connection site cki is represented with
a 1 at position 6i+k. In our study, the size of one-hot vector,
6N , did not exceed the size of geometric feature vector
256 and to be compatible with part features, the remaining
dimensions are padded with zeros. Finally, the connectivity
of the undirected graph Gt is represented as an adjacency
matrix, A ∈ R(N+6N)×(N+6N).

D. Graph Neural Network

We constructed a deep network that consists of a graph
convolutional subnetwork (GNN), followed by a multi-layer
perceptron (MLP):

P = MLP(GNN(X ,A)), (1)

where, as introduced in Sect. III-C, X is the feature matrix
representing the nodes, and A is the adjacency matrix. For
GNN, we used three layers of graph convolution operator
(denoted by GCo) from [21] which modulates node features
of a part with respect to other parts through the connected
nodes of the connection sites:

GNN(X ,A) = ReLU(GCo(ReLU(GCo(ReLU(GCo(X ,A)),A)),A)),
(2)

where ReLU is a rectified linear unit. GNN(X ,A) yields
Z ∈ R(N+6N)×256 as the processed feature matrix. This
feature matrix is ‘flattened’ and provided to MLP(·) as input.

MLP(·) is a multi-layer perceptron with two hidden layers
to estimate log probabilities of each action:

MLP(x) = FC(ReLU(FC(ReLU(FC(x))))), (3)

where FC is a fully-connected layer.

E. Reward Function

Reward is computed using only the point cloud of the fully
assembled furniture PT (as summarized in Alg. 1). Unlike
[1], [17], ground truth information about the connections
between connection site pairs and relative part poses are not
assumed, making the problem setting more practical yet more
challenging.

Algorithm 1 The proposed reward function.
Input: P t: Point cloud of partial assembly,

PT : Point cloud of target assembly,
dt−1: µcmp measure at (t− 1).

Output: Reward: Reward at the end of step,
Termination: Termination condition.

Termination← false
if Gi,Gj * Gt then . Invalid: Neither part is in partial assembly
Reward← −10, Termination← true

else if Gi,Gj ⊂ Gt then . Invalid: Parts are already assembled
Reward← −1

else
dt = µcmp(P

t, PT) . Eq. 4
if dt ≥ dt−1 then . Completeness ↓
Reward← −10, Termination← true

else
if µcor(P

t, PT) < nth then . nth: threshold
Reward← 5 . Correctness ↑

else
Reward← −5 . Correctness ↓

end if
end if

end if
return Reward, Termination

Point cloud of partial assembly, P t, is generated from
the current state of the assembly, represented in Gt and is
updated after every action. To obtain P t, at first, the mesh
of the part assembly is obtained; and then a fixed number of
points are sampled from this mesh. For each P t, the same
number of points are sampled, resulting in a density change
after addition of new parts. The affect of the density change
is discussed in the following section.

The partial assembly, P t, is then compared against PT

using two evaluation measures inspired from Chamfer Dis-
tance; namely incompleteness and incorrectness (Fig. 4).
The incompleteness measure is designed to measure the
completion progress of the partial assembly towards the final
furniture, whereas the incorrectness measure aims to measure
the degree of incorrect part assembling.

In order to discount the effect of the arbitrary pose of
the partial assembly during its comparison with the final
assembly, Iterative Closest Point (ICP) [22] is used for the
point cloud registration between P t and PT . Unassembled
parts are excluded during the registration step and metric
computation that follows it.

Assembly
(𝑃!)

Target
(𝑃")

Register
𝑃! and 𝑃"

Calculate Reward
Measures

𝑃"

𝑃# Incorrectness
= 𝑓(𝑃" \ 𝑃#)

𝑃"

𝑃# Incompleteness
= 𝑓(𝑃#\𝑃")

Fig. 4. An illustration of the two reward measures proposed in our paper.

of

 P
oi

nt
s [

lo
g]

Incorrectness

C
um

ul
at

iv
e

R
ew

ar
d

RewardIncompleteness

Po
in

t C
lo

ud
 D

is
ta

nc
es

Step 1 Step 2 Step 3

Option 1

Option 2

Option 3

O
ption 4

Option 1
Option 2
Option 3
Option 4

(A)

(B)

Step 1 Step 2 Step 3

Step 1 Step 2 Step 3 Step 1 Step 2 Step 3

3

2

1

0.6

.01

.00

.02

6

0

14

Incorrect: ↓
Incompl.: ↓

Incorrect: ↑
Incompl.: ↑

Incorrect: ↓
Incompl.: ↑

Incorrect: ↑
Incompl.: ↓

Incorrect
threshold

Fig. 5. An illustration showing how the proposed measures and the reward
values change over time. (a) Assembly of a table with three steps. (b) How
different assembly actions (options in (a)) affect the measures.

The incompleteness measure is defined as the average
distance from PT to P t as:

µcmp(P
T , P t) =

1

|PT |
∑
x∈PT

min
y∈P t

||x− y||22, (4)

where x ∈ PT and y ∈ P t, are points in the point clouds of
the fully and partially assembled furniture. The calculation is
normalized with the number of points in the fully assembled
furniture, denoted with |PT |. The measure is expected to
decrease as the assembling progresses correctly (see Fig. 5),
but is not expected to drop to complete zero.

A correct assembly action would certainly reduce the aver-
age distance between paired points of the two point clouds.
An incorrect assembly action, however, may result in two
possible changes on the measure. If the incorrectly assembled
part hampers ICP-based registration in the previous step,
it would lead to an increase in the measure, as expected.
However, if the assembled part fails to hamper ICP-based
registration, then the points in PT will still be paired to the

same or close-by points in in P t, not causing a noticable
increase in the measure. Moreover, the assembly of a new
part into the partial assembly would increase the surface area
and would make the point cloud sampled from the mesh
sparser in the areas that match PT . As a result, the measure
may even decrease unexpectedly.

The unexpected behavior of the incompleteness measure
is compensated by the incorrectness measure, which is
defined as:

µcor(P
t, PT) =

∑
x∈P t

1

(
min
y∈PT

||x− y||22 > dth

)
, (5)

which depends on the cardinality of points in P t whose
distances to the closest pairs in PT are higher than the
threshold dth. Assuming correct point cloud registration, if
an action leads to a correct assembly, µcor is low. If an action
yields an incorrect assembly, some 3D points must be distant
from the target by a threshold dth. If there exists such µcor
points more than a constant number nth, a negative reward
is returned.

There are two types of invalid actions. For actions that
do not change the state, a negative reward is given and for
the actions that do not connect a part to the partial assembly
Gt, a high negative reward is returned and the episode is
terminated. From here on, all discussion on action and reward
assumes actions are valid.

F. Learning a Policy for Assembly

Having defined a representation for state (Sect. III-C), a
neural network (Sect. III-D), and a reward (Sect. III-E), we
use an off-the-shelf DRL method, namely Proximal Policy
Optimization (PPO) [18], in an actor-critic style to learn a
policy π for the assembly actions and a critic function for
computing advantages of the actions. The PPO algorithm is
chosen over other other actor-critic methods due to its better
performance [18].

IV. EXPERIMENTAL SETUP

A furniture library of 11 different furniture models, con-
sisting of STL mesh files specifying the shape of the parts,
and an XML file in MuJoCo Model specifying the relative
poses of the connection sites and the connections, are im-
ported from the IKEA Furniture Assembly Environment [3].
For each part, new connection sites were manually added to
increase the number of sites to 6 per part. This modification
was made (i) to have a fixed-size representation for each part
to be fed into the neural network, as well as (ii) to make the
assembly task much more challenging. For each furniture
model the ‘seed’ is selected as the largest part.

The Combinatorial Complexity of the assembly learning
problem for 11 furniture is defined as the ratio of the number
of correct action sequences to the all possible sequences. In
our study, for an N -part furniture with 6 connection sites per
part, the number of possible action sequences is:

N∏
i=1

(
i

1

)
·
(
N − i
1

)
·
(
6

1

)
·
(
6

1

)
. (6)

The number of correct action sequences that would yield a
successful assembly is computed taking into consideration
non-unique parts and connections (such as the four indiffer-
ent legs of a table, that can be installed on either end).

Table II shows the combinatorial complexity of the fur-
niture in the library. For instance, for the Lack [table] (see
Fig. 6), which consist of one table top and four identical legs
which can be installed on either end, the number of correct
action sequences computed as:

4∏
i=1

(
i

1

)
·
(
i

1

)
·
(
2

1

)
,

where, at each step, one of the correct and empty connection
sites on the table top and one of the legs that is not already
connected are selected as a pair to connect. Additionally,
since legs have symmetry, one of connection sites are se-
lected to connect.

The relative poses of the connection sites and the connec-
tions between the parts were not used by the AssembleRL.
Instead this information are used both as the ground-truth
information against which AssembleRL is evaluated, as well
as to build alternatives to compare its performance.

Training & Testing Details: The training and testing are
implemented and conducted within the Gym Reinforcement
Learning environment [23]. The graph, mesh and point cloud
representations of the parts, as well as the partially and fully
assembled furniture are stored, updated and generated with
custom-built extensions. Specifically, the extension supported
(i) the generation of point cloud of a part or partially assem-
bled furniture from its mesh and connectivity information,
(ii) the update of the graph representations as a result of
an action, and (iii) reward computation, as described above.
During training, initial pose of the parts are set randomly
once and remained the same for all the episodes.

The training and testing experiments are carried out
within the Rl-baselines3-zoo [24] framework. The PPO [18]
algorithm was used with the default parameters, and the
maximum number of steps were set as 10,000. During the
experiments, the distance threshold (dth) is set as 1.5cm and
the number of points threshold (nth) is chosen between 10
and 200 for different furniture.

Evaluation Measures: The performance of assembly
learning methods is evaluated with two measures, which
use the ground-truth information included in the furniture
models: (1) At the part connection level, we define SRcon,
connection success rate, as the ratio of correct connections
done by the agent to the number of total correct connections.
In Table II, connection success rate for each furniture, and in
Table III, connection success rate for all furniture are shown.
(2) At the furniture assembly level, we use SRa, furniture
assembly success rate, as the ratio of correctly assembled
furniture to the total number of furniture.

V. EXPERIMENTS AND RESULTS

A. Baseline Models
We consider two new reward functions as baselines, which

provide more supervision using the correct connection pairs

required for each furniture are proposed: BL1: Provide
positive reward (+5) for each action that connects the correct
pairs, and negative reward (-5) otherwise. BL2: Provide
positive reward (+5) if the furniture is correctly assembled at
the end of the episode, and negative reward (-5) otherwise.

B. Experiment 1: Furniture Assembly with AssembleRL

The last column of Table II shows the success rate (SRcon)
for AssembleRL. The results show that AssembleRL can
learn assembly sequences effectively.

TABLE II
COMBINATORIAL COMPLEXITY (EQ. 6) OF FURNITURE IN THE LIBRARY

AND INDIVIDUAL CONNECTION RATE FOR ASSEMBLERL (ALG. 1).

Furniture # parts Combinatorial
Complexity SRcon

Agne [Chair] 3 2 / 518 2/2

Bernhard [Chair] 3 2 / 5184 2/2

Swivel [Chair] 3 1 / 5184 2/2

Bertil [Chair] 5 12 / (0.9× 109) 4/4

Ivar [Chair] 5 136 / (0.9× 109) 4/4

Mikael [Table] 4 8 / (1.7× 106) 2/3

Klubbo [Table] 5 8 / (0.9× 109) 4/4

Lack [Table] 5 9216 / (0.9× 109) 4/4

Tvunit [Table] 5 104 / (0.9× 109) 4/4

Ivar [Shelf] 6 14400 / (0.8× 1012) 5/5

Liden [Shelf] 11 2× 107 / (4.8× 1028) 1/10

Although the results in Table II are promising for a method
with weak supervision, the model fails to assemble certain
products; furniture with small parts (Liden [Shelf]), furniture
not containing distinct parts (Liden [Shelf]) and furniture
with isotropic parts (Mikael [Table]). Small parts are prob-
lematic because their mis-attachment may be missed by
our measures owing to their relatively small size. Furniture
without a distinct part (Liden [Shelf]) can prevent ICP from
correctly registering the point clouds, consequently affecting
the reward measures. Isotropic parts (e.g. in Mikael [Table])
can be registered very well by ICP, though connection sites
may be flipped, which is not captured by our measures,
which may lead to incorrect attachment of consecutive parts.

C. Experiment 2: Ablation Study

Now we evaluate the contributions of different design
choices for our reward function. Table III suggests that using
the incorrectness and incompleteness measures provides the
best performance. We observe that Chamfer Distance (or us-
ing its difference between consecutive steps – delta Chamfer
Distance1) is not able to provide sufficient training signals
for assembling many of the furniture.

1At the start of an episode and after each step, Chamfer Distance is
computed, and the difference between the distances of consecutive steps
are used as the reward. The hypothesis is that this delta Chamfer Distance
better reflects the progress (the effect of an action) by capturing the decrease
in the distance.

Step 1 Step 2 Step 3

Step 4 Step 5

Fig. 6. Visualization of the Lack [Table] assembly steps. See the
supplementary material for more examples.

TABLE III
ABLATION STUDY ON THE REWARD FUNCTION. DEN.: REWARD AT EACH

STEP, SPA.: REWARD AT EPISODE END. CD: CHAMFER DISTANCE,
δ-CD: DIFFERENCE IN CHAMFER DISTANCES.

Reward Freq Reward Type Measures

Den. Spa. µcor µcmp CD δ−CD SRa SRcon

3 3 2/11 15/44

3 3 3/11 15/44

3 3 4/11 20/44

3 3 1/11 9/44

3 3 3 9/11 34/44

3 3 3 0/11 0/44

D. Experiment 3: Comparison with Baselines

We now compare the best setting of our method with two
strong baselines (BL1 and BL2) that use strong supervision
(Sect. V-A). Table IV shows that the proposed weak supervi-
sion at each assembly step provides comparable performance
to using strong supervision at each step, and it performs
better than using strong supervision at the end of an episode.

TABLE IV
PERFORMANCE COMPARISON OF ASSEMBLERL WITH BL1 AND BL2.

Reward Freq Supervision Measures

Method Den. Spar. Strong Weak SRa SRcon

Strong Sup. (BL1) 3 3 10/11 35/44

Strong Sup. (BL2) 3 3 2/11 8/44

[AssembleRL 3 3 9/11 34/44

E. Experiment 4: Qualitative Results

In Fig. 6, we provide snapshots from an assembly. In the
video provided as supplementary material, we provide more
examples, including also failure cases.

VI. CONCLUSION

In this paper, we studied whether furniture assembly can
be learned only using weak supervision, namely the 3D
model of the assembled product. To this end, we proposed a
novel reward function consisting of an incorrectness and an
incompleteness measure that are calculated by matching the
point cloud of the current assembly with the target model.
We showed that our novel reward function is able to train a
graph convolutional network to assemble various furniture.

Despite the promising results, our work can be extended
in many ways. First of all, our reward function may fail

to capture attachment of small parts or isotropic parts, and
it can be improved by designing better incorrectness and
incompleteness measures. Moreover, instead of using con-
nection sites to assemble parts, the action space of the policy
can be changed for the agent to estimate geometric relations
between the parts. Lastly, a robotic controller can be used for
part manipulation to incorporate robot arm constraints while
learning to assemble furniture.

REFERENCES

[1] M. Yu, L. Shao, Z. Chen, T. Wu, Q. Fan, K. Mo, and H. Dong,
“Roboassembly: Learning generalizable furniture assembly policy
in a novel multi-robot contact-rich simulation environment,” ArXiv:
2112.10143, 2021.

[2] N. Funk, G. Chalvatzaki, B. Belousov, and J. Peters, “Learn2assemble
with structured representations and search for robotic architectural
construction,” in CoRL, 2021.

[3] Y. Lee, E. S. Hu, and J. J. Lim, “IKEA furniture assembly environment
for long-horizon complex manipulation tasks,” in ICRA, 2021.

[4] P. Jiménez, “Survey on assembly sequencing: a combinatorial and
geometrical perspective,” J. Intel. Manufacturing, vol. 24, no. 2, 2013.

[5] T. A. Abdullah, K. Popplewell, and C. J. Page, “A review of the support
tools for the process of assembly method selection and assembly
planning,” IJPR, vol. 41, no. 11, pp. 2391–2410, 2003.

[6] L. Homem de Mello and A. Sanderson, “And/or graph representation
of assembly plans,” IEEE T. RA, vol. 6, no. 2, pp. 188–199, 1990.

[7] A. N. Harish, R. Nagar, and S. Raman, “Rgl-net: A recurrent graph
learning framework for progressive part assembly,” WACV, 2022.

[8] M. V. A. R. Bahubalendruni, B. Biswal, and G. Khanolkar, “A review
on graphical assembly sequence representation methods and their
advancements,” J. of Mechatronics and Automation, vol. 1, 2015.

[9] L. Kavraki, J.-C. Latombe, and R. H. Wilson, “On the complexity of
assembly partitioning,” Inf. Proces. Letters, vol. 48, no. 5, 1993.

[10] Y. Huang and C. G. Lee, “A framework of knowledge-based assembly
planning,” in ICRA, 1991.

[11] S. Lee, “Backward assembly planning with assembly cost analysis,”
in ICRA, 1992.

[12] S. Ghandi and E. Masehian, “Review and taxonomies of assembly
and disassembly path planning problems and approaches,” Computer-
Aided Design, vol. 67, pp. 58–86, 2015.

[13] M. Rizwan, V. Patoglu, and E. Erdem, “Human robot collaborative
assembly planning: An answer set programming approach,” Theory
and Practice of Logic Programming, vol. 20, no. 6, 2020.

[14] T. Zhang and H. Mo, “Reinforcement learning for robot research: A
comprehensive review and open issues,” IJARS, vol. 18, no. 3, 2021.

[15] Y. Zhu, J. Wong, A. Mandlekar, and R. Martı́n-Martı́n, “robosuite: A
modular simulation framework and benchmark for robot learning,” in
arXiv preprint arXiv:2009.12293, 2020.

[16] Y. Li, K. Mo, L. Shao, M. Sung, and L. Guibas, “Learning 3d part
assembly from a single image,” arXiv 2003.09754, 2020.

[17] J. Huang, G. Zhan, Q. Fan, K. Mo, L. Shao, B. Chen, L. Guibas, and
H. Dong, “Generative 3d part assembly via dynamic graph learning,”
NeurIPS, 2020.

[18] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv: 1707.06347, 2017.

[19] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “PointNet++: Deep
hierarchical feature learning on point sets in a metric space,” NeurIPS,
2017.

[20] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao,
“3d shapenets: A deep representation for volumetric shapes,” in CVPR,
2015.

[21] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in ICLR, 2017.

[22] P. Besl and N. D. McKay, “A method for registration of 3-d shapes,”
PAMI, vol. 14, no. 2, pp. 239–256, 1992.

[23] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,
J. Tang, and W. Zaremba, “Openai gym,” 2016.

[24] A. Raffin, “Rl baselines3 zoo,” https://github.com/DLR-RM/
rl-baselines3-zoo, 2020.

https://github.com/DLR-RM/rl-baselines3-zoo
https://github.com/DLR-RM/rl-baselines3-zoo

	I Introduction
	II Related Work and Background
	II-A Learning to Assemble Furniture
	II-B Comparative Summary

	III Methodology
	III-A Problem Definition
	III-B Overview
	III-C Graph Representation of Assembly State
	III-D Graph Neural Network
	III-E Reward Function
	III-F Learning a Policy for Assembly

	IV Experimental Setup
	V Experiments and Results
	V-A Baseline Models
	V-B Experiment 1: Furniture Assembly with AssembleRL
	V-C Experiment 2: Ablation Study
	V-D Experiment 3: Comparison with Baselines
	V-E Experiment 4: Qualitative Results

	VI Conclusion
	References

